
 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.1

RGGU082.doc Page 1

Lecture 2. Model-theoretic semantics, Lambdas, and NP semantics

1. Lexical and Structural Ambiguity..1
2. Lambdas ..2

2.1. A first-order part of the lambda-calculus..2
2.2. The typed lambda calculus. ..4

3. Montague’s semantics for Noun Phrases...4
3.1. Semantics via direct model-theoretic interpretation of English. ...4
3.2. Semantics via translation from English into a logical language. ..4

Appendix: Montague’s intensionsal logic, with lambdas and types. ...5
A.1 Introduction...5
A.2. Intensional Logic (IL). ...5

A.2.1. Types and model structures. ...5
A.2.2. Atomic expressions (“lexicon”), notation, and interpretation. ..6
A.2.3. Syntactic rules and their model-theoretic semantic interpretation ..7

HOMEWORK #1, Due at the time of Lecture 4. ..8
HELP FOR HOMEWORK #1...9

1. Lexical and Structural Ambiguity
Lexical ambiguity: bank1, bank2 : both CN (common noun), homonyms;
 open1 (ADJ), open2 (IV) (intransitive verb), open3 (TV) (transitive verb).

Structural ambiguity. Compositionality requires a “disambiguated language” (a “language
without ambiguity”). So we interpret expressions with syntactic structure, not just strings.

(1) old men and women. Two meanings, two structures. “old” applies only to “men”, or to
“men and women”.

 (a) NP
 9
 NP and NP
 | |
 CNP CNP
 3 |
 ADJ CNP women
 | |
 old men

 (b) NP
 |
 CNP
 3
 ADJ CNP
 | 9

 old CNP and CNP
 | |
 men women

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.2

RGGU082.doc Page 2

(2) Every student read a book. (Quantifier scope ambiguity)

 Just one (surface) syntactic structure:

 S
 3
 NP VP
 3 3
 DET CNP V NP
 | | | 3
 every student read DET CNP
 | |
 a book

Predicate logic representations of the two readings:
 (i) ∀x (Student (x) → ∃y (Book (y) & Read (x,y))
 (ii) ∃y (Book (y) & ∀x (Student (x) → Read (x,y))

Compositional interpretation of the English sentence: ??. More below, and more next week..

The difficulty for compositionality if we try to use predicate calculus to represent “logical
form”: What is the interpretation of “every student”? There is no appropriate syntactic
category or semantic type in predicate logic. Inadequacy of 1st-order predicate logic for
representing the semantic structure of natural language. We can solve this problem when we
have the lambda-calculus and a richer type theory.

Categories of PC: Categories of NL:
 Formula - Sentence
 Predicate - Verb, Common Noun, Adjective
 Term
 Constant - Proper Noun
 Variable - Pronoun (he, she, it)
 ==========
 (no more) - Verb Phrase, Noun Phrase, Common Noun Phrase, Adjective
 Phrase, Determiner, Preposition, Prepositional Phrase, Adverb,

2. Lambdas
2.1. A first-order part of the lambda-calculus.
 To begin looking at the lambda calculus, we will start with just a “first-order” part of
it, as if we were just adding a bit of the lambda calculus to the predicate calculus rules from
Lecture 1. Then in section 2.2. we will look at the fully typed lambda calculus as given in
Montague’s Intensional Logic Rule 7 in the Appendix.

Lambda-abstraction rule, first version.
 λ-abstraction applies to formulas to make predicates. This extends PC in a way that
allows us to represent more complex Common Noun Phrases, Adjective Phrases, some Verb
Phrases. For some other categories we will need the full version of the λ-abstraction rule.
R9: If ϕ ∈ Form and v is a variable, then λv[ϕ] ∈ Pred-1.
S9: ||λv[ϕ]||M, g is the set S of all d ∈ D such that || ϕ ||M, g [d/v] = 1.

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.3

RGGU082.doc Page 3

Examples. For all examples, assume that we start with an assignment g such that g(v) = John
for all v. In most of the examples below, the choice of initial assignment makes no
difference. And assume that I(b) = Bill, I(m) = Mary.

 (i) || λx[run(x)] ||M, g = the set of all individuals that run.

(ii) || λx[love(x, b)] ||M, g = the set of all individuals that love || b ||M, g[d/x], i.e. I(b), i.e. Bill.

(iii) || λx[love(x, y)] ||M, g = the set of all individuals that love || y ||M, g[d/x] , i.e. g(y), i.e. John.

(iv) || λx[fish (x) & love(x, b)] ||M, g = the set of all fish that love Bill.

(v) to represent “walks and talks”: λy[(walk (y) & talk(y))]

(vi) to represent “Mary walks and talks” with constituents that correspond to surface syntax:
 λy[(walk (y) & talk(y))] (m)

 Syntactic Structure of the formula in (vi):

 Form
 3

 Pred-1 Term
 3 |
 λy Form m
 9

 Form & Form

By λ-conversion (see below), the formula in (vi) is equivalent to (walk(m) & talk(m)).

(vii) to represent the CNP “man who loves Mary”:
 Syntactic structure:

 CNP
 3
 CNP REL: who loves Mary
 | |
 man S: z loves Mary

Rule for combining CNP and REL: λy[CNP’(y) & REL’(y)] (combining “translations”)

Compositional translation of the syntactic structure above into λ-calculus: (read bottom-to-
top)
 λy[man(y) & λz[love (z,m)] (y)]
 3
 man λz[love (z,m)]
 | |
 man love (z, m)

By λ-conversion (see below), the top line is equivalent to: λy[man(y) & love (y,m)]

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.4

RGGU082.doc Page 4

2.2. The typed lambda calculus.

The full version of the typed lambda calculus fits into Montague’s intensional logic with its
type theory; see the Appendix for a complete statement of Montague’s intensional logic. The
parts we will use the most will be the type theory, the lambda calculus (Rule 7), and the rule
of “functional application” (Rule 6). Montague’s intensional logic includes the predicate
calculus as a subpart (see Rule 2), but not restricted to first-order: we can quantify over
variables of any type.

Lambda-abstraction, full version.
In general: λ-expressions denote functions.
λv[α] denotes a function whose argument is represented by the variable v and whose value
for any given value of v is specified by the expression α.

Example: λx[x2 + 1] denotes the function x → x2 + 1.
 Function-argument application: λx[x2 + 1] (5) = 26

λ-expressions provide explicit specification of the functions they name, unlike arbitrary
names like f, g. (The λ-calculus was invented by the logician Alonzo Church. The
programming language LISP, invented by John McCarthy, was modelled on the λ-calculus.)

Syntactic and Semantic Rule: (a restatement of Syntactic and Semantic Rules 7 of IL)
R7’: If α is an expression of any type a and v is a variable of type b, then λv[α] is an
expression of type b → a (the type of functions from b-type things to a-type things.)
S7’: || λv[α]||M, g is that function f of type b → a such that for any object d of type b,
 f(d) = || α ||M, g[d/v].

Lambda-conversion: A principle concerning the application of λ-expressions to arguments.

Examples: λx[x2 + 1] (5) = 52 + 1 = 26
 λx[run(x)](b) ≡ run(b)
 λy[(walk(y) & talk(y))] (m) ≡ (walk(m) & talk(m))
 λz[love (z,m)] (y) ≡ love (y,m)

Lambda-conversion Rule: λv[α](β) ≡ α′ , where α′ is like α but with every free

occurrence of v replaced by β.
 (Note: Occurrences of v that are free in α are bound by λv in λv[α].)

3. Montague’s semantics for Noun Phrases.

3.1. Semantics via direct model-theoretic interpretation of English.
 [See Larson’s chapter 12.]

 3.2. Semantics via translation from English into a logical language.

Indicated by translations of English expressions into the λ-calculus. P is a variable ranging
over sets, i.e. a predicate variable. (In full Montague grammar with intensionality, the

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.5

RGGU082.doc Page 5

analysis uses variables over properties, so sometimes in discussion in class, we talk as though
P were a variable over properties.)

John λP[P(j)]
John walks λP[P(j)] (walk) ≡ walk (j)
every student λP[∀x (student(x) → P(x))]
every student walks λP[∀x (student(x) → P(x))] (walk) ≡ ∀x(student(x) → walk(x))
a student λP[∃x (student(x) & P(x))]
the king λP[∃x (king(x) & ∀y (king(y) → y = x) & P(x))]
 (the set of properties which the one and only king has)

===

Appendix: Montague’s intensionsal logic, with lambdas and types.

A.1 Introduction
Tools like Montague’s Intensional Logic are important in making a more satisfactory
compositional analysis of natural language semantics possible. What are the differences
between Montague’s IL and PC? Here are some of the most important:
 (i) The rich type structure of IL.
 (ii) The central role played by function-denoting expressions. All of the types except the
basic types e and t are functional types, and all of the expressions of IL except those of types
e and t are expressions which denote functions. Functions may serve as the arguments and as
the values of other functions. In particular, all relations are also represented as functions.
 (iii) The inclusion of the operation of “functional application” or “function-argument
application”, the application of a function to its argument.
 (iv) The use of lambda-expressions. The lambda-operator is the basic tool for building
expressions which denote functions.
 (v) In place of the one “world” of PC (where there is in effect no distinction between a
“world” and a model), the models of IL include a set of possible worlds. Possible worlds are
crucially connected with intension/extension distinction and with intensional types. Possible
worlds, in particular, underlie the interpretation of modal operators and referential opacity.
 (vi) The models of IL also include, in one way or another, a structure of time, used among
other things in the interpretation of tense operators like PAST in the fragment below.

A.2. Intensional Logic (IL).

A.2.1. Types and model structures.

A.2.1.1. Types

Montague’s IL is a typed intensional language; unlike the predicate calculus, which has
variables of only one type (the type of entities or individuals), and expressions only of the
types of individuals, truth-values, and n-ary relations over individuals, IL has a rich system of
types which makes it much easier to achieve a (relatively) close fit between expressions of
various categories of a natural language and expressions of IL. The types serve as syntactic
categories for the expressions of IL; because of the role of IL as an intermediate language in
the semantic interpretation of natural language, the same types are referred to as semantic
types for expressions of natural language.
The types of Montague’s IL are as follows:

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.6

RGGU082.doc Page 6

Basic types: e (entities), t (truth values)
Functional types: If a,b are types, then <a,b> is a type (the type of functions from a-type
things to b-type things.) Note: We use interchangeably the two notations <a,b> and a → b,
both of which are common in the literature.
Intensional types: If a is a type, then <s,a> is a type (the type of functions from possible
worlds to things (extensions) of type a.)

 (In some systems, the basic type t is taken as intensional, interpreted as the type of
propositions rather than of truth-values. In general, we will mostly ignore intensionality in
these lectures, working most of the time with extensional versions of our fragments and
mentioning intensionality only where directly relevant. But that is only for simplicity of
exposition; in general, a thoroughly intensional semantics is presupposed.)

A.2.1.2. Model structures.

In the first lecture, we introduced the simple model structure M1 for interpreting the
predicate calculus. A model M for the typed intensional logic IL has much more structure,
but that structure is built up recursively from a small set of primitives.

Model structure for IL: M = <D, W, ≤, I>. Each model must contain:
 A domain D of entities (individuals)
 A set W of possible worlds (or possible world-time pairs, or possible situations)
 ≤ : an ordering (understood as temporal order) on W
 I: Interpretation function which assigns semantic values to all constants.

The domains of possible denotations for expressions of type a (relative to D,W) are defined
recursively as follows:
De = D
Dt = {0,1}
D<a,b> = {f | f: Da → Db }(i.e. the set of all functions f from Da to Db.)
D<s,a> = {f | f: W → Da }(i.e. the set of all functions f from W to Da .)
The semantic interpretation of IL also makes use of a set G of assignment functions g,
functions from variables of all types to values in the corresponding domains.

Each expression of IL has an intension and, at each w in W, an extension. The intension is
relative to M and g; the extension is relative to M, w, and g. But we will not discuss
intensions and extensions in this lecture.

A.2.2. Atomic expressions (“lexicon”), notation, and interpretation.

The atomic expressions of IL are constants and variables; there are infinitely many constants
and infinitely many variables in each type. Montague introduced a general nomenclature for
constants and variables of a given type, using c and v with complex subscripts indicating type
and an index. In practice, including Montague’s, more mnemonic names are used. Our
conventions will be as follows:

Constants of IL will be written in non-italic boldface, and their names will usually reflect the
English expressions of which they are translations: man, love, etc. Their types will be
specified. Variables of IL will be written in italic boldface, usually observing the following
conventions as to types:
Type e: w,x,y,z, with and without subscripts or primes (this modifier holds for all types.)
Type <e,t>: P, Q

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.7

RGGU082.doc Page 7

Various relational types such as <e,<e,t>>: R
The type of generalized quantifiers: T

The interpretation of constants is given by the interpretation function I of the model, and the
interpretation of variables by an assignment g, as specified in Rule 1 below.

A.2.3. Syntactic rules and their model-theoretic semantic interpretation

The syntax of IL takes the form of a recursive definition of the set of “meaningful
expressions of type a”, MEa, for all types a. The semantics gives an interpretation rule for
each syntactic rule.

Note: when giving syntactic and semantic rules for IL, as for predicate logic, we use a
metalanguage which is very similar to IL; but we are not boldfacing the constants and
variables of the metalanguage. The metalanguage variables over variables are most often
chosen as u or v.

The first rule is a rule for atomic expressions, and the first semantic rule is its interpretation:
Syntactic Rule 1: Every constant and variable of type a is in MEa.
Semantic Rule 1: (a) If α is a constant, then ||α||M,w,g = I(α)(w).
 (b) If α is a variable, then ||α||M,w,g = g(α).

Note: The recursive semantic rules give extensions relative to model, world, and assignment.
Read “||α||M,w,g ” as “the semantic value (extension) of alpha relative to M, w, and g.” The
interpretation function I assigns to each constant an intension, i.e. a function from possible
worlds to extensions; applying that function to a given world w gives the extension.

Syntactic Rule 2. (logical connectives and operators that apply to formulas, mostly from
propositional and predicate logic, plus some modal and tense operators.) If ϕ,ψ MEt, and u is
a variable of any type, then ¬ϕ, ϕ&ψ, ϕ∨ψ, ϕ→ψ, ϕ↔ψ (also written as ϕ≡ψ), ∃uϕ, ∀uϕ,

ϕ, PASTϕ ∈ MEt. Note: “ ϕ” is read as “Necessarily phi”.

Semantic Rule 2:
(a) ¬ϕ, ϕ&ψ, ϕ∨ψ, ϕ→ψ, ϕ↔ψ, ∃uϕ, ∀uϕ as in predicate logic.
(b) || ϕ||M,w,g = 1 iff ||ϕ||M,w’,g = 1 for all w’ in W.
(c) || PAST ϕ||M,w,g = 1 iff ||ϕ||M,w’,g = 1 for some w’ ≤ w. (This is a simplification; here we are
treating each w as a combined “world/time index”, possibly a situation index; w’ ≤ w if w’ is
a temporally earlier slice of the same world as w.)

Syntactic Rule 3: (=): If α,β ∈ MEa, then α=β ∈ MEt.
Semantic Rule 3: ||α=β||M,w,g = 1 iff ||α||M,w,g = ||β||M,w,g.

 (The next two pairs of rules, concerning the “up” and “down” operators, are crucial
for intensionality, but we will not discuss them and will not use them.)

Syntactic Rule 4: (“up”-operator.) If α ∈ MEa, then [∧α] ∈ ME<s,a>.
Semantic Rule 4: || [∧α]||M, w,g is that function h of type < s,a> such that for any w’ in
 W, h(w’) = ||α||M, w’,g.
Syntactic Rule 5: (“down”-operator.) If α ∈ ME<s,a>, then [∨α] ∈ MEa.
Semantic Rule 5: || [∨α]||M, w,g is ||α||M, w,g(w)

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.8

RGGU082.doc Page 8

The next two pairs of rules, function-argument application and lambda-abstraction, are
among the most important devices of IL, and we will make repeated use of them.

Function-argument application:

Syntactic Rule 6: If α ∈ ME<a,b> and β ∈ MEa, then α(β) ∈ MEb.
Semantic Rule 6: ||α(β)||M,w,g = ||α||M,w,g (||β||M,w,g)

Lambda-abstraction:
Syntactic Rule 7: If α ∈ MEa and u is a variable of type b, then λu[α] ∈ ME<b,a>.
Semantic Rule 7: || λu[α] ||M, w,g is that function f of type b → a such that for any object d of
 type b, f(d) = ||α||M, w,g[d/u].

===

HOMEWORK #1, Due at the time of Lecture 4.
Do at least problems 1 and 2. 2 pages should be enough; 4 pages maximum. There is an extra
page of “homework help” for this homework. First try to do it without looking at the help,
then look at the help, and then try it again if you did it wrong the first time. Bring questions to
seminar next week if you would like additional help then. Optional extra problems: 3-8. The
last three of the extra (optional) problems require next week’s handout as background.
Note: Don’t forget to bring or e-mail to me Homework #0, the “Anketa”!

==
1. (a) Write down the translation into the λ-calculus of “A student walks and talks”. This
handout already shows the translations of “a student” and “walks and talks”. Put them
together by “function-argument application”.
 (b) Apply λ-conversion to simplify the formula. There will be two applications, and the
resulting formula should have no λ‘s.
 (c) Write down the translation of “A student walks and a student talks”; simplify by λ-
conversion.
 (d) The two formulas (if you did parts (a-c) correctly) are not equivalent. Describe a
situation (a model) in which one of them is true and the other one is false.

2. In the predicate calculus, the sentence “No student talks” can be represented as follows:
 ¬∃x [student(x) & talk(x)] or equivalently as ∀x[student(x) → ¬talk(x)]
But in the predicate calculus, there is no way to represent the meaning of the NP “no
student”. Using the λ-calculus in the way illustrated above for the NPs “every student”, “a
student”, “the king”, write down a translation for the NP “no student”. (There are two
logically equivalent correct answers; write down either or both.)

Additional questions, purely optional. All of these may be easier to do after Lecture 3.

3. Write out the semantic derivation of John walks two ways, once using Montague’s
generalized quantifier interpretation of John, once using the type-e interpretation of John.

4. Write the translation for every, by abstracting on the CNP in the given translation of every
man. Hint: the translation of every, like that of every DET, should begin with λQ, where Q is a
variable of type e → t, the type of the CNP with which the DET “wants to” combine.

 Formal Semantics, Lecture 2
B. H. Partee, RGGU, February 16, 2008 p.9

RGGU082.doc Page 9

5. Work out the translation, using lambda-conversion for simplification of results, of the
sentence:

Every violinist who loves Prokofiev is happy.
Begin by figuring out how the sentence was put together syntactically, so that you can see
how to do the translation compositionally.
 As you build up the translation, always apply lambda-conversion as soon as it is
applicable, so that the formulas do not become more complex than necessary.

When you do homework, feel free to write questions on your homework paper.
===

HELP FOR HOMEWORK #1
Help with Problem 1. Instead of giving an answer, here is an answer to a similar problem,
which we’ll call Problem 1*.
Problem 1*. (a) Write down the translation into the λ-calculus of “Every student walks and
talks”. The handout already shows the translations of every student and walks and talks. Just
put them together by function-argument application.
 (b) Apply λ-conversion to simplify the formula. There will be two applications, and the
resulting formula should have no λ‘s.
 (c) Write down the translation of “Every student walks and every student talks”; simplify
by λ-conversion.
 (d) Are the two formulas equivalent? Give an argument.
Answer.
(1*) (a) every student : λP[∀x (student(x) → P(x))]
 walks and talks: λy[(walk (y) & talk(y))]
 every student walks and talks: λP[∀x (student(x) → P(x))] (λy[(walk (y) & talk(y))])

 (b) Simplify the expression by two applications of λ-conversion.
 Step 1: λP[∀x (student(x) → P(x))] (λy[(Walk (y) & Talk(y))]) ≡
 ∀x (student(x) → λy[(Walk (y) & Talk(y))] (x))
 Step 2: ∀x (student(x) → λy[(walk (y) & talk(y))] (x)) ≡
 ∀x (student(x) → (walk (x) & talk(x)))

 (c) Every student walks and every student talks:
 λP[∀x (student(x) → P(x))] (walk) & λP[∀x (student(x) → P(x))] (talk)
 ≡ ∀x (student(x) → walk(x)) & ∀x (student(x) → talk(x))

It doesn’t matter whether the same variable x is used in both formulas or not; this is
equivalent to: ∀x (student(x) → walk(x)) & ∀y (student(y) → talk(y))

 (d) Use first-order predicate logic to argue that the last formula in (b) and the last
formulas in (c) are equivalent. Both formulas require that every student have both properties.

Note: If two formulas ARE equivalent, you should use what you know about predicate logic
to try to prove the equivalence (either a formal proof or an informal argument). If two
formulas are NOT equivalent, then you should construct a model (often a very small model is
enough) in which one of the formulas is true and the other one is false: that’s always the best
and simplest way to show non-equivalence.

