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1. Compositional Semantics  
1.1. The Principle of Compositionality.  
 A basic starting point of generative grammar: there are infinitely many sentences in any 
natural language, and the brain is finite, so linguistic competence must involve some finitely 
describable means for specifying an infinite class of sentences.  That is a central task of 
syntax. 
 Semantics:  A speaker of a language knows the meanings of those infinitely many 
sentences, is able to understand a sentence he/she has never heard before or to express a 
meaning he/she has never expressed before.  So for semantics also there must be a finite way 
to specify the meanings of the infinite set of sentences of any natural language. 
 A central principle of formal semantics is that the relation between syntax and semantics 
is compositional. 
 The Principle of Compositionality: The meaning of an expression is a function of the 
meanings of its parts and of the way they are syntactically combined.  
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 Each of the key terms in the principle of compositionality is a “theory-dependent” term, 
and there are as many different versions of the principle as there are ways of specifying those 
terms. (meaning, function, parts (syntax) )    
 

 Some of the different kinds of things meanings could be in a compositional framework: 
 

(a)  (early Katz and Fodor)  Representations in terms of semantic features.  bachelor: 
[+HUMAN, +MALE, +ADULT, +NEVER-MARRIED (?!)].  Semantic composition:  adding 
feature sets together.  Problems:  insufficient structure for the representations of transitive 
verbs, quantifiers, and many other expressions; unclear status of uninterpreted features.  
 

(b) Representations in a “language of thought” or “conceptual representation” (Jackendoff, 
Jerry Fodor); if semantics is treated in terms of representations, then semantic composition 
becomes a matter of compositional translation from a syntactic representation to a semantic 
representation. 
 

(c)  The logic tradition: Frege, Tarski, Carnap, Montague.  The basic meaning of a sentence is 
its truth-conditions: to know the meaning of a sentence is to know what the world must be 
like if the sentence is true. Knowing the meaning of a sentence does not require knowing 
whether the sentence is in fact true; it only requires being able to discriminate between 
situations in which the sentence is true and situations in which the sentence is false.  
 Starting from the idea that the meaning of a sentence consists of its truth-conditions, 
meanings of other kinds of expressions are analyzed in terms of their contribution to the 
truth-conditions of the sentences in which they occur.   

1.2. Model-theoretic Semantics. 
 In formal semantics, truth-conditions are expressed in terms of truth relative to various 
parameters — a formula may be true at a given time, in a given possible world, relative to a 
certain context that fixes speaker, addressee, etc., and relative to a certain assignment of 
meanings to its atomic “lexical” expressions and of particular values to its variables. For 
simple formal languages, all of the relevant variation except for assignment of values to 
variables is incorporated in the notion of truth relative to a model. Semantics which is based 
on truth-conditions is called model-theoretic. 
 
Compositionality in the Montague Grammar tradition: 
The task of a semantics for language L is to provide truth conditions for every well-formed 
sentence of L, and to do so in a compositional way. This task requires providing appropriate 
model-theoretic interpretations for the parts of the sentence, including the lexical items. 
 
The task of a syntax for language L is (a) to specify the set of well-formed expressions of L 
(of every category, not only sentences), and (b) to do so in a way which supports a 
compositional semantics.  The syntactic part-whole structure must provide a basis for 
semantic rules that specify the meaning of a whole as a function of the meanings of its parts. 
 
Basic structure in classic Montague grammar:  
 (1)  Syntactic categories and semantic “types”:  For each syntactic category there must 
be a uniform semantic type. For example, one could hypothesize that sentences express 
propositions, nouns and adjectives express properties of entities, verbs express properties of 
events.  
 (2)  Basic (lexical) expressions and their interpretation.  Some syntactic categories 
include basic expressions; for each such expression, the semantics must assign an 
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interpretation of the appropriate type. Within the tradition of formal semantics, most lexical 
meanings are left unanalyzed and treated as if primitive; Montague regarded most aspects of 
the analysis of lexical meaning as an empirical rather than formal matter; formal semantics is 
concerned with the types of lexical meanings and with certain aspects of lexical meaning that 
interact directly with compositional semantics, such as verbal aspect. 
 (3) Syntactic and semantic rules.  Syntactic and semantic rules come in pairs: 
<Syntactic Rule n, Semantic Rule n>: in this sense compositional semantics concerns “the 
semantics of syntax”. 
 

 Syntactic Rule n:   If α is an expression of category A and β is an expression of category 
B, then Fi(α,β) is an expression of  category C.  [where Fi is some syntactic operation on 
expressions] 
 Semantic Rule n:  If α is interpreted as α' and β is interpreted as β', then Fi(α,β) is 
interpreted as  Gk(α',β'). [where Gk is some semantic operation on semantic interpretations] 

 Illustration: See syntax and semantics of predicate calculus in Section 3. 

2. Linguistic Examples.   
(See also the Larson chapter) 
These are examples of some of the kinds of problems that we will be able to solve after we 
have developed some of the tools of formal semantics. Some of these, and other, linguistic 
problems will be discussed in future lectures. 

2.1. The structure of NPs with restrictive relative clauses. 
Consider NPs such as “the boy who loves Mary”, “every student who dances”, “the doctor 
who treated Mary”, “no computer which uses Windows”.  Each of these NPs has 3 parts: a 
determiner (DET), a common noun (CN), and a relative clause (RC). The question is: Are 
there semantic reasons for choosing among three different possible syntactic structures for 
these NPs? 
 
a. Flat structure:     NP 
          9 
     DET    CN       RC 
      |     |     \ 
     the   boy who loves Mary 
 
 
b. “NP - RC” structure: The relative clause combines with a complete NP to form a new NP. 
           NP 
             3 
          NP            RC 
     3    \                    

           DET       CN      \ 
     |      |   \ 
         the          boy  who loves Mary 
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c. “CNP - RC” structure: (CNP: common noun phrase: common noun plus modifiers) 
 
           NP 
     3 

        DET      CNP 
        |       3       

        |      CNP       RC 
     |     |      \ 
          |   CN           \  
     |    |         \ 
          the  boy     who loves Mary 
 
Argument: we can argue that compositionality requires the third structure: that “boy who 
loves Mary” forms a semantic constituent with which the meaning of the DET combines. We 
can show that the first structure does not allow for recursivity, and that the second structure 
cannot be interpreted compositionally. (The second structure is a good structure to provide a 
basis for a compositional interpretation for non-restrictive relative clauses.) 

2.2. Anaphora puzzle #1: “Strict and sloppy identity”. 
 

The sentence John loves his wife has one obvious ambiguity – “his” can mean “John’s”, or it 
can have a referent outside the sentence – someone else that we have been talking about, for 
instance Max. Such an ambiguity is sometimes notated as follows: 

(1)  Johni loves hisi/j wife.  (I.e. his can have the same “referential index” as John or a 
different one.) 

But the ambiguity of the (2) raises a further puzzle. (2) involves “VP (Verb Phrase) 
anaphora”: “so does” is anaphoric to the VP of the first sentence, “loves his wife”. 

(2) John loves his wife and so does Bill.   Possible interpretations: 
 (i) John loves Max’s wife, and Bill loves Max’s wife.   (“loves hisj wife”, hej = Max) 
 (ii) John loves John’s wife, and Bill loves John’s wife. (“loves hisi wife”, hei = John ) 
 (iii) John loves John’s wife, and Bill loves Bill’s wife.   (??? “loves self’s wife”? ) 

The contrast between (ii) and (iii) arises even when the first clause seems to unambiguously 
say that John loves John’s wife. Is that first clause actually ambiguous? In what way? 

The readings in (i) and (ii) are called “strict identity” readings, and (iii) “sloppy identity”. 
Why “sloppy”?  (It’s J.R. Ross’s term; he was the first to discuss the phenomenon, in Ross 
(1967)) Because there isn’t always exact morpho-syntactic identity; cf. (3). 

(3)  John can stand on his head, and Mary can too.  (= “can stand on her head too”) 

Keenan, Partee, and others argued that so-called “sloppy identity” is strict semantic identity 
involving bound variable readings of pronouns. We’ll study this in Lecture 5 and beyond. 
 
3. Formal Semantics in Logic and Linguistics  
3.1. English as a Formal Language. 
R. Montague 1970, “English as a Formal Language” argued that the syntax and semantics of 
natural languages could be treated by the same kinds of techniques used by logicians to 
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specify the syntax and model theoretic semantics of formal languages such as the predicate 
calculus1.  
 

This is the basic thesis of formal semantics. In these lectures we will clarify its principal 
points.  In the process, we will try to answer the following questions:  

• What is a formal language?  
• What features of formal languages are most important for formal semantics? 
• What are the main differences between “artificial” formal languages and natural 

language? 
• For what parts of “real” natural language semantics can the framework of (existing) 

formal semantics offer useful tools for linguistic research? For what parts are different 
tools needed? 

 
3.2.  Example. Syntax and semantics of the predicate calculus (PC). 

Predicate Calculus is the most well known and in a sense the prototypical example of a 
formal language. We use it to demonstrate features of formal languages which are most 
important for us: the notions of model and model-theoretic semantics, and the Principle of 
Compositionality.  
We limit ourselves here to some examples and remarks. More exact definitions are given in 
Appendix 1. 
 The sentences John loves Mary and Everyone whom Mary loves is happy 
can be represented as formulas of PC: 
John loves Mary       love (John, Mary) 
Everyone whom Mary loves is happy  ∀x(love(Mary, x) → happy(x)) 
 
 Formulas and other expressions of PC are built from individual constants (or simply 
“constants”), (individual) variables, predicate constants (or predicate symbols), logical 
connectives and quantifiers. Each expression belongs to a certain type. The type structure of 
PC is very simple: individuals, relations of different arities (unary, binary, etc.), and truth-
values.  
  In our examples we use the following expressions: 
 
Expressions       Syntactic categories  Semantic Types 
============================================================ 
John, Mary              (individual) constant        individuals 
x                                  variable                individuals 
happy          unary predicate constant   unary relations 
love                  binary predicate constant  binary relations 
love (John, Mary)               ⎫  
love(Mary, x)                    ⎬    formulas       truth-values 
happy(x)                    ⎪  
∀x(love(Mary, x) → happy(x))  ⎭ 
 

                                                 
1 “I reject the contention that an important theoretical difference exists between formal and natural languages. ... 
In the present paper I shall accordingly present a precise treatment, culminating in a theory of truth, of a formal 
language that I believe may reasonably be regarded as a fragment of ordinary English. ... The treatment given 
here will be found to resemble the usual syntax and model theory (or semantics) [due to Tarski] of the predicate 
calculus, but leans rather heavily on the intuitive aspects of certain recent developments in intensional logic [due 
to Montague himself].” (Montague 1970b, p.188 in Montague 1974) 
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 Expressions are interpreted in models. The structure common to all of the models in 
which a given language is interpreted (the model structure for the model-theoretic 
interpretation of the given language) reflects certain basic presuppositions about the 
“structure of the world” that are implicit in the language. For PC, any given model structure 
consists of the set of truth-values {0,1}, a domain D which is some set of objects (or entities), 
and some n-ary relations on this set.  
 A model, or interpreted model, consists of a model structure plus a (“lexical”, or “basic”) 
interpretation function I which assigns semantic values to all constants.  
 
 M = <D, I> 
 
 An interpretation ║║M , built up recursively on the basis of the basic interpretation 
function I, assigns to every expression α its semantic value ║α║M  in a given model M. (More 
precisely, ║α║M,g.) These semantic values must correspond to the types of the expressions. 
Thus, in our examples to the individual constants John and Mary are assigned certain 
objects, individual variables take their values in the set of objects (entities), to the predicate 
constant love is assigned a binary relation ║love║M, and to the predicate constant happy, a 
unary relation (property) ║happy║M . Formulas receive truth values. The formula love (John, 
Mary) is true in the model M if the pair of objects corresponding to the constants John and 
Mary belongs to the relation ║love║M.  
 
The formula ∀x(love(Mary, x) → happy(x))  is true in M iff: 
for every object d in the domain,  
 d ∈ ║happy║M if <║Mary║M, d > ∈ ║love║M. 
 
Restating the last statement more carefully and more generally requires talking about 
semantic values relative to a model and an assignment g of values to variables. 
The notation g[d/x] means: The variable assignment which is identical to g except for the 
(possible) difference that g[d/x] assigns the individual d to the variable x. 
 

The complication of needing to talk about g[d/x] comes from formulas with more than one 
variable, like: 
∀x∃y(love(y, x) → happy(x)) and 
∃y∀x(love(y, x) → happy(x)).      – See the practice exercises at the end. 

 
So let us restate more carefully, according to the semantics given in Appendix 1, the truth 
conditions for the formula: ∀x(love(Mary, x) → happy(x)): 
 
║∀x(love(Mary, x) → happy(x)) ║M,g  =1   iff : 

 for each d in D,  
if <║Mary║M,g[d/x], ║ x ║M,g[d/x]>  ∈ ║love║M,g[d/x],   then ║ x ║M,g[d/x] ∈ ║happy║M,g[d/x]. 

 
For each constant α, ║α║M,g[d/x] = I(α).  

And for any variable x, ║ x ║M,g[d/x]
  = g[d/x] (x) = d. So the condition above is equivalent to: 

iff: for each d in D,  
if <  I(Mary), d>  ∈  I(love),    then d ∈ I(happy). 
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Example 
Let us consider a very simple PC language which has (as in the formulas above) only two 
constants John and Mary and two predicate symbols love (binary) and happy (unary). 
Let us consider two models, M1 and  M2: 
 
M1 = <D, I1>,  D = {j,m},  
I1(John) = j, I1(Mary) = m, 
I1(love) = {<j,j>,<j,m>,<m,m>,<m,j>}, I1 (happy) = {j,m}, 

M2 = <D, I2>, D = {j,m}, 
I2(John) = j, I2(Mary) = m, 
I2(love) = {<j,j>,<m,j>}, I2 (happy) = {m}. 

It is easy to see that both formulas love (John, Mary) and love (Mary, John) are true in M1 
but only the second one is true in M2.  

The formula ∀x(love(Mary, x) → happy(x)) is true in M1. But it is false in M2, since for the 
evaluation g such that g(x) = j we have ║love(Mary, x)║M2,g = 1 and ║happy(x)║ M2,g = 0. 

The semantics of PC illustrates the Principle of Compositionality. 
As we know the infinite set of formulas of PC are built from terms (individual variables and 
constants) and predicate symbols by recursive syntactic rules (rules R1—R8 in Appendix 1). 
The semantics of these formulas – their interpretation in every given model -- is defined by 
semantic rules S1 – S8, which correspond in a direct way to the syntactic rules. The 
semantics of the whole is based on the semantics of parts by means of this pairing of 
semantic interpretation rules with syntactic formation rules. See trees 1 and 2 in the 
“practice exercise” in APPENDIX 2. This is a very important feature of every formal 
language -- The Principle of Compositionality – and it is natural to think that this principle 
holds also for natural language.  

3.3. “Logical form”, or semantically relevant syntax. 
What is the interpretation of  “every student”?  There is no appropriate syntactic category or 
semantic type in predicate logic. Inadequacy of 1st-order predicate logic for representing the 
semantic structure of natural language.  
 
Categories of PC:  Categories of NL: 
 Formula - Sentence 
 Predicate - Verb, Common Noun, Adjective 
 Term 
      Constant - Proper Noun 
      Variable - Pronoun  (he, she, it)  
 ========== 
 (no more) - Verb Phrase, Noun Phrase, Common Noun Phrase, Adjective   
     Phrase, Determiner, Preposition, Prepositional Phrase, Adverb, …  
 

In the next lectures, we will see how a logic built on a richer type theory including the tools 
of the lambda-calculus can provide a richer formal semantics that can more adequately 
represent the structure of natural language semantics in a compositional way.  
============================================================== 
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APPENDIX 1. Syntax and semantics of the predicate calculus (PC). 
 

SYNTAX. 
Syntactic Categories: terms (Term), 1-place predicates (Pred-1), 2-place predicates (Pred-2), 
..., n-place predicates (Pred-n), formulas (Form). 
 

Basic Expressions: 
 Basic Term(s):  (i) (individual) variables: x, y, z, x1, y1, z1, x2, ... 
    (ii) (individual) constants: a,b,c, a1, .John, Mary, ... 
 Basic Pred-1: run, walk, happy, calm, ... 
 Basic Pred-2: love, kiss, like, see, ... 
     ... 
 Basic Form(ulas):   —  (none) 
 

Syntactic Rules: 
R1:   If  P ∈ Pred-1 and T ∈ Term, then P(T) ∈ Form. 
R2:   If  R ∈ Pred-2 and T1, T2 ∈ Term, then R(T1, T2) ∈ Form. 
 More general rule: If  R ∈ Pred-n and T1, ...,Tn ∈ Term, then R(T1, ...,Tn) ∈ Form 
R3:   If  ϕ ∈ Form, then ¬ϕ ∈ Form. 
R4:   If ϕ ∈ Form and ψ ∈ Form, then (ϕ & ψ) ∈ Form. 
R5:   If ϕ ∈ Form and ψ ∈ Form, then (ϕ ∨ ψ) ∈ Form. 
R6:   If ϕ ∈ Form and ψ ∈ Form, then (ϕ → ψ) ∈ Form. 
R7:   If v is a variable and ϕ ∈ Form, then ∀vϕ ∈ Form. 
R8:   If v is a variable and ϕ ∈ Form, then ∃vϕ ∈ Form. 
SEMANTICS. 
Model structure:  
Domain D of entities (individuals) 
Truth values  {True, False} or {1,0} 
I: Interpretation function which assigns semantic values to all constants   (in Term and 
in Pred-1,  Pred-2, ... Pred-n) 
M = <D, I> 
Set G of assignment functions g, functions from variables to D. 
 
Semantic Types assigned to Syntactic Categories:  
Term:   entities, individuals.   The semantic values of this type are the members of D. 
Pred-1: sets (of entities).   Semantic values of this type are members of ℘(D). 
 (℘(D) is the power set (the set of all subsets) of D). 
Pred-2: relations between entities (sets of pairs).  Values: members of ℘(D×D). 
Pred-n: n-place relations; sets of n-tuples of entities.Values: members of ℘(D× ...×D). 
Form: Truth values.  Values: members of {0,1}. 
 
Semantic interpretation relative to M, g:  
We use the notation ║ϕ║M,g  for the semantic value of  an expression ϕ  relative to M, g. 
 
Basic Expressions  (“lexical semantics”): 
 A. If  α is a variable, then ║α║M,g = g(α). 
  B. If  α is a constant, then ║α║M,g = I(α). 
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Semantic Rules (“semantics of syntax”): 
S1:   If  P ∈ Pred-1 and T ∈ Term, then ║P(T) ║M,g  = 1 iff  ║T║M,g  ∈ ║P║M,g . 
S2:   More general rule: If  R ∈ Pred-n and T1, ...,Tn ∈ Term, then ║R(T1, ...,Tn)║ M,g = 1 iff  
 <║T1║M,g  , ..., ║Tn║M,g > ∈ ║R║M,g . 
S3:   If  ϕ ∈ Form, then ║¬ϕ║ M,g  = 1 iff  ║ϕ║ M,g  = 0. 
S4:   If ϕ, ψ ∈ Form,  then ║(ϕ & ψ)║ M,g  =1 iff  ║ϕ║ M,g  = 1 and  ║ψ║ M,g  = 1. 
S5:   If ϕ, ψ ∈ Form,  then ║ (ϕ ∨ ψ)║ M,g  =1 iff  ║ϕ║ M,g  = 1 or  ║ψ║ M,g  = 1. 
S6:   If ϕ, ψ ∈ Form, then ║ (ϕ → ψ)║ M,g =1 iff  ║ϕ║ M,g  = 0 or  ║ψ║ M,g  = 1. 
S7:   If v is a variable and ϕ ∈ Form, then ║∀vϕ║ M,g =1 iff  
for all d ∈ D, ║ϕ║ M,g[d/v] =1. 
S8:   If v is a variable and ϕ ∈ Form, then ║∃vϕ║ M,g  =1 iff  
there is a d ∈ D such that  ║ϕ║ M,g[d/v] =1. 
 
[The notation g[d/x] means: The variable assignment which is identical to g except for the 
(possible) difference that g[d/x] assigns the individual d to the variable x.] 
 
Truth:  Some formulas are true independent of the choice of assignment; those can be called 
true relative to just M, i.e. simply true on the given interpretation. 
 
If ϕ ∈ Form, then: ║ϕ║ M  = 1 iff  for all assignments g, ║ϕ║ M,g  = 1. 
        ║ϕ║ M  = 0 iff  for all assignments g, ║ϕ║ M,g  = 0. 
Otherwise ║ϕ║ M  is undefined. 
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“HOMEWORK”  No. 0:   Participant Questionnaire  [“Anketa”] 
Please answer the following questions for me; answers can be in Russian except for question 
6.  Please write clearly and legibly.  Short answers: no more than 2 pages total.  Anketa due 
at the time of Lecture 2. Bring it to class or e-mail it to me at partee@linguist.umass.edu .  
 
1. Your name 
 -- Your e-mail address: 
 -- Website address if you have one: 
2.  Your “status” — 2nd,3rd, ..., year student in the linguistics program, or other. 
3.  Do you expect to take this course for credit (“ocenka” or “začet”)? (You can change your 
mind later, that’s ok.) 
4. (Briefly) How much / what kind of the following have you studied? 
 a. Semantics 
 b. Syntax 
 c. Logic 
 d. Mathematics 
5. a. Estimate your knowledge of English (poor, fair, good, very good) in   
 (i) reading;  (ii) writing;  (iii) listening;  (iv) speaking. 
     b. Were you able to understand most of my lecture? 
     c.  Do you have any suggestions that will make it easier for you to understand me? 
6.  What other languages do you have some knowledge of? What languages have you done 
some linguistic work on, or are planning to in the future? Have you been on linguistic 
expeditions (which languages?)? 
7. Write two or three sentences in English about what areas of linguistics you are most 
interested in and what you might like to do for a future career. 
8. Write one or two sentences in Russian about why you are taking this course and what you 
hope to learn from it. 
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APPENDIX 2: For Seminar Feb 9:  A Practice Homework  
(to do together in class, not to turn in) 
 
Background: 
 
1.We will first work on the formula ∀x happy(x), and work out its interpretation with respect to the 
model M2, working compositionally. We’ll do it basically the same way as #2 below, but just on the 
blackboard. 
 

2.  Below you will find a syntactic “derivation” tree for the formula ∀x(love(Mary, x) → 
happy(x)), which expresses the same proposition as the English sentence Everyone who 
Mary loves is happy. That is followed by a derivation of the truth-conditions of the formula 
according to the compositional semantic rules of the predicate calculus. Each line is 
annotated to identify what semantic rule was applied in the derivation of that line, and what 
node of the syntactic derivation tree it corresponds to. (The problem you are asked to solve is 
stated after all of that.) 
 

Tree 1. 
   ∀x(love(Mary, x) → happy(x)) ,  Form, R7 
    3 
           x   (love(Mary, x) → happy(x)) , Form, R6 
      qp 
   love(Mary, x), Form, R2          happy(x), Form, R1 
    9          wp 
love, Pred-2, Basic      |      x, T, Basic    happy, Pred-1, Basic    x, T, Basic 
    Mary, T,Basic  
 
Annotated semantic derivation of truth conditions:  
 

1.║ ∀x(love(Mary, x) → happy(x))║M,g =1 iff for each d in D,     
  

 ║love(Mary, x) → happy(x)║M,g[d/x] =1.   By rule S7 at the “R7” node. 
 
2. That will hold iff for each d in D, 
 

║love(Mary, x)║M,g[d/x] = 0 or   ║happy(x)║M,g[d/x] =1 .  By rule S6 at the “R6” 
node. 
 
3. That will hold iff for each d in D, 
 

 if <║Mary║M,g[d/x] ,║ x║M,g[d/x]>  ∈ ║love║M,g[d/x], then ║ x║M,g[d/x]  ∈ 
║happy║M,g[d/x] . 
 

By rule S2 at the R2 node and by S1 at the R1 node. 
  
4.  And that will hold iff for each d in D, 
 

 if <║Mary║M,g[d/x], d>  ∈ ║love║M,g[d/x] , then d ∈║happy║M,g[d/x].  
 

By rule A (for variables) at the two x nodes. 
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5.  I.e., if <I(Mary), d> ∈ I(love), then d ∈ I(happy). 
   

    By rule B (for constants) at the nodes for Mary, love, happy. 
 
If we then annotate the syntactic tree above to also show the semantic rule applied at each 
step, we can see a perfect match between syntactic and semantic rules in the derivation of the 
form and meaning of the formula.  
 
 Tree 2.    ∀x(love(Mary, x) → happy(x)) ,  Form, R7, S7 
      3 
       x   (love(Mary, x) → happy(x)) , Form, R6, S6 
          3 
    love(Mary, x), Form, R2, S2          happy(x), Form, R1, S1 
     9           wp 
love, Pred-2, Basic, B        |      x, T, Basic, A    happy, Pred-1, Basic, B    x, T, Basic, A 

       Mary, T,Basic, B  
 
 
3. Exercise: (to do in seminar together)   This one gives more practice with using g.  
 
The predicate logic formula ∀x(∃ylove( x, y) → happy(x)) is equivalent to the English 
sentence  Everyone who loves someone is happy.   
 

(b) Draw a syntactic tree (analogous to Tree 1 above) which shows how that formula is 
built up from its parts according to the syntactic rules of the predicate calculus (in the 
Appendix above).  

(c) Give each node a label that identifies both the syntactic category of the expression it 
dominates and the number of the syntactic rule by which its immediate constituents 
were combined (or “Basic”, if that node dominates a basic expression.)  

(d) Work out the truth-conditions of the formula according to the semantic rules of the 
predicate calculus, analogous to the step-by-step derivation of truth conditions for the 
example above (see NOTE below). Annotate each line by identifying the semantic 
rule that was applied anywhere within that line (show where), and the node of the tree 
to which it corresponds. (According to the principle of compositionality, there should 
be a perfect match between syntactic rule and semantic rule applied at each node.)  

(e) In addition, further annotate the syntactic tree by adding to the label of each non-
terminal node the number of the semantic rule which was used to combine the 
meanings of the daughter-node expressions to get the meaning of the whole 
expression dominated by that node. For nodes dominating basic expressions, indicate 
whether the semantic rule to use is Rule A or Rule B. (If you’ve done it right, there 
should be a perfect correspondence between syntactic rules and semantic rules applied 
at a given node, as in Tree 2 above.) 

 

NOTE: What happens when you are working with g[d/x] and you need to make a further 
substitution, e.g. for the variable y? Answer: you need to consider another arbitrary 
element d’ of D, and modify the assignment again, resulting in g[d/x][d’/y]: the 
assignment just like g except it assigns d to x and d’ to y.  


