

Homework #1 (based on Lecture 2 and Lecture 3)

Formal Semantics and Formal Pragmatics
B. H. Partee, MGU, February 27, 2009 


HOMEWORK #1, Due at the time of Lecture 4.
Note: I'm leaving this as a Word document in case it's helpful to be able to cut and paste pieces of formulas, so you can do your homework in electronic form and e-mail it to me.

Do at least problems 1 and 2. 2 pages should be enough; 4 pages maximum.  There is an extra page of “homework help” for this homework. First try to do it without looking at the help, then look at the help, and then try it again if you did it wrong the first time. Bring questions to seminar next week if you would like additional help then. Optional extra problems: 3-5. Problems 1-2 are based on Lecture 2.  Problems 3-5 require Lecture 3 as background.

Note: Don’t forget to bring or e-mail to me Homework #0, the “Anketa”!

==========================================

1. (a) Write down the translation into the λ-calculus of “A student walks and talks”. This handout already shows the translations of  “a student” and “walks and talks”. Put them together by  “function-argument application”.

    (b) Apply λ-conversion to simplify the formula. There will be two applications, and the resulting formula should have no λ‘s.

    (c) Write down the translation of “A student walks and a student talks”; simplify by λ-conversion.

    (d) The two formulas (if you did parts (a-c) correctly) are not equivalent. Describe a situation (a model) in which one of them is true and the other one is false.

2. In the predicate calculus, the sentence “No student talks” can be represented as follows:


¬(x [student(x) & talk(x)]
or equivalently as (x[student(x) ( ¬talk(x)]

But in the predicate calculus, there is no way to represent the meaning of the NP “no student”.  Using the λ-calculus in the way illustrated above for the NPs “every student”, “a student”, “the king”, write down a translation for the NP “no student”. (There are two logically equivalent correct answers; write down either or both.)

Additional questions, optional but recommended.  These will be easier after Lecture 3.
3. Write out the semantic derivation of John walks two ways, once using Montague’s generalized quantifier interpretation of John, once using the type-e interpretation of John.

4. Write the translation for every, by abstracting on the CNP in the given translation of every man. Hint: the translation of every, like that of every DET, should begin with (Q, where Q is a variable of type e ( t, the type of the CNP with which the DET “wants to” combine.
5. Work out the translation, using lambda-conversion for simplification of results, of the sentence:

Every violinist who loves Prokofiev is happy.

Begin by figuring out how the sentence was put together syntactically – draw the tree! --, so that you can see how to do the translation compositionally. 

      As you build up the translation, always apply lambda-conversion as soon as it is applicable, so that the formulas do not become more complex than necessary.

When you do homework, feel free to write questions on your homework paper.
=================================================================

HELP FOR HOMEWORK #1

Help with Problem 1. Instead of giving an answer, here is an answer to a similar problem, which we’ll call Problem 1*.

Problem 1*. (a) Write down the translation into the (-calculus of “Every student walks and talks”. The handout already shows the translations of  every student and walks and talks. Just put them together by function-argument application.

    (b) Apply (-conversion to simplify the formula. There will be two applications, and the resulting formula should have no (‘s.

    (c) Write down the translation of “Every student walks and every student talks”; simplify by (-conversion.

    (d) Are the two formulas equivalent? Give an argument.

Answer.

(1*) (a) every student
: (P[(x ( student(x) (  P(x) )]

           walks and talks: (y[(walk (y) & talk(y))]

           every student walks and talks: (P[(x (student(x) ( P(x))] ((y[(walk (y) & talk(y))])

       (b) Simplify the expression by two applications of (-conversion.


Step 1: (P[(x (student(x) ( P(x))] ((y[(Walk (y) & Talk(y))])  (



(x (student(x) ( (y[(Walk (y) & Talk(y))] (x))


Step 2: (x (student(x) ( (y[(walk (y) & talk(y))] (x)) (



(x (student(x) ( (walk (x) & talk(x)))

(c)  Every student walks and every student talks:


(P[(x ( student(x) (  P(x) )] (walk) &  (P[(x ( student(x) (  P(x) )] (talk)


(  (x ( student(x) (  walk(x)) & (x ( student(x) (  talk(x) ) 

It doesn’t matter whether the same variable x is used in both formulas or not; this is equivalent to: (x ( student(x) (  walk(x)) & (y ( student(y) (  talk(y) )   


(d) Use first-order predicate logic to argue that the last formula in (b) and the last formulas in (c) are equivalent.  Both formulas require that every student have both properties.
Note:  If two formulas ARE equivalent, you should use what you know about predicate logic to try to prove the equivalence (either a formal proof or an informal argument). If two formulas are NOT equivalent, then you should construct a model (often a very small model is enough) in which one of the formulas is true and the other one is false: that’s always the best and simplest way to show non-equivalence.
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