Notes on Homework 2 (Ch 2, PtMW)

- 1. Most homework was excellent, so we have just some notes.
- 2. Sometimes some of you give only answers without any comments. We would prefer you to give **short** proofs or at any rate some comments.
- 3. In 1 (b) (iii) you were asked:

Given
$$A = \{b,c\}, \langle c,c \rangle \subset A \times A$$
?

The answer "no" is correct, but some said "no, <c,c> can't be a subset because <c,c> is not a set." But we defined ordered pairs in terms of sets, so if one goes back to that definition, <c,c> is a set, namely $\{\{c\},\{c,c\}\} = \{\{c\}\}\}$.

So it is a set. But it's not a subset of $A \times A$. It would take more work to really prove that (which wasn't demanded for the problem). You could try constructing an argument about the number of nested braces all subsets of $A \times A$ have in their standard representations (Does $\{\{c\}\}$ have too few nested braces to be a subset of $A \times A$?). Or you could just list all subsets of $A \times A$ and show that none of them are equal to $\{\{c\}\}$. Or you could try other general arguments.

Note that the fact that $\langle c,c \rangle$ is a *member* of A \times A is not an argument that it's not also a *subset* of A \times A. (Exercise 4 of Chapter 1 illustrates that point.)

4. Exercise 1(c). It is important to understand that if we have a relation P from M to N, the relation P^{-1} is by definition from N to M. So in this exercise the relation R^{-1} is from $(A \cup B)$ to A and its complement $(R^{-1})'$ is also from $(A \cup B)$ to A.

The book gives **wrong** answer to 1(c)(iii). The right answer is: $(R')^{-1} = (R^{-1})'$.

- 5. Exercise 2 (How many relations, how many onto, etc): See Paula's and Andries's homeworks. They both give very explicit reasoning, sometimes using different strategies, but both correct.
- 6. Exercise 4. *F* and *G* are functions (from K to L and from L to M respectively) but their inverses are not, they are relations. But we consider not only compositions of functions but also compositions of relations.

 F^{-1} , G^{-1} , $(G^{\circ}F)^{-1}$, $F^{-1}{}^{\circ}G^{-1}$ are relations. F^{-1} is a relation from E to E, E^{-1} is a relation from E to E. And we have E is a relation from E to E. We can verify it by building these concrete relations following our definitions. Most of you did. It is a good way to understand the structure of these constructions through concrete example.

But it is also possible to give a general proof of such an equality for any relations of the kind *F* from *K* to *L* and *G* from *L* to *M*. And some of you did it. It is a more sophisticated task and, of course, also very useful.

The proof:

A pair $\langle y, x \rangle$ belongs to $(G^{\circ}F)^{-1}$ iff the inverse pair $\langle x, y \rangle$ belongs to $G^{\circ}F$.

 $\langle x,y \rangle$ belongs to $G \circ F$ iff there exists some $z \in L$ such that $\langle x,z \rangle$ belongs to F and $\langle z,y \rangle$ belongs to G.

If there exists some $z \in L$ such that $\langle x, z \rangle$ belongs to F and $\langle z, y \rangle$ belongs to G, then there exists some $z \in L$ such that $\langle z, x \rangle$ belongs to F^{-1} and $\langle y, z \rangle$ belongs to G^{-1} and *vice versa*.

Pair $\langle y, x \rangle$ belongs to $F^{-lo}G^{-1}$ iff there exists some $z \in L$ such that $\langle z, x \rangle$ belongs to F^{-l} and $\langle y, z \rangle$ belongs to G^{-l} .

So $\langle y, x \rangle$ belongs to $(G \circ F)^{-1}$ iff it belongs to $F^{-1} \circ G^{-1}$. QED.