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1. Properties of Relations

1.1. Reflexivity, symmetry, transitivity, and connectedness

We consider here certain properties of binary relations. All these properties apply only to
relations in (on) a (single) set, i.e., in A ¥ A for example.

Reflexivity. Given a set A and a relation R in A, R is reflexive iff all the ordered pairs of
the form <x,x> are in R for every x in A. A relation which fails to be reflexive is called
nonreflexive, but if it contains no ordered pair <x,x>, it said to be irreflexive.

Another way to state the definitions above is to use the identity relation idA.
Relation R is reflexive iff idA  Õ R, it is nonreflexive iff  idA  À R, and it is irreflexive iff
idA  « R = ∅.

Examples. Relations “= “ and “≥” on the set N of natural numbers and relations “⊇” and
“Õ” between sets are reflexive. Relations “≠” and  “<” on N are nonreflexive and
irreflexive.

Remember that we always consider relations in some set. And a relation
(considered as a set of ordered pairs) can have different properties in different sets. For
example, the relation R = {<1,1>, <2,2>} is reflexive in the set A1 = {1,2} and
nonreflexive in A2 = {1,2,3} since it lacks the pair <3,3> (and of course it nonreflexive in
N).

Symmetry. Given a set A and a relation R in A, R is symmetric iff for every ordered pair
<x,y>, if <x,y> is in R, then the pair <y,x> is also in R. If for some <x,y> in R, the pair
<y,x> is not in R, then R is nonsymmetric. If it is never the case that for any <x,y> in R,
the pair <y,x> is in R then the relation is called asymmetric. Note that an asymmetric
relation must be irreflexive. [Why?] A relation R is anti-symmetric if whenever both
<x,y> and <y,x> are in R, then x = y. Note that a relation need not be reflexive to be anti-
symmetric. [Why?]

Examples. The relation “brother of” is nonsymmetric in the set of all people, but it can
be symmetric in some set, say, in the set  A = {John, Peter, Bill}, if John and Bill are
brothers. [Can you think of a set in which it is asymmetric?]

Transitivity. A relation R is transitive iff for all ordered pairs <x,y> and <y,z> in R, the
pair <x,z> is in R. If a relation fails to meet the definition of transitivity, it is
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nontransitive. If for no pairs <x,y> and <y,z> in R, the pair <x,z> is in R, then the relation
is intransitive.

Examples. Relations =, > and  ≥ are transitive in the set of natural numbers. Is the
relation “friend of” in the set of all people transitive?

Connectedness. A relation R in A is connected iff for every two distinct elements x and y
in A, <x,y> Œ R or <y,x> Œ R (or both).

1.2. Diagrams of relations

It may be helpful to demonstrate the properties of relations representing them in
relational diagrams. The members of the relevant set are represented by labeled points. If
x is related to y, i.e. <x,y> Œ R, an arrow connects the corresponding points. For example,
Figure 3-1 represents the relation

R = {<1,2>,<2,1>,<2,2>, <1,1>,<2,3>,<3,3>}

[PtMW, p. 43, Fig.3-1]

It is apparent from the diagram that the relation is reflexive, since every point
bears a loop. The relation is non-symmetric since there is no arrow from 3 to 2 (but there
is one from 2 to 3). It cannot be called asymmetric or antisymmetric, since 1 is related to
2 and 2 is related to 1.  It is not transitive since 1 is related to 2 and 2 to 3, but there is no
arrow from 1 to 3.

1.3. Classes of relations

Using properties of relations we can consider some important classes of relations.

1.3.1. Equivalence relation.

 An equivalence relation is a relation which is reflexive, symmetric and transitive. For
every equivalence relation there is a natural way to divide the set on which it is defined
into mutually exclusive (disjoint) subsets which are called equivalence classes. We write
[[x]] for the set of all y such that <x,y> Œ R. Thus, when R is an equivalence relation, [[x]]
is the equivalence class which contains x.

The set A/R =def {[[x]]x Œ A} is called a quotient set of the set A by the equivalence R.
A/R is a subset of ℘(A). For every equivalence relation R, the function nat(R): A Æ A/R
mapping every element x Œ A onto [[x]] is called a natural mapping of A onto A/R.

 Examples. The relations “has the same hair color as” or “is the same age as” in the set of
people are equivalence relations. The equivalence classes under the relation “has the
same hair color as” are the set of blond people, the set of red-haired people, etc.

Partitions. Given a non-empty set A, a partition of A is a collection of non-empty subsets
of A such that (1) for any two distinct subsets X and Y, X «Y = ∅ and (2) the union of all
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the subsets in collection equals A. The subsets of A that are members of a partition of A
are called cells of that partition.

There is a close correspondence between partitions and equivalence relations.
Given a partition of set A, the relation R = {<x,y> Ùx and y are in the same cell of the
partition of A} is an equivalence relation in A. Conversely, given an equivalence relation
R in A, there exists a partition of A in which x and y are in the same cell iff  <x,y> Œ R..

Functions and equivalences. Every function f: A Æ B determines an equivalence

relation f--1
° f on the set A.  This equivalence relation is called the kernel of  f, written

 ker f; so ker f =def f
--1

° f. For the quotient set of this equivalence we have the one-to-one
mapping  f1: A/ker f Æ B such that f1([[x]]) = f(x). We can show that the following

equation holds:  f = f1° nat (ker f).

This equation can be pictured in the form of a commutative diagram:

     f
A-----------------> B

                     nat(ker f)
 Ø                   f1

       A/ker f

Example. Consider two sets Countries = {Germany, England, India, China}, Continents
= {Europe, Asia, Australia, North America} and a function f: Countries Æ Continents
mapping every country to its continent. Then
The equivalence relation ker f = {<Germany, Germany>, <Germany, England>,
<England, England>, <England, Germany>, <India, India>, <India, China>, <China,
China>, <China, India>},
Countries/ker f =  {{Germany, England}, {India, China}},
f1({Germany, England}) = Europe,  f1({India, China}) = Asia.

1.3.2. Tolerance.

A relation R in A is called a tolerance (or a tolerance relation) if it is reflexive and
symmetric. So tolerance is weaker than equivalence; it does not need to be transitive.

The notion of tolerance relation is an explication of similarity or closeness.
Relations “neighbor of”, “friend of” can be considered as examples if we hold that every
person is a neighbor and a friend to him(her)self.

As analogs of equivalence classes and partitions, here we have tolerance classes
and coverings. A set B Õ A is called a tolerance preclass if it holds that for all x, y Œ B, x
and y are tolerant, i.e. <x,y> Œ R. A maximum preclass is called a tolerance class. So two
tolerance classes can have common elements.

Coverings. Given a non-empty set A, a collection (set) P of non-empty subsets of A such
that  »BŒPB = A is called a covering of A. Given a tolerance relation in A, the collection
of its tolerance classes forms a covering of A.

Every partition is a covering; not every covering is a partition.
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1.3.3. Orderings.

An order is a binary relation which is transitive and in addition either (i) reflexive and
antisymmetric or else (ii) irreflexive and asymmetric. The former are weak orders; the
latter are strict (or strong).

Some terminology: if R is an order, either weak or strict, and <x,y> Œ R, we say
that x precedes y, x is a predecessor of y, y succeeds (or follows) x, or y is a successor of
x. If x precedes y and x ≠ y , then we say that x immediately precedes y if and only if there
is no element z distinct from both x and y such that x precedes z and z precedes y. In other
words, there is no other element between x and y in the order.

There is also a useful set of terms for elements which stand at the extremes of an
order. Given an order R in a set A,

1) an element x in A is minimal iff there is no other element in A which precedes x
2) an element x in A is least iff x precedes every other element in A
3) an element x in A is maximal iff there is no other element in A which follows x
4) an element x in A is greatest iff x follows every other element in A.

Note that greatest (least) element is maximal (minimal) but the opposite is not always the
case.

If an order, strict or weak, is also connected, then it is said to be a total or linear
order.

Examples. Relations ≥ and = on the set N of natural numbers are examples of weak
order, as are relations ⊇ and = on subsets of any set. The relations > and … are examples
of strict orders on the corresponding sets. The relations ≥ and > are linear orders.

Homework 3.
Chapter 3. pp. 51 – 53, all 5 problems.

6) (optional) Invent a function analogous to the function f: Countries Æ Continents.
Write down:  (a) an equivalence relation which is a kernel of this function, (b) its quotient
set, and (c) the corresponding commutative diagram.


