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Abstract

Common Failings: How
Corporate Defaults are Correlated

We develop, and apply to data on U.S. corporations from 1979-2004, tests of the
standard doubly-stochastic assumption under which firms’ default times are correlated
only as implied by the correlation of factors determining their default intensities.
This assumption is violated in the presence of contagion or “frailty” (unobservable
explanatory variables that are correlated across firms). Our tests do not depend on
the time-series properties of default intensities. The data do not support the joint
hypothesis of well specified default intensities and the doubly-stochastic assumption.
There is also some evidence of default clustering in excess of that implied by the
doubly-stochastic model with the given intensities.
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1 Introduction

Why do corporate defaults cluster in time? Several explanations have been explored.
First, firms may be exposed to common or correlated risk factors whose co-movements
cause correlated changes in conditional default probabilities. Second, the event of
default by one firm may be “contagious,” in that this event itself can push other
firms toward default. For example, there could be a “domino” or cascade effect,
under which corporate failures directly induce other corporate failures, as with the
collapse of Penn Central Railway in 1970. A third channel for default correlation is
learning from defaults. For example, the defaults of Enron and WorldCom may have
revealed accounting irregularities that could be present in other firms, and thus may
have had a direct impact on the conditional default probabilities of other firms.

Our primary objective is to examine whether cross-firm default correlation that is
associated with observable factors determining conditional default probabilities (the
first channel on its own) is sufficient to account for the degree of time-clustering of
defaults that we find in the data.

Specifically, we test whether our data are consistent with the standard doubly-
stochastic model of default, under which, conditional on the paths of risk factors de-
termining all firms’ default intensities, their defaults are independent Poisson arrivals
with these (conditionally deterministic) intensity paths. This model is particularly
convenient for computational and statistical purposes, although its empirical rele-
vance for default correlation has been unresolved in the literature. We develop, and
apply to default intensity and default time data for U.S. corporations over the period
1979-2004, a new test of the doubly-stochastic assumption. The data do not support
the joint hypothesis of well specified default intensities and the doubly-stochastic
assumption. We find evidence of default clustering beyond that predicted by the
doubly-stochastic model and our data.

Understanding how corporate defaults are correlated is particularly important
for the risk management of portfolios of corporate debt. For example, as backing
for the performance of their loan portfolios, banks retain capital at levels designed
to withstand default clustering at extremely high confidence levels, such as 99.9%.
Some banks do so on the basis of models in which default correlation is assumed to be
captured by common risk factors determining conditional default probabilities, as in
Gordy [2003] and Vasicek [1987]. (Banks do, however, attempt to capture the effects
of contagion that arise from parent-subsidiary and other direct contractual links.) If
defaults are more heavily clustered in time than currently envisioned in these default-
risk models, however, then significantly greater capital might be required in order
to survive default losses, especially at high confidence levels. An understanding of
the sources and degree of default clustering is also crucial for the rating and risk
analysis of structured credit products that are exposed to correlated default, such
as collateralized debt obligations (CDOs) and options on portfolios of default swaps.
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The Bank of International settlements has cited reports1 that synthetic CDO volumes
reached $673 billion in 2004.

While there is some empirical evidence regarding average default correlation (see
Akhavein, Kocagil, and Neugebauer [2005], Lucas [1995] and deServigny and Renault
[2002]) and correlated changes in corporate default probabilities (Das, Freed, Geng,
and Kapadia [2001]), there is relatively little evidence regarding the presence of clus-
tered defaults. In particular, there has been no prior work on whether the degree of
default clustering in the data can be reasonably captured by doubly-stochastic mod-
els. Collin-Dufresne, Goldstein, and Helwege [2003] and Zhang [2004] find that default
events are associated with significant increases in the credit spreads of other firms,
consistent with default clustering in excess of that suggested by the doubly-stochastic
model, or at least a failure of the doubly-stochastic model under risk-neutral probabil-
ities. That is, their findings may be due to default-induced increases in the conditional
default probabilities of other firms, or could be due to default-induced increases in
the default risk premia2 of other firms, as envisioned by Kusuoka [1999]. Both effects
could be at play.

Explicitly considering a failure of the doubly-stochastic hypothesis, Collin-Dufresne,
Goldstein, and Helwege [2003], Giesecke [2004], Jarrow and Yu [2001], and Schönbucher
[2003] explore learning-from-default interpretations, based on the statistical modeling
of frailty, under which default intensities include the expected effect of unobservable
covariates. In a frailty setting, the arrival of a default causes, via Bayes’ Rule, a
jump in the conditional distribution of hidden covariates, and therefore a jump in the
conditional default probabilities of any other firms whose default intensities depend
on the same unobservable covariates. For example, the collapses of Enron and World-
Com could have caused a sudden reduction in the perceived precision of accounting
leverage measures of other firms. Indeed, Yu [2004] finds empirical evidence that,
other things equal, a reduction in the measured precision of accounting variables is
associated with a widening of credit spreads. Lang and Stulz [1992] explore evidence
of default contagion in equity prices.

Banks and other managers of credit portfolios could in theory extend the doubly-
stochastic model if it were found to be seriously deficient. At this point, there are
few if any methods applied in practice to measure loan portfolio credit risk that allow
for contagion or frailty. For example, when applied in practice, the Merton [1974]
model and its variants imply that default correlation is captured by co-movement in
the observable default covariates (primarily leverage, normalized for volatility) that

1Data are provided in the BIS Annual Report, 2005, and mention cash CDO volumes of $163
billion.

2Collin-Dufresne, Goldstein, and Huggonier [2004] provide a simple method for incorporating
the pricing impact of failure, under risk-neutral probabilities, of the doubly-stochastic hypothesis.
Other theoretical work on the impact of contagion on default pricing includes that of Cathcart and
El Jahel [2002], Davis and Lo [2001], Giesecke [2004], Jarrow, Lando, and Yu [2005], Kusuoka [1999],
Schönbucher and Schubert [2001], Terentyev [2003], Yu [2003], and Zhou [2001].
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determine conditional default probabilities.3 Ratings-based transition models have
sometimes been applied to the task of credit portfolio risk management, again based
on the doubly-stochastic assumption that credit-ratings transitions intensities are
based on commonly observable covariates.

The doubly-stochastic property, sometimes called “conditional independence,”
also underlies the standard econometric duration models used for event forecasting,
including default prediction models, such as those of Couderc and Renault [2004],
Shumway [2001], and Duffie, Saita, and Wang [2005]. The property implies that the
likelihood function that is to be maximized when estimating the coefficients of an in-
tensity model can be expressed as the product of the covariate-conditional likelihood
functions of the firms’ default-survival events in the data. One of our objectives is to
provide a tool with which to check whether this tractability is achieved at the expense
of mis-specification associated with a failure of the doubly-stochastic property.

Before describing our data, methods, and results in detail, we offer a brief syn-
opsis. Our default intensity estimates are from Duffie, Saita and Wang [2005], and
based on two firm-specific covariates (distance to default and the trailing one-year
stock return), and two macro-covariates (current 3-month treasury rate and the trail-
ing one-year Standard and Poors 500 return). The data cover the period January,
1979 to October, 2004. Default times are correlated in this model both through cor-
related changes across firm-level covariates as well as through common dependence of
default intensities on the two macro-covariates. The default-time data are provided
by Moodys (and slightly augmented as needed with information from Compustat and
Bloomberg). The firm-specific covariates are based on data from Compustat and
CRSP. The data are further described in Section 3. After excluding financial firms
and dropping firms for which we had missing data matched across the data sources,
our results cover 2770 firms, 495 defaults, and 392,404 firm-months of data. Out-of-
sample, the default intensities provide default prediction accuracy ratios averaging
88% during 1993-2004, exceeding those of any other available model. Broadly speak-
ing, based on these default intensity data, we reject the joint hypothesis of correctly
measured default intensities and the doubly-stochastic property.

We exploit the following new result, developed in Section 2. Consider a change
of time scale under which the passage of one unit of “new time” coincides with a
period of calendar time over which the cumulative total of all firms’ default intensities
increases by one unit. (This is, roughly speaking, the calendar time period that, at
current intensities, would include one default, in expectation.) Under the doubly-
stochastic assumption, and under this new time scale, the cumulative number of
defaults to date defines a standard (constant mean arrival rate) Poisson process.
For example, with successive time periods each lasting for some fixed amount c of
new time (corresponding to calendar periods that each include an accumulated total
default intensity, across all firms, of c), the number of defaults in successive time

3Das, Freed, Geng, and Kapadia [2001] report that the leverage and volatility are the two largest
factors empirically explaining covariation in conditional default probabilities.
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intervals (X1 defaults in the first interval lasting for c units, X2 defaults in the second
interval, and so on) are independent Poisson distributed random variables with mean
c. This time-changed Poisson process is the basis of most of our tests, outlined as
follows:

1. We apply a Fisher dispersion test for consistency of the empirical distribution
of the numbers X1, . . . , Xk, . . . of defaults in successive time bins of a given
accumulated intensity c, with the theoretical Poisson distribution of mean c
implied by the doubly-stochastic model. The null hypothesis that defaults arrive
according to a time-changed Poisson process is rejected, at traditional confidence
levels, for all of the bin sizes that we studied (2, 4, 6, 8, and 10).

2. We test whether the mean of the upper quartile of our sample X1, X2, . . . , XK of
numbers of defaults in successive time bins of a given size c is significantly larger
than the mean of the upper quartile of a sample of like size drawn independently
from the Poisson distribution with parameter c. An analogous test is based on
the median of the upper quartile. These tests are designed to detect default
clustering in excess of that implied by the default intensities and the doubly-
stochastic assumption. We also extend this test so as to simultaneously treat a
number of bin sizes. The null is rejected at traditional confidence levels at bin
sizes 2, 4, and 10, and is rejected in a joint test covering all bins. That is, at
least insofar as this test, the data suggest excess clustering of defaults.

3. Taking another perspective, some of our tests are based on the fact that, in
the new time scale, the inter-arrival times of default are iid exponential with
parameter 1. We provide the results of a test due to Prahl [1999] for clustering
of default arrival times (in our new time scale) in excess of that associated with
a Poisson process. Again, the null is rejected. That is, there is again evidence
of clustering of defaults in excess of that suggested by the assumption that
default correlation is captured by co-movement of the default covariates used
for intensity estimation.

4. Fixing the size c of time bins, we test for serial correlation of X1, X2, . . . by
fitting an autoregressive model. The presence of serial correlation would imply
a failure of the independent-increments property of Poisson processes, and, if
the serial correlation is positive, could lead to default correlation in excess of
that associated with the doubly-stochastic assumption. The null is rejected in
favor of positive serial correlation for all bin sizes except c = 2.

These tests do not depend on the joint probability distribution of the default
intensity processes of the firms, including their correlation structure, allowing both
generality and robustness. We find the data broadly consistent with a rejection of the
joint hypothesis of correctly specified intensities and the doubly-stochastic hypothesis,
at standard confidence levels.
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These rejections could be due to mis-specification associated with missing covari-
ates. For example, if the true default intensities depend on macro-economic variables
that were not used to estimate the measured intensities, then even after the change of
time scale based on the measured intensities, the default times could be correlated.
For instance, if the true default intensities decline with increasing GDP growth, even
after controlling for the other covariates, then periods of low GDP growth would
induce more clustering of defaults than would be predicted by the measured default
intensities. Indeed, we find mild evidence that U.S. industrial production growth (IP)
is a missing covariate. Even after re-estimating intensities after including this covari-
ate, however, we continue to reject the nulls associated with the above tests (albeit at
slightly larger p-values). It remains possible, however, that missing covariates, rather
than a failure of the doubly-stochastic property, could be responsible for some of the
poor fit of the joint hypothesis that we test.

In order to gauge the degree of default correlation that is not captured by corre-
lations among estimated default intensities, we calibrate a version of the intensity-
conditional copula model of Schönbucher and Schubert [2001]. The associated intensity-
conditional Gaussian copula correlation parameter is a measure of the amount of
additional default correlation that must be added, on top of the default correlation
already implied by co-movement in default intensities, in order to match the degree
of default clustering observed in the data. This estimated incremental copula corre-
lation ranges from 1% to 4% depending on the length of time window used. To place
these estimates in perspective, Akhavein, Kocagil, and Neugebauer [2005] estimate
a Gaussian copula correlation parameter of approximately 19.7% within sectors, and
14.4% across sectors, by calibration with empirical default correlations, that is, before
“removing” the correlation associated with covariance in default intensities. Although
this is a rough comparison, it indicates that default intensity correlation accounts for
a large fraction of, but not all of, default correlation.

The rest of the paper comprises the following. In Section 2, we derive the prop-
erty that the total default arrival process is a Poisson process with constant intensity
under a new time scale measured in units of cumulative aggregate default intensity to
date. This provides our testable implications. Section 3 describes our data. Section
4 provides various tests of the doubly-stochastic hypothesis. Section 5 estimates the
degree of residual default correlation, above that implied by covariation in intensities,
in terms of the incremental Gaussian copula correlation. Section 6.1 addresses the
presence of serial independence of increments of the time-changed process governing
default arrivals. In Section 6.2, we test our default intensity data for missing macroe-
conomic covariates, and examine whether these may be responsible for the rejection
of the doubly-stochastic hypothesis. Section 7 concludes.
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2 Time Rescaling for Poisson Defaults

In this section, we define the doubly-stochastic default property that rules out default
correlation beyond that implied by correlated default intensities, and we provide some
testable implications of this property.

We fix a probability space (Ω,F , P ) and an observer’s information filtration {Ft :
t ≥ 0}, satisfying the usual conditions. This and other standard technical definitions
that we rely on may be found in Protter [2003]. We suppose that, for each firm
i of n firms, default occurs at the first jump time τi of a non-explosive counting
process Ni with stochastic intensity process λi. (Here, Ni is (Ft)-adapted and λi is
(Ft)-predictable.)

The key question at hand is whether the joint distribution of, in particular any
correlation among, the default times τ1, . . . , τn is determined by the joint distribution
of the intensities. Violation of this assumption means, in essence, that even after
conditioning on the paths of the default intensities λ1, . . . , λn of all firms, the times
of default can be correlated.

A standard version of the assumption that default correlation is captured by co-
movement in default intensities is the assumption that the multi-dimensional counting
process N = (N1, . . . , Nn) is doubly stochastic. That is, conditional on the path
{λt = (λ1t, . . . , λnt) : t ≥ 0} of all intensity processes, as well as the information FT

available at any given stopping time T , the counting processes N̂1, . . . , N̂n, defined by
N̂i(u) = Ni(u + T ), are independent Poisson processes with respective (conditionally
deterministic) intensities λ̂1, . . . , λ̂n defined by λ̂i(u) = λi(u+T ). In this case, we also
say that (τ1, . . . , τn) is doubly-stochastic with intensity (λ1, . . . , λn). In particular, the
doubly-stochastic assumption implies that the default times τ1, . . . , τn are independent
given the intensities.

We will test the following key implication of the doubly stochastic assumption.

Proposition. Suppose that (τ1, . . . , τn) is doubly stochastic with intensity (λ1, . . . , λn).
Let K(t) = #{i : τi ≤ t} be the cumulative number of defaults by t, and let
U(t) =

∫ t

0

∑n
i=1 λi(u)1{τi >u} du be the cumulative aggregate intensity of surviving

firms, to time t. Then J = {J(s) = K(U−1(s)) : s ≥ 0} is a Poisson process
with rate parameter 1.

Proof: Let S0 = 0 and Sj = inf{s : J(s) > J(Sj−1)} be the jump times, in the new
time scale, of J . By Billingsley [1986], Theorem 23.1, it suffices to show that the
inter-jump times {Zj = Sj − Sj−1 : j ≥ 1} are iid exponential with parameter 1. Let
T (j) = inf{t : K(t) ≥ j}. By construction,

Zj =

∫ Tj

Tj−1

n∑
1=1

λi(u)1{τi >u} du.

By the doubly-stochastic assumption, given {λt = (λ1t, . . . , λnt) : t ≥ 0} and FTj
,

we know that Ñj+1 = {Ñ(u) =
∑n

1=1 Ni(u + Tj)1{τi >Tj} du, u ≥ Tj} is a sum of
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independent Poisson processes, and therefore itself a Poisson process, with intensity
λ̃j+1(u) =

∑n
1=1 λi(u + Tj)1{τi >Tj} du. Thus Zj+1 is exponential with parameter 1.

In order to check the independence of Z1, Z2, . . ., consider any integer k > 1 and
any bounded Borel functions f1, . . . , fk. By the doubly-stochastic property and the
law of iterated expectations, applied recursively,

E[f1(Z1)f(Z2) · · · fk−1(Zk−1)fk(Zk)]

= E[f1(Z1)f(Z2) · · · fk−1(Zk−1)E[fk(Zk) |λ,FTk−1
]]

= E[f1(Z1)f(Z2) · · · fk−1(Zk−1)]

∫ ∞

0

fk(z)e−z dz

...

=
k∏

i=1

∫ ∞

0

fi(z)e−z dz.

Thus, Z1, Z2 . . . are indeed independent, and J is a Poisson process with parameter
1, completing the proof.

Using this result, some of the properties of the doubly-stochastic assumption that
we shall test are based on the following characterization.

Corollary. Under the conditions of the proposition, for any c > 0, the successive
numbers of defaults per bin,

J(c), J(2c)− J(c), J(3c)− J(2c), . . . ,

are iid Poisson distributed with parameter c.

That is, by dividing our sample period into non-overlapping time “bins” that each
contain an equal cumulative aggregate default intensity of c, we can test the doubly
stochastic assumption by testing whether the numbers of defaults in the successive
bins are independent Poisson random variables with common parameter c. Other
tests based on the implications of the Proposition will also be applied.

3 Data

The default-intensity data used in this paper are from Duffie, Saita, and Wang [2005],4

which estimates the default intensity of firm i at time t in the form

λi(t) = eβ0+β1Xi1(t)+β2Xi2(t)+γ1Y1(t)+γ2Y2(t), (1)

where
4The initial version of this paper was based instead on intensities derived from a smaller dataset

of default probabilities (“PDs”) that were developed by Moody’s Investor Services, as described in
Sobehart, Stein, Mikityanskaya, and Li [2000].
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Xi1(t) is the distance to default of firm i, an estimate of the number of standard
deviations by which the assets of the firm exceed a measure of liabilities.5

Xi2(t) is the trailing one-year stock return of firm i, a covariate shown by Shumway[2001]
to provide significant explanatory power.

Y1(t) is the U.S. 3-month Treasury bill rate.

Y2(t) is the trailing one-year return of the Standard and Poors 500 stock index.

Data on corporate defaults and bankruptcies are obtained from two sources:
Moodys Default Risk Service and CRSP/Compustat. Moodys Default Risk Ser-
vice provides detailed issue and issuer information on rating, default and bankruptcy,
date and type (e.g. Distressed exchange, Missed interest payment, and so on) track-
ing 34,984 firms starting in 1938. CRSP/Compustat provides reasons for deletion,
year and month of deletion (data items AFTNT35, AFTNT34 and AFTNT33 re-
spectively). Firm-specific financial data are obtained from the CRSP/Compustat
database. Stock prices are from CRSP’s monthly file. Short-term and long-term
debt are from Compustat’s annual (data items DATA5, DATA9, and DATA34) and
quarterly files (DATA45, DATA49, and DATA51). The S&P500 index trailing one-
year returns are constructed from monthly CRSP data. Treasury rates are from the
web site of the U.S. Federal Reserve Board of Governors. Firms included are those
in Moodys “Industrial” category sector for which we have a common firm identi-
fier for the Moodys, CRSP, and Compustat databases. This includes essentially all
matchable U.S.-listed non-financial non-utility firms. We restrict attention to firms
for which we have at least 6 months of monthly data both in CRSP and Compustat.

5Distance to default, the sole relevant default covariate in the model proposed by Merton [1974],
is the number of standard deviations of annual asset growth by which assets exceed a measure of
book liabilities. In order to estimate distance to default, DTD, the initial asset value, At, is taken
to be the sum of St (end-of-month stock price times number of shares outstanding, from the CRSP
database) and debt, Lt (the sum of short-term debt and one-half long-term debt from Compustat).
The risk-free interest rate, rt, is taken to be the three-month Tbill rate. One solves for the asset
value At and asset volatility σA by iteratively applying the equations:

At = StΦ(d1)− Lte
−rtΦ(d2) ,

σA = sdev (ln(Ai)− ln(Ai−1)) , (2)

where Φ is the standard-normal cumulative distribution function, and where d1 and d2 are defined
by

d1 =
ln

(
At

Lt

)
+

(
rt + 1

2σ2
A

)

σA
,

d2 = d1 − σA .

Shumway and Bharath [2001] show that the estimated default intensity is relatively robust to various
alternative approaches to estimating distance to default.
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Since Compustat provides only quarterly and yearly data, for each month we take
debt to be the value provided for the corresponding quarter.

After this selection procedure, we are left with 2,770 firms, covering 392,404 firm-
months of monthly data for the period January 1979 to October 2004. Our dataset
includes 495 defaults. The coefficients β0, β1, β2, γ1, γ2, are estimated by full maximum
likelihood, as detailed in Duffie, Saita, and Wang [2005].

The cross-sectional mean of estimated default intensities shown in Figure 1 in-
creases markedly with the U.S. recession of 2000-2001. Figure 2 illustrates the number
of defaults over this period, month by month, ranging from 0 to a maximum of 12, as
well as a plot of the total across firms of the estimated monthly default intensities. If
the default intensities are correctly measured, then the number of defaults in a given
month is a random variable whose conditional mean, given the total intensity path,
is the average of the total intensity path for the month.
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Figure 1: Cross-sectional sample mean of annualized default intensities, and the number of firms
covered, January 1979 to December 2003.
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Figure 2: Aggregate (across firms) of monthly default intensities and number of defaults by month,
from 1979-2004.

4 Goodness-of-Fit Tests

Having estimated the annualized default intensity λit for each firm i and each date
t (with λit taken to be constant within months), and letting τ(i) denote the default
time of name i, we let U(t) =

∫ t

0

∑n
i=1 λis1{τ(i) >s} ds be the total accumulative default

intensity of all surviving firms. In order to obtain time bins that each contain c units of
accumulative default intensity, we construct calendar times t0, t1, t2, . . . such t0 = 0
and U(ti) − U(ti−1) = c. We then let Xk =

∑n
i=1 1{tk≤τ(i) <tk+1} be the number of

defaults in the k-th time bin. Figure 3 illustrates the time bins of size c = 8 over the
years 1995 to 2001.

Table 1 presents a comparison of the empirical and theoretical moments of the
distribution of defaults per bin, for each of several bin sizes.6 The actual bin sizes vary
slightly from the integer bin sizes shown because of granularity in the construction
of the binning times t1, t2, . . .. The approximate match between a bin size and the
associated sample mean (X1 + · · ·+ XK)/K of the number of defaults per bin offers

6Under the Poisson distribution, P (Xi = k) = e−cck

k! . The associated moments of Xk are a mean
and variance of c, a skewness of c−0.5, and a kurtosis of 3 + c−1.
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Figure 3: Aggregate intensities and defaults by month, 1996-2001, with time bin delimiters marked
for intervals that include a total accumulated default intensity of c = 8 per bin.

some confirmation that the underlying default intensity data are reasonably well
estimated, however this is somewhat expected given the within-sample nature of the
estimates. To place this issue in context, the total number of defaults that is expected
conditional on the paths of all default intensities is 470.6, whereas the actual number
of defaults is 495. For larger bin sizes, Table 1 shows that the empirical variances are
bigger than their theoretical counterparts under the null of a correct doubly-stochastic
default intensity model.

Figures 4 and 5 present the observed default frequency distribution, and the as-
sociated theoretical Poisson distribution, for bin sizes 2 and 8, respectively. For bins
of sizes larger than 4, there is a tendency for multi-modality (multiple peaks), as
opposed to the unimodal theoretical Poisson distribution associated with the hypoth-
esis of doubly-stochastic defaults. To the extent that the measured intensities are
based on unobservable covariates, or at least relevant covariates that were not in-
cluded whether observable or not, violations of the Poisson distribution would tend
to be larger for larger bin sizes, because of the time necessary to build up a significant
incremental impact of the missing covariates on the probability distribution of the
number of defaults per bin.
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Table 1: Comparison of empirical and theoretical moments for the distribution of defaults per
bin. The number K of bin observations is shown in parentheses under the bin size. The upper-row
moments are those of the theoretical Poisson distribution under the doubly-stochastic hypothesis;
the lower-row moments are the empirical counterparts.

Bin Size Mean Variance Skewness Kurtosis
2 2.04 2.04 0.70 3.49

(230) 2.12 2.92 1.30 6.20
4 4.04 4.04 0.50 3.25

(116) 4.20 5.83 0.44 2.79
6 6.04 6.04 0.41 3.17

(77) 6.25 10.37 0.62 3.16
8 8.04 8.04 0.35 3.12

(58) 8.33 14.93 0.41 2.59
10 10.03 10.03 0.32 3.10

(46) 10.39 20.07 0.02 2.24

Table 2: Fisher’s dispersion test for goodness of fit of the Poisson distribution with mean equal
to bin size. Under the joint hypothesis that default intensities are correctly measured and the
doubly-stochastic property, W is χ2-distributed with K − 1 degrees of freedom.

Bin Size K W p-value
2 230 336.00 0.0000
4 116 168.75 0.0008
6 77 132.17 0.0001
8 58 107.12 0.0001

10 46 91.00 0.0001

4.1 Fisher’s Dispersion Test

Our first goodness-of-fit test of the hypothesis of correctly measured default intensities
and the doubly-stochastic property is Fisher’s dispersion test of the agreement of the
empirical distribution of defaults per bin, for a given bin size c, to the theoretical
Poisson distribution with parameter c.

Fixing the bin size c, a simple test of the null hypothesis that X1, . . . , XK are in-
dependent Poisson distributed variables with mean parameter c is Fisher’s dispersion
test (Cochran [1954]). Under this null,

W =
K∑

i=1

(Xi − c)2

c
, (3)

is distributed as a χ2 random variable with K − 1 degrees of freedom. An outcome
for W that is large relative to a χ2 random variable of the associated number of
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Figure 4: The empirical and Poisson distributions of defaults for bin size 2.

degrees of freedom would cause a small p-value, meaning a surprisingly large amount
of clustering if the null hypothesis of doubly stochastic default (and correctly specified
conditional default probabilities) applies. The p-values shown in Table 2 indicate that,
at standard confidence levels such as 95%, for all bin sizes, there is a rejection of this
null hypothesis.

4.2 Upper tail tests

If defaults are more positively correlated than would be suggested by the co-movement
of intensities, then the upper tail of the empirical distribution of defaults per bin
could be fatter than that of the associated Poisson distribution. We use a Monte
Carlo bootstrap test of the “size” (mean or median) of the upper quartile of the
empirical distribution against the theoretical size of the upper quartile of the Poisson
distribution, as follows.

For a given bin size c, suppose there are K bins. We let M denote the sample
mean of the upper quartile of the empirical distribution of X1, . . . , XK . By Monte
Carlo simulation, we generated 10,000 data sets, each consisting of K iid Poisson
random variables with parameter c. The p-value is estimated as the fraction of the
simulated data sets whose sample upper-quartile size (mean or median) is above the
actual sample mean M . The sample p-values presented in Table 3 suggest, for 4
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Figure 5: The empirical and Poisson distributions of defaults for bin size 8.

of the 5 bin sizes, fatter upper-quartile tails than those of the theoretical Poisson
distribution. That is, our one-sided tests imply rejection of the null, for these bins,
at typical confidence levels. The joint test across all bin sizes also implies a rejection
of the null at standard confidence levels.

4.3 Prahl’s Test of Clustered Defaults

Fisher’s dispersion and our tailored upper-tail test, undertaken for each bin size, do
not exploit well the information available across all bin sizes. In this section, we apply
a test for “bursty” default arrivals due to Prahl [1999]. Prahl’s test is sensitive to
clustering of arrivals in excess of those of a theoretical Poisson process. This test
is particularly suited for detecting clustering of defaults that may arise from more
default correlation than would be suggested by co-movement of default intensities
alone. Prahl’s test statistic is based on the fact that the inter-arrival times of a
standard Poisson process are iid standard exponential. Under the null, Prahl’s test
is therefore applied to test whether, after the time change associated with aggregate
default intensity accumulation, the inter-default times Z1, Z2, . . . are iid exponential
with parameter 1. (Because of data granularity, our mean is slightly smaller than 1.)

The sample moments of inter-default times in the intensity-based time scale are
provided in Table 4. This table also presents the corresponding sample moments of
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Table 3: Tests of median and mean of the upper upper quartile of defaults per bin, against the
associated theoretical Poisson distribution. The last row of the table, labeled “All,” indicates the
estimated probability, under the hypothesis that time-changed default arrivals are Poisson with
parameter 1, that there exists at least one bin size for which the mean (or median) of number of
defaults per bin exceeds the corresponding empirical mean (or median).

Bin Mean of Tails p-value Median of Tails p-value
Size Data Simulation Data Simulation

2 4.00 3.69 0.00 4.00 3.18 0.00
4 7.39 6.29 0.00 7.00 6.01 0.00
6 9.96 8.95 0.02 9.00 8.58 0.06
8 12.27 11.33 0.08 11.50 10.91 0.19

10 16.08 13.71 0.00 16.00 13.25 0.00
All 0.0018 0.0003

Table 4: Selected moments of the distribution of inter-default times. Under the joint hypothesis
of doubly-stochastic defaults and correctly measured default intensities, the inter-default times in
intensity-based time units are exponentially distributed. The inter-arrival time empirical distribution
is also shown in calendar time, after a linear scaling of time that matches the first moment, mean
inter-arrival time.

Moment Intensity time Calendar time Exponential
Mean 0.95 0.95 0.95

Variance 1.17 4.15 0.89
Skewness 2.25 8.59 2.00
Kurtosis 10.06 101.90 6.00

the un-scaled (actual calendar) inter-default times, after a linear scaling of time chosen
to match the mean of the inter-default time distribution to that of the intensity-based
time scale. A comparison of the moments indicates that conditioning on intensities
removes a large amount of default correlation, in the sense that the moments of the
inter-arrival times in the default-intensity time scale are much closer to the corre-
sponding exponential moments than are those of the actual (calendar) inter-default
times.

Letting C∗ denote the sample mean of Z1, . . . , Zn, Prahl shows that

M =
1

n

∑

{k : Zk< C∗}

(
1− Zk

C∗

)
(4)

is asymptotically (in n) normally distributed with mean µn = e−1−α/n and variance



How corporate defaults are correlated 16

σ2
n = β2/n, where

α ' 0.189

β ' 0.2427.

Using our data, for n = 495 default times,

M = 0.4055

µn =
1

e
− α

n
= 0.3675

σn =
β√
n

= 0.0109.

The test statistic M measured from our data is 3.48 standard deviations from the
asymptotic mean associated with the null hypothesis of iid exponential inter-default
times (in the new time scale), indicating some evidence of default clustering in excess
of that associated with the default intensities under the doubly stochastic model. (In
the calendar time scale, the same test statistic M is 11.53 standard deviations from
the mean µn, under the null of exponential inter-default times.)

We also report a Kolmogorov-Smirnov (KS) test of goodness of fit of the expo-
nential distribution of inter-default times, in the new time scale. The associated KS
statistic is 3.14 (this is

√
n times the usual D statistic, where n is the number of

default arrivals), for a p-value of 0.000, leading to a rejection of the joint hypothe-
sis of correctly specified conditional default probabilities and the doubly-stochastic
nature of correlated default. (In calendar time, the corresponding KS statistic is
4.03.) Figure 6 shows the empirical distribution of inter-default times before and
after re-scaling time in units of cumulative total default intensity, compared to the
exponential density.

5 Calibrating the residual copula correlation

In order to gauge the degree to which default correlation is not captured by the doubly-
stochastic property with our data, we calibrate the intensity-conditional copula model
of Schönbucher and Schubert [2001]. We estimate the amount of copula correlation
that must be added, after conditioning on the intensities, to match the upper-quartile
moments of the empirical distribution of defaults per time bin. This measure of
residual default correlation depends on the specific copula model; we use the industry
standard “flat Gaussian copula,” which is used for example to price structured credit
products such as collateralized debt obligations. The calibrated Gaussian copula
correlation, in the intensity time scale, is a measure of the degree of correlation
in default times that is not captured by co-movement in default intensities. The
calibrating algorithm is provided in Appendix A. The results are reported in Table
5.
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Figure 6: The empirical distribution of inter-default times after scaling time change by total in-
tensity of defaults, compared to the theoretical exponential density implied by the doubly-stochastic
model. The distribution of default inter-arrival times is provided both in calendar time and in
intensity time.

As anticipated by our prior results, the calibrated residual Gaussian copula corre-
lation r is non-negative for all times bins, and ranges from 0.01 to 0.04. The largest
estimate of is for bin size 10; the smallest is for bin size 2. We can place these “resid-
ual” copula correlation estimates in perspective by referring to Akhavein, Kocagil,
and Neugebauer [2005], who estimate a Gaussian copula correlation parameter of
approximately 19.7% within sectors, and 14.4% across sectors, by calibration with
empirical default correlations (that is, before “removing,” as we do, the correlation
associated with covariance in default intensities.)7 Although only a rough compari-
son, this indicates that correlation of default intensities accounts for a large fraction
of, but not all of, default correlation.

6 Tests for Missing Default Covariates

We have documented violations of the joint hypothesis of correctly specified default
probabilities and the doubly stochastic property. We now investigate a potential
cause of these violations. In particular, the underlying default prediction model may
be missing covariates that would, if present, introduce more correlation across firms
in measured intensities. In general, adding more intensity covariates (that are not
spurious) increases the amount of default correlation that a doubly-stochastic model

7Their estimate is based on a method suggested by deServigny and Renault [2002]. Akhavein,
Kocagil, and Neugebauer [2005] provide related estimates.
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Table 5: Residual Gaussian copula correlation. Using a Gaussian copula for intensity-conditional
default times, and equal pairwise correlation r for the underlying normal variables, we estimate by
Monte Carlo the mean of the upper quartile of the empirical distribution of the number of defaults per
bin, according to an algorithm described in the Appendix. We set in bold the correlation parameter r
at which the Monte-Carlo-estimated mean best approximates the empirical counterpart. (Under the
null hypothesis of correctly measured intensity and the doubly stochastic assumption, the theoretical
residual Gaussian copulation r is zero.)

Bin Mean of Mean of Simulated Upper Quartile
Size Upper Copula Correlation

quartile (data) r = 0.00 r = 0.01 r = 0.02 r = 0.03 r = 0.04
2 4.00 3.87 4.01 4.18 4.28 4.48
4 7.39 6.42 6.82 7.15 7.35 7.61
6 9.96 8.84 9.30 9.74 10.13 10.55
8 12.27 11.05 11.73 12.29 12.85 13.37
10 16.08 13.14 14.01 14.79 15.38 16.05

can capture.

6.1 Testing for Independent Increments

Although all of the above tests depend to some extent on the independent-increments
property of Poisson processes, we will test specifically for serial correlation of the
numbers of defaults in successive bins. That is, under the null hypothesis of doubly-
stochastic defaults, fixing an accumulative total default intensity of c per time bin, the
numbers of defaults X1, X2, . . . , XK in successive bins are independent and identically
distributed. We test for independence by estimating an auto-regressive model for
X1, X2, . . ., under which

Xk = A + BXk−1 + εk, (5)

for coefficients A and B, and for iid innovations ε1, ε2 . . .. Under the joint hypothesis
of correctly specified default intensities and the doubly-stochastic property, A = c,
B = 0, and ε1, ε2 . . . are iid de-meaned Poisson random variables. A significantly
positive estimate for the auto-regressive coefficient B would be evidence of a failure
of the null hypothesis. This could reflect missing covariates, whether they are unob-
servable (frailty) or are observable but missing from the estimated intensity model.
For example, if a business-cycle covariate should be included, but is not, and if this
missing covariate is persistent across time, then defaults per bin would be fatter tailed
than the Poisson distribution, and there would be serial correlation in defaults per
bin.

Table 6 presents the results of this autocorrelation analysis. The estimated autore-
gressive coefficient B is mildly significant for bin sizes of 4 and larger (with t-statistics
ranging from 2.37 to 3.43). We next investigate whether this serial correlation can be
“cured” by extending the list of covariates used to estimate the intensities.
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Table 6: Estimates of the auto-regressive model (5) of excess defaults in successive bins, for a range
of bin sizes (t-statistics are shown parenthetically).

Bin No. of A B R2

Size Bins (tA) (tB)
2 230 2.091 0.019 0.0004

0.506 0.286
4 116 2.961 0.304 0.0947

−2.430 3.438
6 77 4.705 0.260 0.0713

−1.689 2.384
8 58 5.634 0.338 0.1195

−2.090 2.733
10 46 7.183 0.329 0.1161

−1.810 2.376

6.2 Macro-economic covariates

A measured violation of the doubly-stochastic assumption that is due to frailty (unob-
servable covariates that are correlated across firms), could be caused by the existence
of default covariates that are in fact observable, but were not used to estimate in-
tensities. In other words, missing covariates play the same role as do unobservable
covariates.

Prior work by Lo [1986], Lennox [1999], McDonald and Van de Gucht [1999],
Duffie, Saita, and Wang [2005], and Couderc and Renault [2004] suggests that macroe-
conomic performance is an important explanatory variable in default prediction. In
this section, we explore the potential role of missing macroeconomic default covari-
ates. In particular, we examine (i) whether the inclusion of growth rates of U.S.
gross domestic product (GDP) or industrial production (IP) helps explain default
arrivals after controlling for the default covariates that were already used to estimate
our default intensities, and if so, (ii) whether these variables can potentially explain
the estimated violations of the doubly-stochastic assumption. We find that industrial
production does offers some explanatory power, but that GDP growth rates do not.

Under the null hypothesis of no mis-specification, fixing a bin size of c, the number
of defaults in a bin in excess of the mean, Yk = Xk−c, is the increment of a martingale,
and should therefore be uncorrelated with any variable in the information set available
prior to the formation of the k-th bin. Consider the regression,

Yk = α + β1GDPk + β2IPk + εk, (6)

where GDPk and IPk are the growth rates of US gross domestic product and industrial
production observed in the quarter and month, respectively, that ends immediately
prior to the beginning of the k-th bin. Under the null hypothesis of correct specifi-
cation of the default intensities, the coefficients α, β1, and β2 are in theory equal to
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Table 7: Macroeconomic Variables and Default Intensities. For each bin size c, OLS-estimated
coefficients are reported for regression of the number of defaults in excess of the mean, Yk = Xk−c, on
the previous quarter’s GDP growth rate (annualized), and the previous month’s growth in (seasonally
adjusted) industrial production (IP ). The number of observations is the number of bins of size c.
Standard errors are corrected for heteroskedasticity; t-statistics are reported in parentheses.

Bin Size No. Bins Intercept GDP IP R2

(%)
2 230 0.28 -7.19 1.06

(1.59) (-1.43)
0.15 -41.96 1.93

(1.21) (-2.21)
0.27 -4.57 -35.70 2.31

(0.17) (-0.83) (-1.68)
4 116 0.46 -10.61 1.14

(1.11) (-0.91)
0.40 -109.28 5.49

(1.60) (-2.88)
0.53 -5.08 -103.27 5.73

(1.41) (-0.50) (-2.51)
6 77 1.12 -30.72 4.99

(1.84) (-2.12)
0.41 -155.09 7.55

(-1.00) (-1.89)
0.91 -18.09 -124.09 8.98

(1.58) (-1.18) (-1.42)
8 58 0.80 -19.64 1.81

(0.85) (-0.74)
1.35 -357.23 18.63

(2.40) (-3.65)
1.35 -0.08 -357.20 18.63

(1.77) (-0.00) (-3.47)
10 46 1.81 -49.00 5.89

(1.57) (-1.62)
0.45 -231.26 7.66

(0.59) (-2.07)
1.96 -41.45 -205.15 11.78

(1.80) (-1.38) (-2.08)
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zero. Table 7 reports estimated regression results for a range of bin sizes.
We report the results for the multiple regression as well as for each of GDP and

IP separately. For all bin sizes, GDP growth is not significant, and hence, may be
excluded as a candidate for explaining the residual correlation of defaults. Industrial
production enters the regression with sufficient significance to warrant its considera-
tion as an additional explanatory variable in the default intensity model. For each of
the bins, the sign of the estimated IP coefficient is negative. That is, significantly more
than the number of defaults predicted by the intensity model occur when industrial
production growth rates are lower than normal.

It is also useful to examine the role of missing macro-economic factors when de-
faults are much higher than expected. Table 8 provides the results of a test of whether
the excess upper-quartile number of defaults (the mean of the upper quartile less the
mean of the upper quartile for the Poisson distribution of parameter c, as examined
previously in Table 3) are correlated with GDP and IP growth rates. We report two
sets of regressions, the first set is based on the prior period’s macroeconomic variables.
The second set is based on the growth rates observed within the bin period.8

We report results for those bin sizes, 2 and 4, for which we have a reasonable
number of observations. Once again, we find some evidence that industrial production
growth rates help explain default rates, even after controlling for estimated intensities.

6.3 Augmenting the Covariates

In light of the possibility that a missing covariate, U.S. industrial production growth
(IP), is responsible for rejections in our tests of the doubly stochastic property, we
re-estimated default intensities after extending the specification (1) of Duffie, Saita
and Wang [2005] to include IP. Indeed, IP shows up as a significant covariate, with
a coefficient that is approximately 2.2 times its standard error. (The original four
covariates in (1) have greater significance.) Using the estimated default intensities
associated with this extended specification, we repeated all of the tests reported
earlier.

Our primary conclusion remains unchanged. Albeit with slightly higher p-values,
the results of all tests are consistent with those reported for the original intensity
specification (1), and result in a rejection of the estimated doubly stochastic model.
For example, the goodness-of-fit test rejects the Poisson assumption for every bin
size; the upper-tail tests analogous to those of Table 3 result in a rejection of the
null at the 5% level for 3 of the 5 bins, and at the 10% level for the other two.
The Prahl test statistic using the extended specification is 3.25 standard deviations
from its null mean (as compared with 3.48 for the original model). The calibrated
residual Gaussian copula correlation parameter r is the same, for each bin size, as
that reported in Table 5. Overall, even with the augmented intensity specification,

8The within-period growth rates are computed by compounding over the daily growth rates that
are consistent with the reported quarterly growth rates.
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Table 8: Upper-tail regressions. For each bin size c, OLS-estimated coefficients are shown for
regression of the number of defaults observed in the upper quartile less the mean of the upper
quartile of the theoretical distribution (with Poisson parameter equal to the bin size) on the previous
and current GDP and industrial production (IP) growth rates. The number of observations is the
number K of bins. Standard errors are corrected for heteroskedasticity; t-statistics are reported in
parentheses.

Bin Size K Intercept Previous Qtr GDP Previous Month IP R2

(%)
2 77 0.28 1.40 0.00

(1.55) (0.22)

0.36 -57.75 4.92
(2.08) (-2.46)

0.16 8.99 -76.80 6.94
(1.04) (1.04) (-2.11)

4 48 0.41 -6.19 0.97
(1.24) (-0.71)

0.29 -65.83 3.88
(-1.26) (-1.64)

0.29 -22.15 -65.26 3.88
(0.79) (-0.02) (-1.14)

Bin Size K Intercept Current Bin GDP Current Bin IP R2

(%)
2 77 0.45 -5.98 1.03

(1.67) (-0.82)
0.38 -47.20 2.82

(2.04) (-2.07)
0.36 0.98 -50.28 2.84

(1.23) (0.10) (-1.56)
4 48 0.83 -23.29 12.67

(1.60) (-2.44)
0.48 -77.93 17.88

(1.90) (-3.07)
0.63 -7.85 -62.55 18.63

(1.78) (-0.74) (-2.30)
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the tests suggest more clustering than implied by correlated changes in the modeled
intensities.

7 Conclusions and Discussion

Defaults cluster in time both because firms’ default intensity processes are corre-
lated and also perhaps because, even after conditioning on these intensities, there
could be contagion or frailty (unobserved covariates that are correlated across firms).
The latter channels are not admitted in a doubly-stochastic setting with intensities
that are based on all available information. The doubly-stochastic assumption forms
the current basis of risk-management practice, yet no test of its validity had been
undertaken. This paper makes the following contributions.

1. We introduce a time-change technique that, under the doubly-stochastic hy-
pothesis, reduces the process of cumulative defaults to a standard (unit inten-
sity) Poisson process. Based on this, we provide newly developed tests of the
joint hypothesis that default intensities are correctly measured and that the
doubly-stochastic property holds. We are particularly interested in whether
defaults are indeed independent after conditioning on intensities.

2. The null of correctly measured intensities and the doubly-stochastic property is
rejected in various tests of hypothesis that the numbers of defaults that occur
in successive time periods, all containing the same cumulative total of default
intensity, are iid Poisson.

3. The null is also rejected in a test for exponentially distributed inter-default
times, when time is measured in units of cumulative total default intensity.

4. Introducing a measure of residual Gaussian copula correlation, we find that the
excess default clustering in our data above and beyond that implied by the
factors that cause correlated default intensities can be matched by injecting
moderately small amounts of “extra copula correlation.”

5. We consider whether the excess degree of default correlation can be explained by
missing macroeconomic covariates. We find some evidence that growth rates of
U.S. industrial production (IP) do provide some incremental explanatory role,
but that even after controlling for IP, the resulting doubly stochastic model of
default correlation is rejected by the data.

These results address the ability of commonly applied credit risk models to capture
the tails of the probability distribution of portfolio default losses, and may therefore
be of particular interest to bank risk managers and bank regulators. For example,
the level of economic capital necessary to support levered portfolios of corporate debt
at high confidence levels is heavily dependent on the degree to which the doubly
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stochastic property that we have tested actually applies in practice. This may be
of special interest with the advent of more quantitative portfolio credit risk analysis
in bank capital regulations, arising under the proposed Basel II (BIS) accord on
regulatory capital (see Gordy [2003], Allen and Saunders [2003], and Kashyap and
Stein [2004]). The results also present a challenge to develop more realistic models of
default correlation.

Appendix

A Residual Guassian Copula Correlation

We estimate the residual Gaussian copula correlation by the following algorithm.

1. We fix a particular correlation parameter r and cumulative-intensity bin size c.

2. For each name i and each bin number k, we calculate the increase in cumulative
intensity Cc,k

i for name i that occurs in this bin. (The intensity for this name
stays at zero until name i appears, and the cumulative intensity stops growing
after name i disappears, whether by default or otherwise.)

3. For each scenario j of 5,000 independent scenarios, we draw one of the bins, say
k, at random (equally likely), and draw joint-standard-normal X1, . . . , Xn with
corr(Xi, Xm) = r whenever i and m differ.

4. For each i, we let Ui = F (Xi) be the standard-normal cumulative distribution
function F ( · ) evaluated at Xi, and draw “default” for name i in bin k if Ui >
exp(−Cc,k

i ).

5. We report in Table 3 the mean of the upper quartile of the simulated distribution
(across scenarios j) of the number of defaults per bin.

6. A correlation parameter r is that “calibrated” to the data for bin size c, to
the nearest 0.01, if the associated upper-quartile mean best approximates the
upper-quartile mean of the actual data, also reported in Table 3.
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