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Stock Return Characteristics, Skew Laws, and the

Di�erential Pricing of Individual Equity Options

Abstract

How do risk-neutral return skews evolve over time and in the cross-section of individual

stocks? We document the di�erential pricing of individual equity options versus the market

index, and relate it to variations in the skew. The change-of-measure induced by marginal-

utility tilting of the physical density can introduce skews in the risk-neutral return density. We

derive the skew laws that decompose individual return skewness into a systematic skewness

component and an idiosyncratic skewness component. Our empirical analysis of OEX options

and 30 of its individual components demonstrates that individual risk-neutral distributions

di�er from that of the market index by being far less negatively skewed, and substantially

more volatile.
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Skewness continues to occupy a prominent role in equity markets. In the traditional asset

pricing literature, Harvey and Siddique (2000) show that variations in conditional skewness can

explain the cross-section of stock returns, even in the presence of book-to-market and size. In

particular, stocks with negative co-skews command a higher equilibrium risk compensation (see

also Kraus and Litzenberger (1976)). Realizing the inherent importance of skewness, Ait-Sahalia

and Lo (1998), Bakshi, Cao, and Chen (1997), Bates (2000), Pan (1999), Rubinstein (1994), and

Toft and Prucyk (1997) have devised option models to characterize asymmetries in the underly-

ing risk-neutral pricing distributions. Despite tremendous advances in empirical and theoretical

modeling of skews, extant work has not yet formalized restrictions on the physical return density

and the pricing kernel process that could shift the risk-neutral distributions to the left. How do

risk-neutral skews arise? What are its economic implications for individual equity options? Our

present thrust is to �ll speci�c gaps from theoretical and empirical standpoints. First, we pro-

vide a theoretical characterization that links risk-neutral index skews to risk aversion, and to the

higher-order moments of the physical distribution (for a wide class of marginal utilities). Second,

we develop the skew laws that relate individual skews to market index skews and idiosyncratic

skews. Third, we establish the di�erential pricing of individual equity options versus the market

index. Critical to this thrust is the link, to �rst-order, between skew laws and the di�erential

pricing of individual equity options that makes our empirical study more tractable.

To make it easy to draw comparisons across option strikes and in the cross-section of equity

options, the structure of option prices - how option prices di�er across strikes - is often repre-

sented through the slope of the implied volatility curve (Rubinstein (1985, 1994)). Given their

equivalence, we will use the slope of the implied volatility curve (or, the smile) and the structure

of option prices to exemplify the same primitive object throughout. Granted, a one-to-one cor-

respondence also exists between the smile and the risk-neutral density, modeling the smile as a

stochastic process is now a central feature of some option models. While it is widely acknowledged

that the smile is somehow due to the existence of negatively-skewed and heavy-tailed risk-neutral

return distributions, a formal test of this simple idea has proven hard to implement. For example,

is it skewness or kurtosis that is of �rst-order importance for explaining the observed variation in

the structure of option prices? When the return distribution is skewed to the left, will a higher

level of kurtosis induce a atter smile?

The hurdles in quantifying the basic link across a wide spectrum of options stem from three

sources. First, to infer the smile from the initial higher moments requires the identi�cation of the

underlying risk-neutral return density, and there is no natural way to reconstruct the density from

just its higher moments. Second, although parametric option pricing models can be �tted and

used to estimate the risk-neutral moments, in practice, all models are likely to be mis-speci�ed.
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Even when option models are well-enough speci�ed across the strike price range, it is not clear

that any derived relation between option prices and risk-neutral moments is a generic property,

as opposed to being a reection of the particular modeling choice (i.e., parameterization can force

an arti�cial interdependence between skewness and kurtosis). Thus, it appears important that

skews be recovered in a model-free fashion. Third, most stock options are American and therefore

their risk-neutral densities cannot be so easily characterized using existing methods (Rubinstein

(1994) and Ait-Sahalia and Lo (1998)). Consequently, much research in the estimation of risk-

neutral distributions, and its moments, has concentrated on index, as opposed to individual equity,

options. From a general asset pricing perspective, it is unsettling that we do not yet understand

the properties of individual equity risk-neutral return distributions, or the structure of their option

prices.

To build the connection between the di�erential pricing of individual stock options and the

moments of the risk-neutral distribution in a model-free manner, we rely on the basic result from

Bakshi and Madan (2000): any payo� can be spanned and priced using an explicit positioning

across option strikes. Their results can be applied here as the moment, viewed as a payo�, is within

the class of functions that can be spanned via options. De�ne, as usual, the skewness (kurtosis)

as the third (fourth) central moment of the risk-neutral return distribution normalized by the

cube (fourth power) of the return standard deviation, and the option positions that represent the

third and fourth non-central moment as the cubic and quartic contracts, respectively. We show

that the cubic contract can quantify return asymmetry by a speci�c position that simultaneously

involves a long position in out of money calls and a short position in out of money puts. When

the risk-neutral distribution is left-skewed, the combined cost of the positioning in puts is larger

than that of the combined positioning in calls. We refer to the cost of reproducing the risk-neutral

skewness and kurtosis as the price of skewness and kurtosis even though the respective payo�s

are not actually discounted. The contingent claims theory that we use here is applicable to both

European and American options, and the derived measures of tail asymmetry and tail size are

readily comparable across equities and over time.

In order to analyze what may create a wedge between individual and index risk-neutral return

distributions, we posit a market model in which individual stock return can be decomposed into a

systematic component and an idiosyncratic component. Provided the idiosyncratic risk component

is symmetric (or positively skewed) and the index distribution is negatively skewed, we can restrict

the risk-neutral individual skew to be less negative than the market. Our economic analysis reveals

that negatively-skewed risk-neutral index distributions are viable even when the physical return

distribution is symmetric. Curiously, this outcome is achieved when the return process is in the

family of fat-tailed physical distributions and the representative agent is risk-averse. We also
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demonstrate that variations in short-term and medium-term skews are related, and risk-neutral

skews do not aggregate linearly over time. Finally, by appealing to a perturbation of the underlying

density, we verify that, at any level of moneyness, the slope of the smile is, in general, a�ne in

skewness and kurtosis. We use our skew paradigms to test the following hypotheses: (1) The

index volatility smiles are more negatively-sloped than individual smiles. (2) In a cross-section of

stocks, or in the time-series, the more negatively skewed the risk-neutral return distribution, the

steeper the volatility smiles. On the other hand, in the presence of risk-neutral skews, a higher

risk-neutral kurtosis attens the implied volatility curve. (3) Individual risk-neutral distributions

are less skewed to the left, and possibly more volatile (and fat-tailed) than the index distributions.1

Our empirical study is based on nearly 350,000 option quotes written on the S&P 100 index

(hereby, OEX) and its 30 largest individual equity components. Covering January 1991 through

December 1995, our principal conclusions are as follows. First, the slope of the individual equity

smiles are persistently negative, but are much less negative than the index. To be concrete, when

we regress log individual implied volatility onto log moneyness, the magnitude of the individual

equity slope is only about one-fourth of the index. The documented di�erences in the slope of

index and individual smiles produces a substantial di�erence in the relative price of options: for

the OEX (a representative stock), the implied volatility of a deep out of the money put is about

22% (29%), as compared to at the money implied of 14% (26%). Clearly, the pricing structure

of individual equity options is relatively atter compared with that of the market index. Overall,

these empirical �ndings support the view that the pricing kernel only prices systematic factors.

Second, variations in the risk-neutral skew are instrumental in explaining the di�erential pricing

of individual equity options. In our dynamic regressions involving the contemporaneous slope of the

smile and the contemporaneous risk-neutral moments, we �nd that the more negatively skewed the

return distribution, the steeper is its volatility smile. Yet, when risk-neutral distributions evolve

to be more fat-tailed, the smile gets less downward-sloping. Speci�cally, a higher risk-neutral

kurtosis attens the smile in the presence of left-tails. The cross-sectional regressions con�rm that

less negatively skewed stocks will have atter smiles, on average.

Third, our inquiry consolidates a number of core properties mirrored by all (in our sample)

individual risk-neutral (pricing) distributions:

1Amongst academics, Mark Rubinstein (we are told) has often lectured on (i) the potential sources of negative
risk-neutral index skews, and (ii) on the relative atness of individual equity option smiles. For example, this
has been noted in the introduction of Jackwerth and Rubinstein (1996), and possibly elsewhere. Although Toft
and Prucyk (1997) and Dennis and Mayhew (1999) construct various measures of the skew, the lack of theoretical
foundation makes it di�cult to interpret these measures consistently in either the cross-section or in the time-series.
This point will become evident from our Theorems 2 and 3. In one particular example, it is shown that the leverage
argument (i.e., equity returns and volatility are inversely related) for skews produces the counterfactual implication
that some individual equity returns are risk-neutrally more left-skewed than the index.
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� Individual stocks are mildly left-skewed (or even positively skewed), while index return

distributions are heavily left-skewed. By way of contrast, the price of volatility is far more

expensive for individual stocks. On balance, there is no consistent pattern for the price of

the fourth moment in the cross-section;

� Although individual skews are negative much of the time, their magnitudes are seldom more

negative relative to the index. The index skews are never positive, even periodically.

Since individual skew is a positively weighted combination of the market and idiosyncratic

skew, the less negative individual skew (relative to the market index) can only transform into the

statement that the idiosyncratic return component cannot be strongly skewed to the left.

Finally, using generalized method of moments, we empirically relate the risk-neutral index

skews to the higher-moments of the physical distribution. Our results indicate that the substantial

di�erences in the magnitudes of risk-neutral and physical skews are primarily a consequence of risk

aversion and long-tailed physical distributions. The resulting estimates of risk aversion parameter

appear reasonable. A variety of extended diagnostics support our main empirical �ndings.

This article is divided into several parts. Section 1 is devoted to formulating the key elements

of the problem. In Section 2, we relate the structure of option prices to higher-order risk-neutral

return moments. Section 3 reviews the equity options data. The di�erential pricing of individual

equity options versus the market index is demonstrated in Section 4. We empirically examine the

role of skews. Conclusions are o�ered in Section 5. All proofs are collected in an Appendix.

1 Understanding and Recovering Risk-Neutral Skews

This section accomplishes three tasks. At the outset, we propose a methodology to span and price

skewness and kurtosis. This step is rendered feasible using only out of money calls and puts,

and without imposing any structure on the underlying forcing process. Next, we establish when

risk aversion causes the aggregate index to have negative-skews under the risk-neutral measure.

We then decompose the price of individual return skewness into market-induced skewness and

idiosyncratic skewness. Each conceptualization is critical for the later empirical exercises.

1.1 Generic Spanning and Pricing Characterizations in Bakshi-Madan (2000)

Since our intent is to frugally represent the risk-neutral distribution (or some feature thereof)

in terms of traded option prices, it is only convenient to adopt the setting outlined in Bakshi

and Madan (2000). That is, to �x notation, denote the time t price of the stock n by Sn(t) (for
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n = 1; � � � ; N), and the market index by Sm(t). Without any loss of generality, let the interest

rate be a constant r, and S(t) > 0 with probability 1 for all t (suppressing the subscript n).

To ease equation presentation, write the t + � period price of the stock, S(t + �), as S and

de�ne the set 
 � fS > 0g. Let the risk-neutral pricing density q[t; � ;S], or simply q[S], embody

all remaining uncertainty about S. The physical density, p[S], and the associated Radon-Nikodym

derivative that delivers q[S], for a given pricing kernel, will be formalized in Section 1.3. For any

universal claim payo� H [S] 2 L1(q) (i.e.,
R

 j H [S] j q[S] dS < 1), the symbol E�t f:g will mean

to represent the expectation operator under risk-neutral density. That is, in what follows,

E�t fH [S]g =
Z


H [S] q[S]dS: (1)

With this understanding, we can express the price of the European call and put written on the stock

with strike priceK and expiring in � -periods from time t as: C(t; � ;K) =
R

 e

�r� (S �K)+ q[S] dS,

and P (t; � ;K) =
R

 e

�r� (K � S)+ q[S] dS, where (S � K)+ � max(0; S � K) represents the

maximum operator.

As articulated in Bakshi and Madan (2000), any payo� function with bounded expectation

can be spanned by a continuum of out of money European calls and puts. In particular, a special

case of their Theorem 1 is that the entire collection of twice-continuously di�erentiable payo�

functions, H [S] 2 C2, can be spanned algebraically (see also Carr and Madan (1996)), as in:

H [S] = H [ �S] + (S � �S)HS[ �S] +

Z 1

�S
HSS [K](S �K)+dK +

Z �S

0
HSS [K](K � S)+dK (2)

where HS [ �S] (HSS [K]) represents the �rst-order (second-order) derivative of the payo� with re-

spect to S evaluated at some �S (the strike price). Intuitively, the position in options enables one

to buy the curvature of the payo� function.

Applying the martingale pricing operator to both sides of (2), we have the arbitrage-free price

of the hypothetical claim

E�t fe�r� H [S]g =
�
H [ �S]� �S HS [ �S]

�
e�r� +HS [ �S]S(t)

+

Z 1

�S
HSS [K]C(t; � ;K) dK+

Z �S

0
HSS [K]P (t; � ;K)dK (3)

which merely formalizes howH [S] can be synthesized from (i) a zero-coupon bond with positioning:

H [ �S]� �S HS [ �S], (ii) the stock with positioning: HS [ �S], and (iii) a linear combination of calls and

puts (indexed by K) with positioning: HSS [K]. By observing the relevant market prices and

appealing to (3), we can statically construct the intrinsic values of most contingent claims.
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1.2 Mimicking Risk-Neutral Skewness and Kurtosis

To streamline the discussion of stock return characteristics and the structure of option prices, let

the � -period return be given by the log price relative: R(t; �) � ln[S(t+ �)]� ln[S(t)]. De�ne the

volatility contract, the cubic contract, and the quartic contracts to have the payo�s:

H [S] =

8>>><>>>:
R(t; �)2 Volatility Contract

R(t; �)3 Cubic Contract

R(t; �)4 Quartic Contract.

(4)

Let V (t; �) � E�t
�
e�r� R(t; �)2

	
, W (t; �) � E�t

�
e�r� R(t; �)3

	
, and X(t; �) � E�t

�
e�r� R(t; �)4

	
represent the fair value of the respective payo�. The following theorem is a consequence of (2)-(3).

Theorem 1 Under all martingale pricing measures, the following contract prices can be recovered

from the market prices of out of money European calls and puts:

1. The � -period risk-neutral return skewness, SKEW(t; �), is given by

SKEW(t; �) �
E�t
n
(R(t; �)� E�t [R(t; �)])3

o
n
E�t (R(t; �)� E�t [R(t; �)])2

o3=2
=

er�W (t; �)� 3�(t; �)er�V (t; �) + 2�(t; �)3

[er�V (t; �)� �(t; �)2]3=2
: (5)

2. The risk-neutral kurtosis, denoted KURT(t; �), is

KURT(t; �) �
E�t
n
(R(t; �)� E�t [R(t; �)])4

o
n
E�t (R(t; �)� E�t [R(t; �)])2

o2
=

er�X(t; �)� 4�(t; �)er�W (t; �) + 6er��(t; �)2 V (t; �)� 3�(t; �)4

[er�V (t; �)� �(t; �)2]2
; (6)

with �(t; �) displayed in (40) of the Appendix. The price of the volatility contract

V (t; �) =

Z 1

S(t)

2(1� ln
h

K
S(t)

i
)

K2
C(t; � ;K) dK+

Z S(t)

0

2(1 + ln
h
S(t)
K

i
)

K2
P (t; � ;K) dK (7)

and the price of the cubic, and the quartic, contract

W (t; �) =

Z 1

S(t)

6 ln
h

K
S(t)

i
� 3(ln

h
K
S(t)

i
)2

K2
C(t; � ;K) dK
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�
Z S(t)

0

6 ln
h
S(t)
K

i
+ 3(ln

h
S(t)
K

i
)2

K2
P (t; � ;K) dK; (8)

X(t; �) =

Z 1

S(t)

12(ln
h

K
S(t)

i
)2 � 4(ln

h
K
S(t)

i
)3

K2
C(t; � ;K) dK

+

Z S(t)

0

12(ln
h
S(t)
K

i
)2 + 4(ln

h
S(t)
K

i
)3

K2
P (t; � ;K) dK; (9)

can each be formulated through a portfolio of options indexed by their strikes.

The theorem formalizes a mechanism to extract the volatility, the skewness, and the kurtosis,

of the risk-neutral return density from a collection of out of money (hereby OTM) calls and

puts. Notably, one must always pay to go long the volatility and the quartic/kurtosis contracts.

Speci�cally, to unwind the price of volatility, all OTM calls and puts are to be weighted by the

strike price dependent amount: 2�2 ln[K=S(t)]
K2 . In the quartic contract, the positioning is cubic in

moneyness, however. Heuristically, a more pronounced fourth moment can only give rise to heavy-

tailed distributions, a feature that will bid up the prices of both deep out of money and in the money

calls and puts. When �tting implied volatility curves, this e�ect sometimes surfaces as a parabola

in the space of moneyness and implied volatility. Therefore, the weighting structure assigning far

higher weight to OTM (versus near the money) options does have intuitive justi�cation.

The cubic contract displayed in (8) permits a play on the skew. With return distributions that

are left-shifted, all OTM put options will be priced at a premium relative to OTM calls. In this

environment, the cost of the short position in the linear combination of OTM puts will generally

exceed the call option counterpart. Equation (5) thus blends qualitative as well as quantitative

dimensions of asymmetry. More exactly, when the cubic contract is normalized by V (t; �), it

quanti�es asymmetry both across time, and in the stock cross-section. In this sense, the price

of skewness complements the skewness premium measure of Bates (1991), which is the ratio of a

single call to put price. As we shall see, the option portfolio (5) is instrumental in quantifying

uctuations in the smile and in reconciling the relative structure of individual option prices.

Although it is possible to parameterize skews via a speci�c jump model (Bates (2000) and

Pan (1999)), for reasons already discussed, the model-free determination of skews is desirable

on theoretical and empirical grounds. In our context, moment discovery can be contemplated

as summing a coarsely available grid of OTM calls and puts; it also generalizes to American

options. The latter assertion can be supported in two ways. First, OTM options have negligible

early exercise premiums. Second, even when early exercise premiums are not modest (i.e., OTM

options in the neighborhood of at the money), the portfolio weighting in these options is small

by construction. In the converse, larger weighting applies to deep OTM options but their market
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prices are declining rapidly with strikes. In reality, a �nite positioning in options should e�ectively

span the payo�s of interest. We address issues of accuracy in our implementations.

Equation (5) may be useful to researchers interested in measuring risk compensation for in-

dividual/index skews (see Harvey and Siddique (2000) for an innovative approach). Suppose an

individual holds the claim:
(Rn(t;�)��n)3

[er�Vn(t;�)��n(t;�)2]3=2
, with no idiosyncratic exposure. The market price

of this exposure is precisely given by equation (5). For any admissible stochastic discount factor,

�, and covariance operator, Covt(:; :), the reward for bearing skewness risk, �S , is then:

�S � r = �Covt
�
�(t +�t)

�(t)
;
SKEW(t +�t; �)

SKEW(t; �)

�
(10)

which is, in principle, computable once the stochastic discount factor has been identi�ed. The

identi�cation of � can be rather involved, and requires the joint estimation and formulation of the

physical and risk-neutral processes. For details on this procedure, we refer the reader to Chernov

and Ghysels (2000), Pan (1999) and Harvey and Siddique (2000).

1.3 Sources of Risk-Neutral Index Skews

For our synthesis involving the relationship between risk-neutral and physical densities, let p[Rm]

denote the physical density of the � -period index return, Rm. Similarly denote the joint physical

density of the stock collection by p[R1; � � � ; RN ; Rm]. Under certain conditions, we must have, by

the Radon-Nikodym theorem, the identities:2

q[Rm] =
e� Rm � p[Rm]R

e� Rm � p[Rm] dRm
; and (11)

2Strictly, the Radon-Nikodym theorem is a statement about two equivalent probability measures, Q and P on
some measurable space (recall we have reserved P for the put price). In general, we have measures on a sigma-�eld
of subsets of 
 and the Radon-Nikodym theorem allows us to assert: Q[d!] = �[!]P [d!], where �[!] is an L1

measurable function with respect to the underlying sigma-�eld (Halmos (1974)). For any (Borel measurable) test
function f [S], the density of the stock price (if it exists) is de�ned by the condition:

R
f [S] p[S] dS =

R
f [S]P [d!].

Analogously, the risk-neutral density satis�es:
R
f [S] q[S] dS =

R
f [S] �[!]P [d!]. Armed with this result, de�ne

the conditional expectation of �, given the �ltration generated by the stock price as: E[� j S] by the condition
that (for all test functions f [Sm]):

R
f [Sm] �[!]P [d!] =

R
f [Sm]E[� j Sm]P [d!] =

R
f [Sm]Ef� j Smg p[Sm]dSm.

Applying this property of conditional expectations to the above equation, we get
R
f [Sm] q[Sm]dSm =

R
f [Sm]Ef� j

Smg p[Sm]dSm. Thus, we may deduce q[Sm] = Ef� j Smg � p[Sm]. As is traditional, one conjectures a form for

the un-normalized Radon-Nikodym derivative, and in this case: q[Sm] =
Ef�jSmg�p[Sm]R

Ef�jSmg�p[Sm] dSm
, where � can be

interpreted as a general un-normalized change-of-measure pricing kernel. Under the maintained hypothesis of a
power utility function in wealth, we may specialize the stochastic discount factor to Ef� j Smg = S

�
m = e� ln(Sm).

Then dividing the denominator and numerator by S�m (t) and making a change of variable, we derive (11). For
an extended treatment of admissible stochastic discount factors (and their uniqueness/non-uniqueness), see, for
example, Hansen and Jagannathan (1997) and Harrison and Kreps (1979). For recent applications of (11), check
Amin and Ng (1993), Chernov and Ghysels (2000), Stutzer (1996), and Jackwerth (2000).
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q[R1; � � � ; RN ; Rm] =
e� Rm � p[R1; � � � ; RN ; Rm]R

e� Rm � p[R1; � � � ; RN ; Rm] dR1 � � �dRN dRm
; (12)

where e� Rm is the pricing kernel in power utility economies, with coe�cient of relative risk

aversion . Here, the risk-neutral index density is obtained by exponentially tilting the physical

density. Note that the normalization factor in the denominator of (11) ensures q[Rm] is a proper

density function that integrates to unity. We now prove the main result of this subsection.

Theorem 2 Up to a �rst-order of , the risk-neutral skewness of index returns is analytically

attached to its physical counterparts via

SKEWm(t; �) � SKEWm(t; �)� 
�
KURTm(t; �)� 3

�
STDm(t; �); (13)

where STD(t; �), SKEW(t; �) and KURT(t; �) are a stand-in for return standard deviation, skew-

ness, and kurtosis, under the physical probability measure, respectively. Thus, exponential tilting

of the physical density will produce negative skew in the risk-neutral index distribution provided

the physical distribution is fat-tailed (with non-zero ).

Because our characterization of individual equity skews hinge on negative skewness in the risk-

neutral index distribution, the result (13) is of special relevance. At a theoretical level, Theorem

2 provides sound economic reasons for the presence of risk-neutral skews even when the physical

process is symmetric. Essentially, it states that there are three sources of negative skew in the

risk-neutral index distribution. First, a negative skew in the physical distribution causes the risk-

neutral index distribution to be left-skewed even under  = 0 restriction. Second, risk-neutral

index skews and the kurtosis of the physical measure appear to be inversely related: for a given

volatility level and risk aversion, raising the level of kurtosis beyond 3 generates a more pronounced

left-tail. In a likewise manner, higher stock market volatility will not guarantee left-skew unless

the parent distribution is fat-tailed.

At the least, these features match the observations in Bates (1991) and Rubinstein (1994)

that the index distributions have become (risk-neutrally) more negatively skewed after the crash

of 1987. Finally, risk aversion makes the risk-neutral density inherit negative skew, provided

the kurtosis of the physical distribution is in excess of 3. Since physical distributions estimated

in practice are often symmetric (see the evidence in Rubinstein (1994) and Jackwerth (1999)

on realized S&P 500 index returns), according to (13), heavy-tailed index distributions and risk

aversion are the most likely root of the risk-neutral index skew.

To see the working behind this counterintuitive �nding that exponential tilting of the physical

index distribution produces no skew when kurtosis is equal to 3, let us take a parametric example
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in which index returns are distributed normal with mean �m, and variance �2m. With the aid of

(11) and Gaussian p[Rm], we have (for some constants A0 > 0 and A1 > 0)

q[Rm] = A0 exp(�Rm)� exp

 
�(Rm � �m)2

2 �2m

!

= A1 exp

 
� [Rm � (�m �  �2m)]2

2 �2m

!
(14)

which is again a mean-shifted (i.e., �m �  �2m) Gaussian variate with zero skewness. This is

consistent with our �rst-order analysis that indicates a need for excess kurtosis to generate a

change in skew. The excess kurtosis is well-known to be prevalent statistically in index returns.

So long as the physical distribution is fat-tailed, the end-result is similar in stochastic volatility and

pure-jump models as well. In (47)-(49) of the Appendix, it is explicitly shown how exponential

tilting of the physical density alters the (�rst) three moments of the risk-neutral distribution

(whether the physical density is generated via a partial equilibrium, or a general equilibrium

Lucas, economy).

Can Theorem 2 be generalized to a broader family of utility functions? Is the power utility

assumption crucial for generating the negative skew phenomena? To resolve this issue, consider

the wider class of marginal utility functions, U 0[Rm], given by

U 0[Rm] =

Z 1

0
e�z Rm �(dz); (15)

for a measure � on <+. This includes as candidates for marginal utility, all bounded Borel functions

vanishing at in�nity (Revuz and Yor (1991)). For example, the choice of the gamma density for

the measure �(:) results in HARA marginal utility. In particular, we can also accommodate, as a

special case, the bounded versions of the loss aversion utility functions considered by Kahneman

and Tversky (1979). With positive �(:), all completely monotone utility functions (i.e., U 0[Rm] >

0, U 00[Rm] < 0, U 000[Rm] > 0, and so on) are also nested within equation (15). Clearly, the

coe�cient of relative risk aversion [Rm] � �Rm U 00[Rm]
U 0[Rm] , can vary stochastically with Rm.

For all such stochastic discount factors, de�ne a �-approximation by: U 0[Rm;�] =
R1
0 e�� z Rm �(dz),

which is just a functional arc approximation in the space of marginal utilities. Hence

q[Rm] =
p[Rm]�

R1
0 e�� z Rm �(dz)R R1

0 e�� z Rm �(dz) p[Rm] dRm
: (16)

It then follows that: SKEWm � SKEWm � f� R10 z �(dz)g
�
KURTm � 3

�
STDm (see the Ap-

pendix for intermediate steps). Even though risk aversion may no longer be time-invariant, the

10



skew dynamics are still being determined by higher-order moments of the physical distribution.

In particular, as we have shown, the even moments are being weighted by a constant proportional

to risk aversion. This is the outcome, as the risk aversion dependence on the market is getting

integrated out. In the more general case of state-dependent preferences, the skew dynamics can

depend on conditional moves in risk aversion.

Depending on the nature of return autocorrelation, the risk-neutral skews may not aggregate

linearly across the time spectrum. To develop this argument in some detail, suppose the one-

period (say, weekly) rate of return follows an AR-1 process under the physical measure: Rm(t) =

�Rm(t � 1) + u(t). As usual, let the white noise, u(t), have zero mean with j � j< 1. Keep

the higher moments, STDu(t), SKEWu(t) and KURTu(t), unspeci�ed for now. De�ne the term

structure of risk-neutral skews, SKEWm(t; �), as a function of � . Using a standard logic, we

determine (for � = 1; 2; 3; � � � ;1)

STDm(t; �) = STDu(t)�
s
� � La[�; � ]
(1� �2)2

; (17)

SKEWm(t; �) = SKEWu(t)� � � Lb[�; � ]
(� � La[�; � ])3=2

; and (18)

KURTm(t; �)� 3 =
�
KURTu(t)� 3

�
� � � Lc[�; � ]
(� � La[�; � ])2 ; (19)

where La[�; � ] � 2�(1��� )
1�� � �2(1��2� )

1��2 , Lb[�; � ] � 3�(1��� )
1�� � 3�2(1��2� )

1��2 + �3(1��3� )
1��3 and Lc[�; � ] �

4�(1��� )
1�� � 6�2(1��2� )

1��2 + 4�3(1��3� )
1��3 � �4(1��4� )

1��4 . By combining (17)-(19) with Theorem 2, several

observations are apparent:

� When � = 0, La = Lb = Lc = 0. Therefore, SKEWm(t; �) = 1p
�
SKEWu(t)� p

�
(KURTu(t)�

3) STDu(t). As a result, absolute skews are declining like the square-root of maturity (irre-

spective of the distributional characteristics of u).

� With moderate levels of positive autocorrelation, the skew term structures display a U-

shaped tendency: getting more negative with � initially, and then gradually shrinking to

zero with large � . With � < 0, the term structure of skews bears the trait that short skews

are always more negative than long skews. In either case, the presence of autocorrelation

slows down the rate at which the central limit theorem is holding.

� If u is symmetric with kurtosis 3, the term structure of risk-neutral index skews is at

regardless of the nature of return dependency and risk taking behavior.

In summary, the preceding analysis integrates two insights about the term structure of skews.

First, the part of skew that relies on risk aversion and fat-tailed distribution is more consistent
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with the daily/weekly frequency. Second, as the observation frequency is altered from weekly to

monthly, the term structure of absolute skews can get upward-sloping even when KURTm(t; �)

approaches 3. Although not pursued here, higher-order autoregressive processes would lead to

more exible forms for absolute skew term structures.

One can take advantage of equation (13) to reverse-engineer an estimate of the risk aversion

coe�cient, and requires only simple inputs. To make the point precise, the risk-neutral index skew

is recoverable from option positioning (5), and higher-moments of the physical distribution can be

computed, with some sacri�ce of quality, from the time-series of index returns. Informal as it may

be, the reasonableness of the estimates can serve as an additional metric to assess conformance

with theory. One such estimation strategy is discussed in the empirical section.

1.4 Skew Laws for Individual Stocks

To formalize the next aspect of the problem, assume that the individual stock return, Rn(t; �),

conforms with a generating process of the single-index type

Rn(t; �) = an(t; �) + bn(t; �)Rm(t; �) + "n(t; �) n = 1; � � � ; N; (20)

where an(t; �) and bn(t; �) are scalers. Provided drift induced restrictions are placed on the pa-

rameters an(t; �) and bn(t; �), the return process (20) is also well-de�ned under the risk-neutral

measure. Presume that the unsystematic risk component "n(t; �) has zero mean (whether risk-

neutral or physical) and is independent of Rm(t; �) for all t. Due to this property, the co-skews,

Ef"n(t; �) (Rm(t; �) � �m(t; �))2g and Ef"2n(t; �) (Rm(t; �) � �m(t; �))g, are zero. Impose the

square-integrability conditions: V"(t; �) � e�r�
R
"2q["]d" <1 and Vm(t; �) � e�r�

R
R2
mq[Rm]dRm <

1, which bound the price of idiosyncratic volatility and index volatility. We can now state.

Theorem 3 If stock returns follow the one-factor linear model displayed in (20), then

(a) The price of individual skewness, denoted SKEWn(t; �), is linked to the price of market

skewness, SKEWm(t; �), as stated below (for n = 1; � � � ; N):

SKEWn(t; �) = 	n(t; �) SKEWm(t; �) + �n(t; �) SKEW"(t; �); (21)

where SKEW"(t; �) represents the skewness of "; and

	n(t; �) �
�
1 +

V"(t; �)

b2n(t; �)[Vm(t; �)� e�r��2m(t; �)]

��3=2
(22)
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�n(t; �) �
 
1 +

b2n(t; �)[Vm(t; �)� e�r��2m(t; �)]

V"(t; �)

!�3=2
(23)

with 0 � 	n(t; �) � 1 and 0 � �n(t; �) � 1.

(b) The individual skew will be less negative than the skew of the market

SKEWn(t; �) > SKEWm(t; �) n = 1; � � � ; N; (24)

under the following conditions: (i) "n(t; �) belongs to a member of distributions that

are symmetric around zero (i.e., E�t
�
"3n(t; �)

	
= 0). In this case, the variation in the

price of individual skewness can be bounded to be no more than that of the stock market

index: 0 � SKEWn(t;�)

SKEWm(t;�)
� 1; or, (ii) the distribution of "n(t; �) is positively-skewed.

In (24), the risk-neutral index distribution is regarded as being left-skewed. The risk-neutral indi-

vidual and index skews can be recovered from the option tracking portfolio (5).

Since the idiosyncratic return component requires no measure-change conversions, the skew-

ness laws postulated in (21) will be obeyed under both the physical and risk neutral measures

(with appropriate adjustments to 	(t; �) and �(t; �)). Either way, this statement of the theorem

should not be interpreted to mean that individual return skewness will move in lockstep with

market skewness. From equation (12), one can understand why total volatility matters for pricing

derivatives even though the stochastic discount factor only prices systematic risk. This feature is

reected in the price of skewness, as the latter is merely a portfolio of options.

Two polar cases can shed light on the precise role of idiosyncratic skewness. Case A:Rn(t; �) =

an(t; �) + bn(t; �)Rm(t; �), accommodates a generating structure in which individual return is

perfectly correlated with the stock market. When this is so, the risk-neutral skewness of the

individual stock coincides with that of the market. Case B: Rn(t; �) = an(t; �) + "n(t; �). In this

setting, the stock contains no systematic component, and the sole source of individual skewness

is the idiosyncratic skewness. In reality, the individual skewness will be partly inuenced by

market skewness, and partly by idiosyncratic skewness. In a later empirical exercise, we study

the skew law implication that: 0 � 	n(t; �) � 1. We can also note that if restrictions (21)-(24)

hold simultaneously and the market is heavily skewed to the left, then the idiosyncratic skews are

bounded below and cannot be highly negative.

Even though not stressed in the theorem, more can be said about the character of individual

risk-neutral distributions. Relying on the properties of variance operators and (20), �rst observe

that: Vn(t; �) = b2n(t; �)Vm(t; �) + V"(t; �). Thus, provided the variance of the unsystematic
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factor is su�ciently well-behaved, the individual risk-neutral distributions will be inherently more

volatile than the index. Next, as even moments are correlated in general, we can also expect

individual stocks to display more leptokurtosis than the market (but this feature is not clear-cut

analytically).

Due to the aforementioned, the di�erential pricing of index and individual equity options is

likely. First, as expected, the less negative individual equity skew tempers the way all individual

OTM puts are priced vis-a-vis all OTM calls. In particular, the skewness premium should get

alleviated for individual stock options. Second, as individual stocks are more inclined to extreme

moves than the market, the valuation of deep OTM calls/puts versus near the money calls/puts

can be expected to diverge as well. These departures between the index and individual risk-neutral

distributions will modify the structure of option prices (i.e, the smiles).

To get a avor of the skew laws outside of the single-factor model, consider the return generating

process: Rn(t; �) = an(t; �) + bn(t; �)Rm(t; �) + cn(t; �)F (t; �) + "n(t; �), which incorporates a

systematic factor, F, besides the market index. Assume the independence of Rm(t; �), F (t; �) and

"n(t; �). It can be shown that

SKEWn(t; �) = 	n(t; �) SKEWm(t; �) + �	n(t; �) SKEWF (t; �) + �n(t; �) SKEW"(t; �) (25)

where 	n > 0, �	n > 0 and �n > 0 are given in (54)-(56) of the Appendix. Two parametric cases

are of special appeal. Suppose SKEWF (t; �) < 0. Then, as in the single-factor characterization,

"n cannot be relatively far left-skewed with negative index skews. Next, when SKEWF (t; �) > 0,

then SKEWn(t; �) > SKEWm(t; �) with symmetry of "n. Under the auxiliary assumption that

each systematic factor contributes equally to the variance of Rn, we can see that SKEWn(t; �) >

(SKEWm(t; �) + SKEWF (t; �))=2, for all n and all � .

Our framework is su�ciently versatile to recover co-skews between individual stocks and the

market. To see how this can be accomplished using individual equity option prices, de�ne, from

Harvey and Siddique (2000), the risk-neutral co-skew as:

COSKEWn(t; �) �
E�t
n
(Rn(t; �)� E�t [Rn(t; �)])� (Rm(t; �)� E�t [Rm(t; �)])2

o
n
E�t (Rn(t; �)� E�t [Rn(t; �)])

2 � E�t (Rm(t; �)� E�t [Rm(t; �)])2
o1=2 (26)

= bn SKEWm(t; �)
er�Vm(t; �)� �2m(t; �)p
er�Vn(t; �)� �2n(t; �)

n = 1; � � � ; N; (27)

from the single-factor assumption (20). As before, V (t; �) and �(t; �) are known from option

positioning (7) and (40). However, recognize that bn(t; �) is a risk-neutralized parameter and can

be estimated from individual equity option prices. The exact procedure is as follows. First, under
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the single-factor assumption, the call option price, Cn(t; �), is

Cn(t; �) = e�r�
Z
Sn>Kn

(Sn(t; �)�Kn) q[Sn] dSn n = 1; � � � ; N;

= e�r� �n(t) fn(t; � ;�i) �1;n(t; �)�Kn e
�r� �2;n(t; �) (28)

where �(t), the characteristic function, fn(t; � ; u), and the risk-neutral probabilities, �1;n(t; �) and

�2;n(t; �) are presented in the Appendix. Second, if the process for (i) market index is consistent

with, say, a general jump-di�usion with stochastic volatility (i.e., Bakshi, Cao, and Chen (1997),

Bates (2000) and Pan (1999)), and (ii) the characteristic function for "n(t; �) is exogenously

speci�ed, the individual option price can be computed in closed-form. As one can anticipate,

this particularly parameterized option model is a function of an, bn and the parameters governing

the idiosyncratic component and the market index. Thus, each parameter can be estimated by

minimizing the distance between the actual and the model determined option prices (according

to some metric). We leave this application on co-skews to a future empirical examination.

Before closing this subsection, we need to bridge one remaining gap: Can the leverage e�ect

reproduce risk-neutral skewness patterns, where the aggregate index is more negatively skewed

than any individual stock. For this purpose, we parameterize, in the Appendix, a model in which

stock returns and volatility correlate negatively at the individual stock level. In this setting, we

demonstrate that the leverage e�ect does impart a negative skew to the individual stock and

to the aggregate index. But its predictions for the skew magnitudes are sharply at odds with

those asserted in Theorem 3. Speci�cally, leverage suggests that index skews will be less negative

than some individual stocks. The model's implications for the joint behavior of risk-neutral and

physical distributions are unknown, and outside our scope. When we comment on the empirical

properties of individual/index skews, we will provide further elaboration. For a di�erent strand

of the leverage argument, the readers are referred to Toft and Pruyck (1997).

2 The Structure of Option Prices and Skewness/Kurtosis

We can now merge theoretical elements of the risk-neutral distributions of the market and the

individual stocks on one hand, and the mapping that exists between the structure of option prices

and the risk-neutral moments, on the other. As such, this formalizes the empirical framework for

exploring the observed structure of option prices{individual equities or the stock market index.

To �x ideas, de�ne the implied volatility as the volatility that equates the market price of the

option to the Black-Scholes value. Accordingly, for risk-neutral density, q[S], the implied volatility,
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�, is obtained by inverting the Black-Scholes formulaZ


e�r� (K � S)+ q[S] dS = Ke�r� [1�N (d2)]� S(t) [1� N (d1)] (29)

where d1[y] = � ln(y e�r� )
�
p
�

+ 1
2�
p
� , d2[y] = d1[y] � �

p
� and moneyness y � K

S . Clearly, to know

the implied volatility, one must know the form of the risk-neutral density q[S] or the structure of

option prices.

We will refer to the implied volatility curves as measuring the relation among put implied

volatilities that di�er only by their moneyness, going from deep out of money puts to deep in the

money puts. For a �xed � , write �[y; t; � ] to reect its dependence on y, and de�ne the slope

of the implied volatility curve as some notion of change in put implied volatility with change in

moneyness. Intuitively, a atter implied volatility curve implies that option prices of adjacent

strikes are spaced closer, than far apart. The market perception of the price of jump risk is

embedded in the evolution of the implied volatility curve (Rubinstein (1994) and Pan (1999)).

The following result{that relates the implied volatility function to the risk-neutral moments{is

borrowed with some modi�cation from Backus, Foresi, Lai, and Wu (1997). As in Longsta� (1995),

it hinges on an approximate representation of any risk-neutral density in terms of the Gaussian.

Theorem 4 Let �[y; t; � ] denote Black-Scholes implied volatility (as recovered by solving (29)).

Then, for a given moneyness, the implied volatility is a�ne in the risk-neutral moments that

surrogate tail asymmetry and tail-size:

�n[y; t; � ] � �n[y] + �n[y] SKEWn(t; �) + �n[y]KURTn(t; �); n = 1; � � � ; N; (30)

with the precise form of �[y], �[y], and �[y] analytically determinate. For a given (average)

moneyness, the slope of the smile is a�ne in the same determinants.

The virtue of Theorem 4 is that it justi�es the use of simple econometric speci�cations to

analyze the relationship between the risk-neutral moments and the structure of option prices.3

Theorem 4 is essentially a �rst-order approximation of individual implied volatility, at a given

3There are cases where one cannot uniquely identify the density from the knowledge of all the moments, including
those for all powers above 4 (i.e., lognormal). Hence, (30) may not be true in general. We can, at best, deduce that
the correct option price equals the Black-Scholes price plus other terms surrogating the price of higher risk-neutral
moments. To get implied volatility, one has to pass through the inverse of the Black-Scholes formula, which does
not apply additively. In fact, we will get an abstract mapping of the type: �[y; t; � ] = �[y;V; SKEW;KURT]. We
may then take a �rst-order approximation and attain (30). To emphasize reliance on one higher odd-moment and
one higher even-moment, we have suppressed the dependence of �, � and � on return volatility. As an empirical
matter, we did not �nd smiles (its slope) to be strongly inuenced by risk-neutral volatility. Its e�ect was already
impounded in the denominators of skewness and kurtosis.
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moneyness and maturity, in terms of higher-order risk-neutral moments of the individual risk-

neutral density. As such, equation (30) is robust to a wide variety of speci�cations for the physical

process of equity returns and the market price of risk. Hence, there is little economic content

in the validity of equation (30); it just relates di�erent statistics of the underlying risk-neutral

density. Unlike equation (13) and (21), equation (30) is not a model of risk-neutral skews.

The basic intuition for the coe�cients �[y] and �[y] is that �rms with higher negative skew have

greater implied volatility at low levels of moneyness, while �rms with greater kurtosis have higher

implied volatilities for both out of the money and in the money puts. With regard to the e�ect of

higher-order moments on the shape of the implied volatility curve (at a �xed maturity), we note

that skewness is a �rst-order e�ect relative to kurtosis, and a higher negative skew steepens the

implied volatility curve. In contrast, kurtosis is a second-order e�ect that symmetrically a�ects

out of money call and put option prices, and this should atten the slope of the implied volatility

curve controlling for skewness. If the skew variable is omitted, one would expect kurtosis to proxy

for the �rst-order e�ect and therefore steepen the implied volatility curve.

The discussion of the previous section along with Theorem 4 suggest the following conjectures

that can be empirically investigated:

Conjecture 1 The implied volatility curves are less negatively sloped for individual stock options

than for stock index options.

Conjecture 2 The more negative the risk-neutral skewness, the steeper are the implied volatility

slopes. The more fat-tailed the risk-neutral distribution, atter are the smiles in the presence

of skews.

Conjecture 3 Individual stock return (risk-neutral) distributions are, on average, less negatively

skewed than that of the market. Granted, the physical distribution of the index is fat-tailed,

the risk-neutral distribution of the index is generally left-skewed.

Conjecture 1 lays the foundation of the investigation - is it true, as commonly asserted, that

the structure of individual option prices is atter? Conjecture 2 associates the slope of the smile to

the moments, dynamically in the time-series, as well as in the cross-section. Finally, Conjecture 3

directly follows from Theorem 3. The restriction it imposes on the price of individual skew relative

to the price of market skew warrants an idiosyncratic return component that is not heavily left-

skewed. These conjectures are interrelated. For instance, individual slopes are atter than the

market because individual stocks are less negatively-skewed. This implicitly requires index risk-

neutral distributions to be left-displaced versions of the physical counterparts. Having consolidated

the big picture in theory, we now pursue our empirical objectives in su�cient detail.
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3 Description of Stock Options and Choices

The primary data used in this study is a triple panel (in the three dimensions of strike, maturity

and underlying ticker) of bid-ask option quotes written on di�erent 31 stocks/index, obtained from

the Berkeley Options Database. The sample contains options on the S&P 100 index (the ticker

OEX) and options on thirty largest stocks in the S&P 100 index. Each of these options are traded

on the Chicago Board Options Exchange, and are American in style. For each day in the sample

period of 1/1/91 through 12/31/95 (i.e., 1258 business days), only the last quote prior to 3:00 PM

(CST) is retained.

For three reasons, we employ daily data to construct weekly estimates of our variables. First,

the use of daily data minimizes the impact of outliers by allowing moments to be computed daily,

and then averaged over the calendar week. Second, the estimation of the slope of the weekly

smile for individual equity options requires daily data over the week so that there are su�cient

observations to estimate the smile. Third, the daily risk-neutral index skews exhibit a Monday

seasonality. This evaluation exercise is motivated by the analysis of Harvey and Siddique (1999),

who have shown substantial day of the week e�ects in the estimates of physical skews. The exact

procedure to build the time-series of the smile and its slope will be outlined shortly.

The requirement to sample options daily virtually limits the analysis to the largest 30 stocks

by market capitalization. Even with the existing choice, the raw data contains over 1.4 million

price quotes, and additional stocks would have made the empirical examination less manageable.

We decided to include the largest stocks, as their stock options are likely to be more liquid than

those in the middle or lower capitalization. The tickers and names of the individual stock options

are displayed in the �rst two columns of Table 1. The set includes, among others, such actively

traded and familiar stock options such as IBM, General Electric, Ford, General Motors, and

Hewlett-Packard.

To be consistent with the existing literature, the data was screened to eliminate (i) bid-ask

option pairs with missing quotes, or zero bids, and (ii) option prices violating arbitrage restrictions

that C(t; � ;K) < S(t) or C(t; � ;K)> S(t) - PVD[D]- PVD[K], for present value function PVD[.]

and dividends D. As longer (and very short) maturity stock option quotes may not be active,

options with remaining days to expiration less than 9 days and greater than 120 days were also dis-

carded. Finally, as in the money options are unnecessary to the construction of skewness/kurtosis

tracking option portfolios, only OTM calls and puts are kept. As a result, for each date, t, the

puts in the sample always have moneyness corresponding to: f K
S(t) j K

S(t) < 1g, and calls have

moneyness corresponding to: f K
S(t) j K

S(t) > 1g.
Although each series for skewness and kurtosis (and implied volatility slopes) pertain to a
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constant � , in practice, it is not possible to strictly observe these, as options are seldom issued daily

with a constant maturity. Therefore, in our empirical exercises, if an OTM option has remaining

days to expiration between 9 and 60 days, it is grouped in the short-term option category; if the

remaining days to expiration falls between 61 and 120 days, the option is grouped in the medium-

term category. Thus, only two classi�cations of smiles and option portfolios will be investigated:

one short, and the other medium-term.

Table 1 reports the option price as the average of the bid and ask quotes, and the number of

quotes, for both short-term and medium-term OTM calls and puts, respectively. The table also

reports the weight of each stock in the OEX. As would be expected, the index has considerably

more strikes quoted than individual stock options, with puts more active than calls. The number of

OEX OTM puts exceed the OTM calls by a substantial margin, possibly reecting strong demand

for downside insurance. In the combined option sample, there are 358,851 OTM calls and puts.

Because each option under scrutiny has the potential for early exercise, the treatment of the

smile is arguably controversial. To probe this issue, we also calculate the volatility that equates

the observed option price to the American price. For estimating the price of the American option,

we follow the procedure recommended by Broadie and Detemple (1996). We construct a binomial

tree where the Black-Scholes price is substituted in the penultimate step. The American option

price is estimated by extrapolating o� the prices estimated from a 50 and 100 step trees, using

Richardson extrapolation and accounts for lumpy dividends.4 We then estimate two separate

implied volatilities, as the volatility that equates the option price to the American and the Black-

Scholes price, respectively. In the latter calculations, discounted dividends are subtracted from

the spot stock price.

Table 2 compares the European and American implied volatilities. While presenting this

comparison, three decisions are made for conciseness. First, options are divided into twomoneyness

intervals: [-10%,-5%) and [-5%,0), for calls and puts. Next, to conserve space, only the implied

volatilities for a (randomly chosen) sample of ten stocks and the OEX are shown. Finally, we focus

on the 1995 sample period, as averaging over the full �ve year sample narrows the di�erences even

further. For the most part, the implied volatility curves tend to taper downward from deep out of

money put options to at the money, and then moves slightly upwards as the call gets progressively

out of money. Although the American option implied volatility (denoted AM) is smaller than

the Black-Scholes (denoted BS) counterpart, this di�erence is negligible and within the bid ask

4In all computations, discrete dividends for each stock are collected from CRSP and are assumed known over
the life of the option. For the S&P 100, the daily dividends are drawn from Standard & Poor's and converted to
a dividend yield for each date maturity combination. Following a common practice, when the matching Eurodollar
interest rate (datasource: Datastream) is unavailable, it is linearly interpolated.

19



spread. For example, in the -10% to -5% moneyness category for short-term puts, the maximum

discrepancy is of the order of 0.10%. With the assurance that the bias from adopting BS implied

volatility is small enough to be ignored, we adhere to convention and use only Black-Scholes smiles

to surrogate the pricing structure of options.

4 Skewness and the Structure of Option Prices: Empirical Tests

This section establishes the di�erential pricing of individual stock options versus the market index,

and empirically relates it to the asymmetry and the heaviness of the risk-neutral distributions.

We also present a framework to study the empirical determinants of risk-neutral index skews.

4.1 Quantifying the Structure of Option Prices

To quantify the structure of option prices, we use options of maturity � to estimate the model,

ln (�[yj ]) = �0 + � ln (yj) + �j ; j = 1; � � � ; J; (31)

across our sample of 30 stocks and the OEX, where, recall, y = K=S is option moneyness (and

deterministic). An advantage of the speci�cation in equation (31) is its potential consistency with

empirical implied volatility curves that are both decreasing and convex in moneyness (see, for

example, Figure 1 in Dumas, Fleming, and Whaley (1998) and Figure 2 in Rubinstein (1994)).

This suggests a � less than 0. We interpret � as a measure of the atness of the implied volatility

curve, and designate it as the sensitivity of the implied volatility curve to moneyness. In economic

terms, a atter implied volatility curve simply states that prices of put options of nearby strikes

are closer, while those options that constitute a steeper curve have prices farther apart.

The model of equation (31) is estimated weekly, and then the estimated coe�cients are pooled

over all the weeks in the sample. Briey, the procedure is as follows. Over each of the calendar days

in the week, we index the available options by j, and estimate the said model by a least squares

regression. Thus, for each stock, we estimate equation (31) for each of the 260 weeks for which

su�cient data exists. Next, as in Fama-McBeth (1973), we time-average the regression coe�cients

(say, 1
T

PT
t=1�(t)), and compute the t-statistic by dividing the average slope coe�cient by its

standard error. The model is estimated using only OTM puts and calls. As ITM puts (K=S > 1)

can be proxied by OTM calls, this is tantamount to using all the strikes in the cross-section of

puts. The estimation is done for both short-term and medium-term options.

Table 3 reports the average slope of the implied volatility curve for each of the 30 stocks and

the OEX. We also report the estimated at the money implied volatility as exp(�0). Consider, �rst,
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the results for short-term smiles. The average ATM implied volatility for the OEX is 14%, while

the average ATM implied volatility over the 30 stocks is about 26%. With reference to the estimate

of �, we can make three observations. First, on average, � is negative for all the individual stocks

and the OEX. The slopes are all statistically signi�cant, and the R2 of the regression range from

26% (for MCQ) to 86% (for the OEX). Second, the slope for the OEX is much steeper than that

for individual stocks. Compared to the short-term OEX slope of -4.42, the average slope over the

30 stocks is -1.02 (the di�erence between OEX and a representative individual implied volatility

slope is almost seven standard deviations away).

The di�erence between the slopes translates into a substantial di�erence in pricing. For ex-

ample, for the OEX, the slope of -4.42 indicates that the implied volatility of a 10% out of the

money put (y = 0:9) will be 22% as compared with the ATM implied of 14%. In contrast, for the

individual equity, the 10% OTM put will be priced at 29% as compared with the ATM implied

of 26%. Finally, the table reports the statistic � < 0, which is just a counting indicator for the

number of weeks in which the slope of the implied volatility curve is negative. This statistic ranges

from 71% in the case of IBM to 100% for the case of the OEX. Although over this sample period,

the slope is always downward sloping for the index, it is not always so for individual equities. We

also examined the slope of the smile in the yearly sub-samples, and still found index smiles to be

much steeper than any individual equity smile. The regression �ndings from medium-term smiles

are comparable and not reported.

As may be observed from Table 1, OTM puts are far more active than OTM calls for the OEX.

To investigate the pricing di�erential between individual stocks and the OEX for OTM puts alone,

we also estimated equation (31) by trimming the option data to include only OTM puts. The

average (short-term) slope coe�cient for the OEX is -5.00, as compared to an average of -2.04 over

the 30 stocks. The conclusion from the one-sided smile is essentially the same - that the OTM

puts are relatively more expensive than the ATM puts for the OEX than in the individual equity

option markets.

In summary, two conclusions emerge. First, the slope of the OEX smile is persistently more

negative than individual equity slopes. Second, unlike the OEX, the slopes of individual smiles

are not always negative. Thus, OTM puts are consistently and substantially more expensive

than OTM calls for the index. In contrast, the di�erence between OTM puts and OTM calls

is smaller for the individual equity, and may, in fact, change signs. But, why are index smiles

always downward sloping? What causes the slope of the individual smiles to reverse its sign? The

di�erential pricing in the cross-section of strikes, and in the cross-section of stocks is puzzling.5

5To verify the results, we also model the implied volatility curve as quadratic in moneyness: �j = #0+#1(Kj=S�
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4.2 Explaining the Behavior of Options in the Stock Cross-section

Although, as in the previous subsection, it is possible to establish that the implied volatility

curve is atter for the individual equity than for the OEX, it is di�cult to provide an economic

rationale for the di�erential pricing of individual equity options. In this sub-section and the next,

we investigate whether we can parsimoniously relate the structure of option prices to the respective

risk-neutral moments, and, if so, what judgements can be drawn from the analysis.

Unlike the implied volatility curve, the risk-neutral moments are intrinsically unobservable.

Here, we make use of our model-free characterizations in Theorem 1 to estimate each moment.

Consider, as an example, the estimation of the skew. This requires �rst replicating the cubic

contract in equation (8), and we do this by constructing positions in both OTM calls and puts

that approximate the corresponding integral. The long position in the calls is discretized as,

lim
K!1

K�S(t)
�KX
j=1

w[S(t) + j�K]C(t; � ;S(t)+ j�K)�K (32)

where w[K] � 6 ln
�

K
S(t)

�
�3(ln

�
K
S(t)

�
)2

K2 , and the short position in the puts as

S(t)��K
�KX
j=1

w[j�K]P (t; � ; j�K)�K (33)

where now w[K] � 6 ln
�
S(t)

K

�
+3(ln

�
S(t)
K

�
)2

K2 . We similarly discretize and estimate the volatility con-

tract and the quartic contract, and next, using the formulas in (5) and (6), we estimate the

risk-neutral skewness and kurtosis. The moments are estimated daily, separately for both short-

term and medium-term options.

Motivated by Theorem 4, we investigate whether a stock with a greater absolute skew has a

steeper smile. This implication arises from the fact that the risk-neutral density can be approxi-

1)+#2 (Kj=S � 1)2+ �j; j = 1; � � � ; J (see Heynen (1994) and Dumas, Fleming, and Whaley (1998)). In this model,
#1 can be viewed as the slope of the smile evaluated at K

S
= 1 (i.e., at the money slope), and #2 measures the

curvature of the smile. In our implementations, we found that the #1 of the index is consistently more negative
than the individual counterparts. In addition, the convexity parameter, #2, is persistently positive in the cross-
section of stocks. Consequently, the quadratic speci�cation has in common with its log predecessor the feature
that the �rst-order (second-order) derivative of the implied volatility function with respect to moneyness is negative
(positive). Overall, this segment of our investigation indicates that the relative atness of individual smiles may
not be vulnerable to smile measurement rules. Toft and Prucyk (1997) and Dennis and Mayhew (1999) adopt an
alternative measure where the slope is standardized to impute the distance between the implied volatilities of a
10% in and out of money options, respectively. This measure of the implied volatility slope is particular to just
two option strikes that are themselves almost two standard deviations out of the money for short-term options, and
hence constitutes a crude measure of volatility skews.
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mated from its higher moments. To this end, we estimate an ordinary least squares regression

SLOPEn(t; �) = � + � SKEWn(t; �) + �KURTn(t; �) + �n; n = 1; � � � ; N; (34)

where the series for the slope of the smile are the weekly estimates of the coe�cient � obtained

from regressing log implied volatility on log moneyness (the �rst-pass estimations are summarized

in Table 3). As we have compiled weekly estimates of slopes and the corresponding moments for

each of the 30 stocks, we estimate the cross-sectional regression weekly, for each of the 260 weeks

in the period January, 1991 to December 1995. In so doing, we follow the standard procedure of

averaging the estimated regression coe�cients and their R2. We report, in Table 4, results for

both the multivariate regression, as well as the univariate regressions (with skewness/kurtosis as

separate explanatory variables).

Irrespective of the sample period, and regardless of the maturity structure of options, the

coe�cient for skewness, �, is positive and statistically signi�cant. Thus, as premised, each week,

a more negatively skewed stock displays a steeper smile. Over the entire sample, the average

coe�cient for skewness is 1.45 (t-statistic of 55.88), while that of kurtosis is 0.46 (t-statistic of

16.54), for short-term smiles. Sub-period results for each year are consistent with those of the

overall sample period: the estimate of � is in the range of 1.29 to 1.62, and � in the range of 0.21

to 0.63. The results are stable across both option maturities, and the �t of the regression has an

average R2 of 51.37% for short-term options, and 56.29% for medium-term options.

To determine the individual explanatory powers of skewness and kurtosis, we performed two

separate univariate regressions where we constrain � � 0 and � � 0, respectively. These restricted

regressions support two additional �ndings. First, the cross-sectional behavior of equity options

is primarily driven by the degree of asymmetry in the risk-neutral distributions; the average R2

in the short-term univariate regression is 46.54% with skewness alone, as compared to 5.6% with

kurtosis alone. Therefore, the model performance worsens substantially when a role for skews is

omitted. We infer from this reduction in performance that the �rst-order e�ect on the implied

volatility slopes is driven by risk-neutral skews. The second point to note is that although the sign

on � remains unaltered between the restricted and the unrestricted regressions, the coe�cient on

kurtosis reverses sign and turns negative. Thus, consistent with our conjectures, in the presence

(absence) of negative skewness, the kurtosis makes the smile atter (steeper).

A possible explanation of the estimation results for � is that a fatter tail is accompanied by a

greater negative skew and a steeper smile, but that the marginal e�ect of kurtosis is to atten the

smile. Indeed, for our sample of individual stocks and the index, the average time-series correlation

between (risk-neutral) skew and kurtosis is -0.48. Thus, the negative covariation between skew
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and kurtosis will downward bias � when skewness is left uncontrolled in the estimation of equation

(34). To examine the role of kurtosis separate from its covariation with the skew, we linearly

project kurtosis onto skewness: KURT(t; �) = a0 + a1 SKEW(t; �) + dKURT(t; �), and extracted

the orthogonalized component of kurtosis, dKURT(t; �). Repeating the cross-sectional regression

(34) for the entire 260 weeks, we get the following results for short-term options (all coe�cients

are signi�cant):

SLOPEn = �0:81 + 1:29 SKEWn + 0:10 dKURTn + �n; R2 = 49:98%; and

SLOPEn = �1:11 + 0:12 dKURTn + �n; R2 = 5:91%:

As our evidence veri�es, the orthogonal component of kurtosis also attens the smile. This is also

true across each of the annual sub-samples. Moreover, the average � of 1.29 is smaller than its

Table 4 counterpart. To sum up, skewness does not completely subsume the e�ect of kurtosis (or

its orthogonal component), and individual skew variation is responsible for explaining the bulk of

the variation in the cross-section of individual equity option prices. We will provide an economic

explanation for these results shortly.

4.3 Explaining Dynamic Variations in Individual Option Prices

We next research the link between the risk-neutral moments and the individual option prices in

the time-series (suppressing dependence on � in each entity):

SLOPE(t) = �+ � SKEW(t) + �KURT(t) + � SLOPE(t� 1) + �(t); (35)

which involves a time-series regression of the slope of the smile on individual name risk-neutral

skew and kurtosis. The inclusion of lagged SLOPE(t � 1) is necessary to correct for the serial

correlation in the dependent variable, SLOPE. We also veri�ed the coe�cient estimates using

the Cochrane-Orcutt methodology, which is essentially the same as putting in a lagged dependent

variable (Hamilton (1994)). Therefore, all reported results are based on the OLS estimation of

equation (35). To ensure robust inference, the standard errors are computed using the Newey-West

heteroskedasticity and serial correlation consistent covariance matrix. The reported t-statistics are

based on a lag length of 8. In our pre-trial estimations, we experimented with MA corrections up

to 20 and found virtually similar results.

Panel A of Table 5 presents the unrestricted regression results for short-term options. For all

stocks and the OEX, � is positive and statistically signi�cant. Thus, as anticipated, the smile

steepens when the risk-neutral skew becomes more negative from one week to another. The
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sensitivity of the slope to risk-neutral skewness is by far the highest for the OEX which has a �

of 2.44, in contrast to a range of 0.35 to 1.42 for the individual stocks. The kurtosis coe�cient, �,

is typically small and positive, with 21 signi�cant t-statistics. As in the case of the cross-sectional

regressions, an increase in risk-neutral kurtosis attens the smile in the time-series as well. Again,

the magnitude of 0.27 for the OEX is among the highest. Overall, all regressions appear to have a

reasonable �t. For the OEX, the regression R2 is 74.82%, and is as high as 74.85% for IBM. The

serial correlation coe�cient, �, is positive and statistically signi�cant (all names and the OEX).

To better appreciate the role of risk-neutral skew and kurtosis, two additional empirical tests

are performed. First, we perform the restricted time-series regressions and examine the �t of

each model (see Panel B of Table 5). For the vast majority of the stocks, risk-neutral skewness

tracks the dynamic movements in the slope of the smile fairly well (on average, the R2 is 55.40%).

When kurtosis is included by itself in equation (35), there is some deterioration in model �t (on

average, the R2 is 36.57%). While not shown in a table, the key conclusions are unchanged when

medium-term options are used instead. Therefore, as hypothesized, the tail-asymmetry and the

tail-size of the risk-neutral distribution reects itself in the asymmetry of the implied volatility

curves.

Second, returning to Panel A of Table 5, we also present the likelihood ratio test statistic for

the exclusion restriction that � = 0. As is standard (Hamilton (1994)), this statistic is distributed

�2(1). A high value of the statistic indicates that the null hypothesis � = 0 is rejected. From the

last two columns of Panel A of Table 5, we can observe that most of the �2 statistics are large in

magnitude. In fact, 23 of the p-values are lower than 0.05 and only 6 p-values exceed 0.10. Based

on this test, we can conclude that, even in the presence of negative skew, risk-neutral kurtosis

is important in explaining dynamic movements in the slope of the smile. The marginal e�ect of

omitting risk-neutral kurtosis is strongest for the market index.

One concern with the regression results that we just presented is that the slope of the smile as

well as the risk-neutral moments are based on the same set of options (over a week). To verify that

the results are not due to some spurious feedback, we perform integrity checks from two distinct

angles. First, consistent with the term structure of risk-neutral skews, we regress the medium-term

slope of the smile on short-term skewness: SLOPEmed(t) = �̂+ �̂ SKEWsh(t) + �̂ SLOPEmed(t �
1) + �(t), and, second, we regress the medium-term slope of the smile on lagged medium-term

skewness: SLOPEmed(t) = ~� + ~� SKEWmed(t� 1) + ~� SLOPEmed(t � 1) + �(t). For each of these

regressions, the slope and the risk-neutral skew are now estimated from a collection of option

prices with no overlap. If the results of Table 5 are not spurious, then using either the lagged

medium-term skew, or the short-term skew, as an instrumental variable for the medium-term skew

should give qualitatively similar (albeit weaker) results. In the �rst candidate speci�cation, the
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index and 22 of the 30 stocks show signi�cant positive coe�cients. For the second speci�cation, all

30 stocks and the index show signi�cant positive coe�cients, with comparable goodness-of-�t R2

statistics. Both set of regressions indicate that increasing the absolute magnitude of risk-neutral

skewness makes puts more expensive relative to calls.

Equation (35) and equation (13), that relates risk-neutral index skews to physical index higher-

moments via risk aversion, are part of the same underlying economic equilibrium, and may be

combined. In the one-factor generating structure, one may view the implied volatility slope as

reecting risk-neutral index skews, with the idiosyncratic component providing a perturbation.

On the other hand, one can potentially view the risk-neutral skew and kurtosis at the individual

equity level as noisy proxies for the respective risk-neutral index moments. Following the derivation

of Theorem 2, one may relate the risk-neutral index kurtosis to risk aversion and the physical

moments by:

KURTm � KURTm � 
h
2 (KURTm + 2) SKEWm + PKEWm

i
STDm; (36)

where PKEW is the �fth (physical) moment normalized by the variance raised to the power 5/2;

other physical moments are as previously de�ned. We thereby observe that individual name

implied volatility curves are related, in a one-factor setting, to normalized physical moments up

to order �ve. As already stated, if risk aversion is strong and there is considerable excess kurtosis,

it leads to strong negative risk-neutral index skew. Consistent with this notion, as corroborated

in Tables 4 and 5, risk-neutral skews accounts, to a �rst-order, for the observed steepness of the

implied volatility curves. Conditional on negative risk-neutral skewness, the e�ect of risk-neutral

kurtosis is of second-order, as reected in the relative small magnitudes of �.

Having captured the primary e�ect of risk aversion and fat-tailed physical distributions via

risk-neutral skews in equation (35), the e�ect of kurtosis can be understood as addressing the

symmetric move in the tails. If risk-neutral skewness is not controlled, then risk-neutral kurtosis

proxies for the fundamental e�ect of risk-neutral skewness (especially noting the dominance of out

of money puts relative to out of money calls in our sample). The �ndings in Tables 4 and Table 5

remain broadly consistent with the viewpoint that the primary action on the structure of option

prices is aversion to market risk and the existence of fat-tailed physical distributions. It follows

then, that to understand the relative structure of individual equity options and the market index,

one must equivalently characterize their relative risk-neutral skews.
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4.4 Skewness Patterns for Individual Stocks

Our goal here is to describe the empirical properties of the risk-neutral moments, and present

the relationship that exists between the skew of the individual equities and the stock market

index. Let us start with the average short-term skew for individual stocks and the OEX (shown in

Table 6). In comparison with its 30 stock components, the OEX is substantially more negatively

skewed with an average skewness of -1.09 (over the entire 1991-1995 sample). In contrast, the

skewness of GE, HWP, and XRX are -0.53, -0.17, and -0.33, respectively. For each of the stocks,

the di�erence between individual and OEX skews is statistically signi�cant with a minimum t-

statistic of 5.72 (not reported). We also incorporate estimates for (i) the fraction of weeks in

which the individual skew is higher than the index skew (i.e., the occurrence frequency for the

event SKEWn > SKEWm), and (ii) the fraction of weeks in which the individual/index skews are

negative (that is, SKEWn < 0). Together, these statistics again highlight the dichotomy between

the market index and the individual stocks. Unlike any individual stock return distribution,

the OEX risk-neutral distribution is persistently skewed to the left in each of the 260 weeks in

the sample. Finally, on average across the 30 stocks, the individual skew is less negative than

the market 89% of the times. Only occasionally do individual stocks have skews that are more

negative than the OEX (respectively 13% and 2% for GE and IBM).

How do we interpret the fact that individual skews are almost always less negative than that

of the market index? In light of the underlying theory, there are at least three compelling expla-

nations. First, if there is indeed a market component in the individual return, then our charac-

terizations indicate that the idiosyncratic return component is, most likely, not heavily negatively

skewed. Second, if a market component is non-existent, then idiosyncratic skewness decides the

skewness of the individual stock. In this hypothetical case, the small negative skew of the indi-

vidual stock may simply reect that of the idiosyncratic return component. However, amongst

our sample, all stocks have a sizeable market component to its return - in a (weekly) regression

of stock return on the market return (as in (20)), each stock has a signi�cant b(t; �). Thus, the

less negative skew of the individual stock appears to be a symptom of an unsystematic return

component that is either positive, symmetric, or mildly negatively skewed. Third, the leverage

explanation implies that at least some stocks are more negatively skewed than the market index,

which we do not empirically detect. While the feedback between return and volatility is su�cient

to produce negative individual skews, it is inadequate for creating an index distribution that is

overly left-skewed.

To isolate the contribution of systematic and idiosyncratic component skews to the individual
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return skew, consider the regression

SKEWn(t) = 	0 +	1 SKEWm(t) + �(t): (37)

In essence, this regression follows from the skew laws in equation (21) of Theorem 3, and assesses

time-variations in the individual risk-neutral skew via time-variations in the risk-neutral market

skew (the idiosyncratic skew is unidenti�ed). The regression will be well-speci�ed, for instance, if

the relation between Vm(t; �) and Vn(t; �) (or equivalently V"(t; �)) is stable, so that the coe�cient

	1 can be assumed constant over this sample period. Again exploiting short-term options, Table

6 reports the results of this regression. The following observations can be made. First, each 	1

that is signi�cantly greater than zero at the 5% level is also signi�cantly less than 1. This is

broadly in line with our theory that the individual risk-neutral skew is a weighted combination of

the risk-neutral market skew and the idiosyncratic skew, with weights that are bounded between

0 and 1. However, the coe�cient 	1 should not be interpreted as the coe�cient of co-skewness

(as de�ned in Harvey and Siddique (2000)). The latter captures the co-variation between the �rst

moment in the individual names and the second moment of the market, as per equation (26).

Equation (37), on the other hand, assesses the co-variation between third moments. For three

stocks, the estimate of 	1 is negative; however, these are not statistically signi�cant.

Second, about a third of the stocks do not show a signi�cant dynamic relation between the

market and the individual skew. Even for the stocks that have a meaningful relation, the R2

of the regression is small, with only three stocks having R2 greater than 10% (GE, BMY and

MMM). One possible interpretation of these results is that the time-variation in the idiosyncratic

skew is more important than that of the market skew in determining the risk-neutral individual

skew. Alternatively, the idiosyncratic skew may be directionally o�setting the negative market

skew. Finally, the results for medium-term options are comparable (both quantitatively and

quantitatively), with 21 of the 22 signi�cant (at the 5% level) coe�cients being positive and less

than 1 (not reported here).6

6So far,we have not discussed the preciseness of our weekly estimates for risk-neutral return skew and kurtosis.
How much of the cubic and the quartic contract price comes from outside of the available strike price range (say,
�20% range)? To see whether this area is negligible in general, let us compute the fourth moment in a (risk-
neutral) Gaussian setting with standard deviation h (keeping r=0). The reader can verify that the area in the tail:

1

h
p
2�

R1
0:20

R4 exp[�R2=2h2]dR, is relatively small (as a fraction of the total) for plausible values of h (over the

short-term and medium-term horizons). Thus, despite the absence of a continuum of strikes (and our discretizations
in (32)-(33)), the results with �nite strikes appear reliable on a theoretical basis. One can, nonetheless, evaluate
the maximum absolute deviation between the target cash ow and any proposed �nite strike hedge. That is, taking
a predetermined range for the possible values of the underlying stock returns, one can ascertain the quality of the
hedge and therefore its adequacy. Since there are only a few three standard deviation events in our �ve-year sample,
the available strikes deliver residuals that are not too large for the cubic and quartic contracts. In any case, the
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The results of this section point to substantial di�erences in the risk-neutral distributions of

individual stocks and the stock market index. While the volatility (see the price of volatility

contracts in Table 6) of individual return distributions is greater than that of the index, the

individual stock risk-neutral skew is less negative than the market skew. The price of individual

kurtosis can be higher or lower than the market (the t-statistics are omitted, as all moments except

one are statistically signi�cant).

That the �rst two higher moments of the risk-neutral distribution of individual stocks can

be so radically di�erent from the index distribution has important implications. In particular, it

indicates that we can make limited inference about the risk-neutral distribution of the individual

stock by tracking only the risk-neutral distribution of the market. Although the single-factor

model postulated in (20) is consistent with our �ndings, the nature of individual multivariate

risk-neutral return distributions remains unresolved. Speci�cally, under what economic conditions

can each marginal return distribution possess a low negative skew, and yet a portfolio represented

by the market index be heavily left-skewed?

4.5 Determinants of Risk-Neutral Index Skews

In this �nal subsection, we test the market skew equation (13) using Hansen's (1982) generalized

method of moments (GMM). Fix the horizon � and de�ne the disturbance, b�, from Theorem 2, as:

b�(t + 1) � SKEWm(t + 1)� SKEWm(t+ 1) + 
�
KURTm(t+ 1)� 3

�
STDm(t+ 1) (38)

where  is the risk aversion parameter and STDm(t + 1), SKEWm(t + 1), and KURTm(t + 1)

are the higher-order t+1-conditional moments of the physical index distribution. Equation (38)

can be potentially viewed as a model for risk-neutral skews when b�(t + 1) is independent of the

physical moments. Allowing for possible dependences, we rely merely on the orthogonality ofb�(t+1) with time-t determined instrumental variables, Z(t). Under the null hypothesis of a power
utility stochastic discount factor (and those in the class of (15)) and identifying orthogonality

conditions, we must have Efb�(t+1)
Z(t)g = 0. As formalized in Hansen, the GMM estimator is

based on minimizing the quadratic form: G0TWTGT , where GT = 1
T

PT
t=1 b�(t+ 1)
Z(t), and WT

represents a (positive-de�nite) weighting matrix.

As our intent is to estimate a single coe�cient, , and test the restrictions embedded within

(38), the GMM appears to be an attractive estimation method for several reasons. First, unlike

return volatility, the estimates of physical skews and kurtosis requires a fairly long time-series,

commonality of our �ndings across the OEX (for which we have abundant strikes) and the individual stocks suggests
that even a few strikes are reliable for mimicking skew and kurtosis. Our conclusions are, mostly, robust.

29



and will be measured with error (Merton (1980) and Harvey and Siddique (2000)). Therefore, the

market skew formulation (38) is susceptible to an errors in variables problem. Second, compound-

ing the situation, the return standard deviation and the excess kurtosis enter non-linearly in (38)

and may be correlated with b�. Finally, the minimized GMM criterion function (multiplied by T),

JT , o�ers a convenient approach to assess mis-speci�cations in (38). As is now well-recognized,

the JT statistic is chi-squared distributed with L-1 degrees of freedom (given L instruments).

Before turning to a discussion of GMM estimation results reported in Panels A and B of Table 7,

some clari�cations are in order. First, Theorem 2 applies for a particular � . We therefore generate

a series of risk-neutral index skews from options with maturities of 58 and 86 days. Second,

estimates of physical skews and kurtosis are sensitive to the choice of histories. To provide a

frame of reference, we experiment with moments estimated from OEX returns lagged by 350 days,

400 days, and 450 days (denoted as LAGS). All inputs into (38) are annualized for consistency.

Over the 1988-1995 sample period (we have added three more years), there are, thus, 48 (32)

matched observations for 58 day (86 day) index skews. Moreover, as theory o�ers little direction

on the choice of instrumental variables to be used in the GMM estimation, three di�erent sets

were tried. Our SET 1 contains a constant and SKEWm lagged once; SET 2 (SET 3) contains a

constant and two (three) lags of SKEWm. Each information set is picked to keep the number of

orthogonality conditions manageable relative to the sample size.

Proceed now to the estimation results for 86 day skews (in Panel A). Supportive of Theorem

2 predictions, the estimate of  are reasonable and in the range 1.76 and 2.26 for SET 1; in

the range 1.99 to 2.29 for SET 2; and in the range 1.76 to 11.39 for SET 3. Each estimate

of  is statistically signi�cant. One can also make the observation that as LAGS increase, the

goodness-of-�t measure JT generally falls. In fact, with LAGS set to 450, the overidentifying

restrictions imposed by the model are not rejected (as reected in the p-values higher than 5%).

Otherwise, the model may be incomplete in that it has omitted higher-order terms in the �rst-

order approximation. To appreciate the point that employing longer LAGS will possibly improve

the quality of the estimation, notice that with LAGS set to 450 days, the daily (sample average)

STDm = 16:32%, SKEWm = �1:26, and KURTm = 19:12. In contrast, for LAGS set to 300

days, STDm = 17:76%, SKEWm = �0:96, and KURTm = 14:08. With shorter LAGS, the skew

and kurtosis may be underestimated.

If we choose  = 0 in (38), it trivially imposes the constraint 0 = 1 in ~�(t+1) � SKEWm(t+

1) � 0 SKEWm(t + 1). Although ad-hoc, this alternative speci�cation is empirically inspired:

It can help evaluate the relation between the physical and the risk-neutral skews. As our GMM

results demonstrate, the estimate of 0 is always more than 9.82 and signi�cant. In other words, the

statistical skews are too small and must be multiplied by a factor of least 10 to be consistent with
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risk-neutral index skews. This con�rms our earlier claim that the risk-neutral skew magnitudes

are not sustainable without risk aversion and fat-tailed physical index distributions.

The inferences that we have drawn are not too di�erent with 58 day risk-neutral skews. Future

work should extend the estimation methodology to include state-dependent stochastic discount

factors. As risk aversion may be stochastically time-varying in that context, it may impose more

stringent testable restrictions on the dynamics of risk-neutral index skews.

5 Concluding Remarks and Possible Extensions

It has been noted that higher-order risk-neutral moments like skewness and kurtosis inuence the

relative pricing of an option of a particular strike to that of another strike. But, basic questions

like how to empirically quantify the relationship between the risk-neutral density and the moments

of the physical equity return distribution have not been fully addressed. The central contributions

of this article are summarized below:

� Theoretically, we reconcile when negative risk-neutral index skews are feasible from sym-

metric physical index distributions. For a large class of utility functions, our theory shows

that risk-neutral index skews are a consequence of risk aversion and fat-tailed physical index

distributions;

� We formalize the skew laws of individual equities, and propose a framework to recover

risk-neutral moments from option prices. It is shown that the individual risk-neutral stock

distributions are qualitatively distinct from the index counterpart. More typically, they

possess a less pronounced negative skew and a more pronounced second moment;

� Empirically, we measure the structure of option prices through implied volatility slopes, and

show systematic dynamic and cross-sectional variations in the volatility skews. In particular,

we demonstrate the di�erential pricing of individual equity options: the volatility skews of

individual stocks are much atter than that of the market index. This �nding is consistent

with the idiosyncratic component of the return being less negatively skewed risk-neutrally

than that market, with a possible implication being that only the systematic skew is priced;

� In large part, the empirical analysis suggests that when negative risk-neutral skew is inter-

nalized, a higher risk-neutral kurtosis produces a atter volatility smile. A more negative

risk-neutral skew is related to a steeper negative slope of the implied volatility curve.

Our framework allows us to understand and reconcile two stylized facts of economic signi�cance:

that the index option smile is highly skewed, and the di�erential pricing of individual equity options
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versus the market index. Overall, our �ndings remain consistent with the belief that the primary

action on the structure of equity options is fat-tailed physical distributions and risk aversion. The

econometric tests provide support for this economic argument.

The verdict is still out on a number of related research questions. First, future research should

examine the nature of risk-neutral skews from other models. The class of models proposed by

Grossman and Zhou (1996) with risk-averse portfolio insurers and price feedback might be a

promising alternative, suggestive of generalizations to the marginal-utility tilting of the physical

density studied in this paper. Another possibility is to study the interaction of biased beliefs and

the pricing of puts and calls (David and Veronesi (1999)). Second, spanning the characteristic

function with the option basis and then inferring the risk-neutral density is a natural extension to

our work on moments. The resulting density has the convenience of using only out of money calls

and puts in its construction, and can be used to integrate the estimation of objective and risk-

neutral densities (Chernov and Ghysels (2000), Ferson, Heuson, and Su (1999) and Harvey and

Siddique (2000)). At an abstract level, our approach of directly pricing risk-neutral moments from

option portfolios can serve as a useful check in evaluating parametric methods for jointly estimating

the physical and the risk-neutral densities. Third, a large body of literature (e.g., Canina and

Figleswki (1993), Lamoureux and Lastrapes (1993) and Christensen and Prabhala (1998)) has

attempted to determine whether at the money implied volatilities are unbiased predictors of future

return volatility. Since we have designed option positioning to infer volatility, their forecasting

exercises can be performed without taking any stand on the parametric option model, or on the

form of the volatility risk premium. Finally, modeling the subtleties of individual stock options

in various ways and testing their empirical performance might be a worthy objective. This study

has provided the incentive to expand research on individual stock options.
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Appendix

Proof of Theorem 1

Setting �S � S(t) in (2) and performing standard di�erentiation steps, we can observe that

HSS [K] =

8>>><>>>:
2(1�ln[K=S(t)])

K2 Volatility Contract
6 ln[K=S(t)]�3(ln[K=S(t)])2

K2 Cubic Contract
12 (ln[S(t)=K])2+4(ln[S(t)=K])3

K2 Quartic Contract.

(39)

Equations (7)-(9) of Theorem 1 follow from substituting (39) into (2). For the mean stock return,

we note that
R

 e

�r� S q[S] dS = S(t) (by the martingale property). Therefore,

er� = E�t
�
S(t+ �)

S(t)

�
= E�t fexp[R(t; �)]g

= 1 + E�t [R(t; �)] +
1

2
E�t [R(t; �)2] +

1

6
E�t [R(t; �)3] +

1

24
E�t [R(t; �)4]

since exp[R] = 1 + R+R2=2 + R3=6 +R4=24 + o(R4). Reorganizing,

�(t; �) � E�t ln
�
S(t+ �)

S(t)

�
= er� � 1� er�

2
V (t; �)� er�

6
W (t; �)� er�

24
X(t; �): (40)

The �nal pricing formulas for risk-neutral skewness and kurtosis in equations (5) and (6) now

follow by using (40), and expanding on their de�nitions. 2

Proof of Theorem 2: Exponential Tilting of the Physical Measure can Introduce Skew

in the Risk-Neutral Measure

We wish to relate the skewness of q[R] to that of p[R] (suppressing the subscript on Rm).

Without loss of generality, we may suppose that the parent density, p[R], has been mean-shifted

and has zero mean (i.e., suppose �1 = 0). Let the �rst three successive higher moments of p[R] be

�2 �
Z 1

�1
R2 p[R] dR (41)

�3 �
Z 1

�1
R3 p[R] dR (42)

�4 �
Z 1

�1
R4 p[R] dR: (43)

As is standard, de�ne the moment generating function, M[�], of p[R], for any real number �, by

M[�] �
Z 1

�1
e�R p[R] dR
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= 1 +
�2

2
�2 +

�3

6
�3 +

�4

24
�4 + o(�4); (44)

and can, thus, be expressed in terms of its uncentered moments.

Now consider the moment generating function, M[�], of q[R]. From the relation q[R] =
e� R�p[R]R
e� R�p[R] dR , it holds that

M[�] �
Z 1

�1
e�R q[R] dR

=

R1
�1 e�R e� R p[R] dRR1
�1 e� R p[R] dR

(45)

=
M[�� ]
M[�] : (46)

Hence, M[�] can be recovered from the (parent) moment generating function of p[R].

Using the properties of moment generating functions, up to a �rst-order e�ect of , we see

that the moments of q[R] satisfy a recursive relationship. Whence, we have,

�1 �
Z 1

�1
Rq[R] dR � �1 �  �2 (47)

�2 �
Z 1

�1
R2 q[R] dR� �2 �  �3 (48)

�3 �
Z 1

�1
R3 q[R] dR� �3 �  �4 (49)

and M[�] = 1 + o[]. Now we are ready to compute the risk-neutral index skew, which is,

SKEWm(t; �) �
R1
�1(R� �1)

3 q[R] dR�R1
�1(R� �1)2 q[R] dR

�3=2 ;
=

�3 �  (�4 � 3 �22)

�
3=2
2

+ o[]: (50)

Simplifying the resulting expression, and noting KURT � �22 = �4, the theorem is proved.

For our generalization to marginal utilities in the class of U 0[Rm;�] =
R1
0 e�� z Rm �(dz), we

can note that up to a �rst-order in � that �1 � �1�f�
R1
0 z �(dz)g�2, �2 � �2�f�

R1
0 z �(dz)g�3,

and �3 � �3 � f�
R1
0 z �(dz)g�4. From the same argument as in the derivation of (50), we have

SKEWm � SKEWm � f� R10 z �(dz)g
�
KURTm � 3

�
STDm. 2

34



Proof of Part (a) and (b) of Theorem 3

Recall that the stock return follows a single-index return generating process. Suppressing

time-arguments, write R(t; �) as R and the risk-neutral density of stock return (idiosyncratic risk)

as: q[R] (q["]). The risk-neutral skewness of the index must be:

SKEWm(t; �) �
R1
�1(Rm � �m)3 q[Rm] dRmnR1

�1(Rm � �m)2 q[Rm] dRm
o3=2 : (51)

Exploiting the return generating process in (20), and using the independence of " and Rm

SKEWn(t; �) =
b3n
R1
�1(Rm � �m)3 q[Rm] dRm+

R1
�1 "3n q["] d"n

b2n(t; �)
R1
�1 (Rm � �m)2q[Rm] dRm+

R1
�1 "2n q["] d"

o3=2 (52)

since the co-skews, Ef"n(Rm��m)2g and Ef"2n(Rm��m)g, vanish. Rearranging (52), we obtain
(for n = 1; � � � ; N)

SKEWn(t; �) = 	n(t; �) SKEWm(t; �) + �n(t; �)
E�t ["n(t; �)3]

fE�t ["n(t; �)2]g3=2
(53)

with 	n(t; �) and �n(t; �) as displayed in (22)-(23) of the text. If the density q["] is symmetric

around origin, E�t ["(t; �)3] = 0. Inserting this restriction into (53) proves this element of the

theorem.

This procedure can be extended to the two factor context: Rn(t; �) = an(t; �)+bn(t; �)Rm(t; �)+

cn(t; �)F (t; �) + "n(t; �), which decomposes the systematic part of the individual return into two

forces. Repeating the above steps, we derive (25) with

	n(t; �) �
 
1 +

c2n(t; �)[VF(t; �)� e�r��2F (t; �)] + V"(t; �)

b2n(t; �)[Vm(t; �)� e�r��2m(t; �)]

!�3=2
; (54)

�	n(t; �) �
 
1 +

b2n(t; �)[Vm(t; �)� e�r��2m(t; �)] + V"(t; �)

c2n(t; �)[VF (t; �)� e�r��2F (t; �)]

!�3=2
; and (55)

�n(t; �) �
 
1 +

b2n(t; �)[Vm(t; �)� e�r��2m(t; �)] + c2n(t; �)[VF(t; �)� e�r��2F (t; �)]
V"(t; �)

!�3=2
(56)

which is the �nal step of the proof. 2
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Proof of the Individual Call Option Formula (28) under the Single-Factor Model

Assumption

De�ne the characteristic function

fn(t; � ; u) = E�t fexp [i u bn ln(Sm(t+ �))]g � E�t fexp [i u "n(t+ �)]g n = 1; � � � ; N (57)

and the modi�ed exercise region �Kn � ln(Kn)� ln(Sn(t))� an + bn ln(Sm(t)). Decomposing the

call option price into its constituent securities (from Bakshi and Madan (2000)), we have (28),

where

�n(t) � eln(Sn(t))+an�bn ln(Sm(t)); (58)

�1;n(t; �) =
1

2
+

1

�

Z 1

0
Re

"
e�iu �Kn � fn(t; � ; u� i)

i u fn(t; � ;�i)

#
du and; (59)

�2;n(t; �) =
1

2
+

1

�

Z 1

0
Re

"
e�iu �Kn � fn(t; � ; u)

i u

#
du: (60)

If the characteristic function for the market index and the idiosyncratic component is in closed-

form, the individual call option price can be computed analytically. 2

Proof that Leverage Implies Index Skew is Less Negative than Some Individual Skews

Before presenting the proof, we need a result on the moment generating function of vector

standard normal variates, and its derivatives. That is: E�fexp[`1 �1+ `2 �2]g = exp[0:5`21+0:5`22+

�`1`2], which is exponential a�ne in the variance-covariance matrix.

To stay focussed on this counterexample, we adopt a two-period and two-stock setting. Fix

N=2, and hypothesize the two-period return evolution (with  n > 0)

Rn(1) = r+ �n(1) �n � N (0; 1) (61)

Rn(2) = r+ �n(2) + �[�n(1)]'n(2) 'n � N (0; 1) (62)

�[�n(1)] =  n exp [��n(1)] (63)

for n=1,2. Equation (63) goes to the heart of the leverage argument: the volatility of the second

period return increases (decreases) as lagged return innovations goes down (up) (see, Becker

(1980) and Cox and Ross (1976)). Let �n(t) be independent of 'n(2), � � Covt (�1(t); �2(t)), and

% � Covt ('1(t); '2(t)). Note that second-period volatilities are correlated across stocks and the
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individual return process is auto-correlated. This model yields

SKEWn(2) = � 6 2
n exp(2)

(1 +  2
n exp(2))3=2

n = 1; 2: (64)

Therefore, leverage does produce negative skewness in individual names. Now cross-sectionally

aggregate the second period return equally to get the return on the market (basket): Rm(2) =
R1(2)+R2(2)

2
. With some algebraic manipulation, we arrive at the leverage implied index skew:

SKEWm(2) = &0 +
2X

n=1

&n � SKEWn(2) (65)

where

&0 � � 6 % (1+ �) 1 2 exp(1 + �)

2(1 + �) +  2
1 exp(2) +  2

2 exp(2) + 2 % 1 2 exp(1 + �)
; (66)

&n � 0:50 (1+ �)(1+  n exp(2))

2(1 + �) +  2
1 exp(2) +  2

2 exp(2) + 2 % 1 2 exp(1 + �)
< 1; n = 1; 2: (67)

Thus the market skew is just a convex combination of the individual skews, and imposes the

restriction that at least one of the individual skews be more negative than the market skew.

To see this, set � = 0, and % = 0. In this special case, &0 is identically zero. Now set % > 0

and reexamine (65). In sum, while leverage generates negative skew, its implications for index

skewness are diametrically opposite to those originating from risk aversion and fat-tailed physical

distributions. 2

Proof of Equation (30) in Theorem 4

Although the proof is available in Backus, Foresi, Lai, and Wu (1997), we sketch the basic

steps to make our analysis self-contained. To justify the functional form (30), standardize stock

returns so that they have mean zero and unit variance. Accordingly, let x � R(t;�)��
�� , where, as

before, � � E�t [R(t; �)], and �� � pE�t fR(t; �)� E�t [R(t; �)]g2. Now return to equation (29), and

rede�ne the exercise region as: K � f ln(K)�ln(S(t))��
�� > xg. As a consequenceZ

K
e�r� (K � S(t) exp[x�� + �]) q[x] dx = Ke�r� [1� N (d2)]� S(t) [1�N (d1)] : (68)

From probability theory, a robust class of density functions can be approximated in terms of its

moments and the Gaussian density (see Johnson, Kotz, and Balakrishnan (1994, p. 25)), as in

q[x] � �[x]� 1

3!

@3�[x]

@x3
� SKEW(t; �) +

1

4!

@4�[x]

@x4
� [KURT(t; �)� 3]; (69)
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where �[x] = 1p
2�
e�x

2=2 denotes the standard normal density function. Thus, the left-hand side

of (68) becomes:Z
K
e�r� (K � S(t) exp[x�� + �]) q[x] dx =

Z
K
e�r� (K � S(t) exp[x�� + �]) �[x] dx�

1

3!
SKEW(t; �)�

Z
K
e�r� (K � S(t) exp[x�� + �])

@3�[x]

@x3
dx+

1

4!
[KURT(t; �)� 3]�

Z
K
e�r� (K � S(t) exp[x�� + �])

@4�[x]

@x4
dx; (70)

which gives the theoretical put price linearly in terms of the Black-Scholes price (evaluated at the

true volatility), the risk-neutral skewness and (excess) risk-neutral kurtosis.

Two remaining steps need some explanation. First, take a Taylor series of N (d1) around ��,

and use Leibnitz di�erentiation rule to simplify the expression

Ke�r� [1� N (d2)]� S(t) [1�N (d1)]�
Z
K
e�r� (K � S(t) exp[x�� + �]) �[x] dx: (71)

Second, @3�[x]
@x3

and @4�[x]
@x4

can be directly computed by di�erentiating the normal density function.

That is

@3�[x]

@x3
=

1p
2�

(3x� x3) e�x2=2

@4�[x]

@x4
=

1p
2�

(3x� 6x2 + x4) e�x
2=2:

Collecting the remaining terms, and exploiting the moment generating function of the Gaussian

(i.e., its translates and derivatives), we achieve the desired result in (30). This result is, however,

not observationally equivalent to the counterpart one (i.e., Proposition 2) in Backus, Foresi, Lai,

and Wu (1997) (it is unnecessary to approximate �[y], �[y], and �[y]). As the closed-forms for �[y],

�[y], and �[y] are not particularly instructive, they are omitted here. This completes the proof

that the structure of option prices, as represented through the Black-Scholes implied volatility

curve, is a�ne in risk-neutral skewness and kurtosis (also see footnote 4 for further clari�cations).

2
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Table 1: Description of Out of Money Calls and Puts

The table reports the number of observations, and the mid-point price as the average of the bid-ask quotes, for
short-term and medium-term out of money calls and puts for 30 stocks and the S&P 100. The ticker, name and the
recent weight of the stock in the index (as of 5/98) are also reported. The call (put) is out of money if K/S > 1 (K/S
< 1), where S denotes the contemporaneous stock price and K is the strike. Short-term options have remaining days
to expiration between 9 and 60 days, and medium-term between 61 and 120 days. Only the last daily quote prior
to 3:00 p.m. CST of each option contract are used in our calculations. The sample period extends from January 1,
1991 through December 31, 1995 for a total of 358,851 option quotes (162,046 calls and 196,805 puts).

Number of Mid-Point of

Option Quotes Option Quote

OEX Short Medium Short Medium

Ticker Stock Wgt. Call Put Call Put Call Put Call Put

1. AIG American Int'l 2.32 3414 3884 1779 2471 1.26 0.99 2.34 1.47
2. AIT Ameritech 1.24 1902 2199 1260 1570 0.62 0.58 0.96 0.89
3. AN Amoco 1.09 2112 1942 1491 1435 0.49 0.48 0.79 0.76
4. AXP American Express 1.27 2325 2367 1458 1696 0.41 0.40 0.66 0.60
5. BA Boeing Company 1.27 2848 2624 1927 1896 0.56 0.48 0.93 0.71
6. BAC BankAmerica Corp. 1.53 2640 3023 1576 2007 0.62 0.53 0.99 0.77
7. BEL Bell Atlantic 1.90 2242 2335 1409 1600 0.47 0.47 0.71 0.74
8. BMY Bristol-Myers 2.85 3040 3311 1927 2335 0.63 0.57 1.04 0.84
9. CCI Citicorp 1.82 2545 2983 1512 2007 0.47 0.41 0.79 0.57
10. DD Du Pont 2.33 2492 2639 1472 1731 0.57 0.53 0.98 0.79
11. DIS Walt Disney Co. 2.04 4020 4677 2297 2905 1.06 0.87 2.00 1.40
12. F Ford Motor 1.66 2924 3068 2062 2264 0.56 0.51 0.90 0.80
13. GE General Electric 7.29 3323 4019 1857 2801 0.67 0.59 1.28 0.93
14. GM General Motors 1.36 3021 3134 2107 2208 0.58 0.53 0.98 0.78
15. HWP Hewlett-Packard 1.73 3973 5305 2168 3978 1.29 0.92 2.57 1.38
16. IBM Int. Bus. Mach. 3.05 5605 4806 3514 2755 0.89 0.84 1.41 1.31
17. JNJ Johnson & Johnson 2.48 2999 3256 1646 2148 0.81 0.70 1.40 1.00
18. KO Coca Cola Co. 5.18 2438 3305 1450 2589 0.62 0.50 1.09 0.69
19. MCD McDonald's Corp. 1.21 2321 2285 1443 1814 0.51 0.40 0.89 0.60
20. MCQ MCI Comm. 0.99 2437 2311 1503 1508 0.46 0.44 0.74 0.65
21. MMM Minn Mining 1.01 3532 3730 1946 2175 0.80 0.75 1.32 1.21
22. MOB Mobil Corp. 1.63 2573 2618 1795 2232 0.71 0.67 1.15 1.00
23. MRK Merck & Co. 3.75 3283 4163 1865 2639 0.98 0.83 1.69 1.31
24. NT Northern Telecom 0.89 1916 1788 1213 1176 0.60 0.53 0.94 0.72
25. PEP PepsiCo Inc. 1.65 2091 2459 1285 1695 0.40 0.36 0.65 0.51
26. SLB Schlumberger Ltd 1.04 2965 2678 1670 1699 0.77 0.71 1.34 1.06
27. T AT&T Corp. 2.64 2423 2607 1498 1783 0.45 0.36 0.73 0.50
28. WMT Wal-Mart Stores 3.31 2539 2959 1868 2036 0.49 0.42 0.80 0.63
29. XON Exxon Corp. 4.64 2364 2502 1375 1556 0.46 0.44 0.73 0.66
30. XRX Xerox Corp. 0.89 3665 4615 1927 2921 1.23 0.94 2.13 1.43
31. OEX S&P 100 Index 12793 22755 10981 16828 2.15 1.86 4.98 4.47
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Table 3: Quantifying the Structure of Option Prices

For short-term and medium-term out of money options on 30 stocks and the S&P 100, the table displays the average coe�cients
for the speci�cation,

ln (�j) = �0 + � ln (yj) + �j j = 1; � � � ; J:

Here, � is the Black-Scholes implied volatility of option with moneyness y � K

S
. The regression is estimated via OLS for each

of the 260 weeks in the period of 1:1:91{12:31:95 in which there are a minimum of 8 observations, using out of money puts
(K
S
< 1) and out of money calls (K

S
> 1). The table reports the estimated (i) at the money implied volatility corresponding

to K=S = 1 as: exp(�0), (ii) the slope of the smile, �, and (iii) the coe�cient of determination, R2 (in %), as the time-series

average over all the weekly regressions (Fama-McBeth (1973)). The reported t-statistic is the time-series average, divided by
the standard error (the standard deviation of the estimate normalized by the square-root of the number of estimates). The

table also displays (in percentage) the fraction of the weekly estimates of the slope that satisfy � < 0.

Short-term Options Medium-term Options

Slope of Slope of

exp(�0) the Smile, R2 � < 0 exp(�0) the Smile, R2 � < 0

� �

Ticker Avg. tstat Avg. tstat Avg. % Avg. tstat Avg. tstat Avg. %

1. AIG 0.22 124.44 -1.09 -23.95 43.57 97 0.22 119.84 -0.36 -9.21 38.27 76

2. AIT 0.19 109.38 -1.96 -20.26 55.41 96 0.22 108.39 -0.20 -3.28 31.98 57

3. AN 0.19 94.85 -0.96 -9.47 36.08 80 0.19 80.11 -0.79 -9.24 41.46 83

4. AXP 0.31 83.74 -0.26 -6.75 27.62 74 0.29 66.60 -0.70 -14.05 56.95 97

5. BA 0.27 99.59 -0.69 -13.89 33.29 80 0.24 96.42 -1.02 -26.39 73.28 97

6. BAC 0.30 79.40 -1.16 -27.88 56.81 95 0.28 93.15 -0.87 -30.62 74.77 98

7. BEL 0.21 92.78 -1.54 -17.26 48.12 86 0.21 89.94 -0.98 -17.22 59.01 95

8. BMY 0.21 99.26 -1.38 -18.67 46.55 89 0.20 93.39 -1.31 -23.18 71.59 98

9. CCI 0.35 59.92 -0.83 -21.47 42.32 90 0.31 58.59 -0.91 -19.12 75.82 97

10. DD 0.24 132.92 -0.86 -24.93 42.01 95 0.23 129.37 -0.60 -10.25 48.80 90

11. DIS 0.28 133.28 -0.91 -28.49 48.29 95 0.27 146.50 -0.72 -34.03 71.73 99

12. F 0.31 127.62 -0.62 -18.43 37.77 88 0.29 137.45 -0.58 -25.07 57.62 96
13. GE 0.21 107.70 -1.85 -38.86 61.02 99 0.21 117.81 -1.26 -36.17 81.16 98

14. GM 0.31 115.87 -0.52 -16.83 34.86 83 0.28 138.09 -0.70 -38.11 76.70 99

15. HWP 0.33 106.69 -0.83 -27.78 50.95 96 0.31 147.65 -0.50 -25.81 56.87 96
16. IBM 0.29 85.58 -0.36 -7.64 29.85 71 0.26 103.52 -0.61 -28.06 65.53 97

17. JNJ 0.24 93.99 -1.00 -21.27 41.70 93 0.22 96.00 -1.01 -28.84 69.70 99

18. KO 0.24 100.77 -1.62 -37.71 62.87 99 0.22 113.41 -1.17 -38.21 77.63 100
19. MCD 0.25 105.92 -1.16 -20.01 46.17 93 0.23 90.25 -1.26 -15.51 73.17 96

20. MCQ 0.34 101.47 -0.53 -10.48 26.34 74 0.32 81.57 -0.44 -4.26 49.62 68

21. MMM 0.21 135.99 -1.21 -13.42 42.65 90 0.19 151.90 -1.05 -27.48 67.55 96
22. MOB 0.19 117.06 -1.34 -24.87 44.17 94 0.19 124.79 -0.59 -14.69 44.92 80

23. MRK 0.27 88.15 -0.62 -9.14 38.67 72 0.24 98.47 -0.97 -30.19 76.17 98

24. NT 0.31 82.69 -0.31 -4.38 28.40 72 0.30 69.44 -0.37 -7.04 34.64 72
25. PEP 0.26 77.35 -1.13 -15.26 45.50 91 0.23 84.13 -1.27 -39.23 80.38 100

26. SLB 0.25 116.06 -0.54 -9.87 30.84 76 0.24 129.84 -0.29 -7.05 30.07 67

27. T 0.21 103.24 -1.44 -24.20 48.59 95 0.19 104.26 -1.56 -53.61 85.59 100
28. WMT 0.29 96.29 -0.95 -19.77 44.85 88 0.27 93.92 -0.86 -19.82 67.79 92

29. XON 0.17 114.84 -1.47 -21.97 41.97 91 0.16 107.16 -1.58 -24.39 75.58 99
30. XRX 0.26 132.35 -1.31 -33.60 55.73 98 0.25 162.13 -0.52 -16.55 49.87 88

31. OEX 0.14 82.23 -4.42 -70.34 86.08 100 0.14 84.31 -3.45 -79.67 93.82 100
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Table 5: Variation in Individual Equity Option Prices Across Time

For each of the 30 stocks and the S&P 100, the table reports the results of a time-series regression:

SLOPE(t) = �+ � SKEW(t) + �KURT(t) + � SLOPE(t� 1)+ �(t), where SLOPE(t) is the (weekly) slope

of the smile (i.e., the previously computed �(t) in Table 3). SKEW(t) and KURT(t) are the risk-neutral

skew and kurtosis for each of the 260 weeks in the sample period, 1:1:91{12:31:95. We include SLOPE(t�1)

to correct for the autocorrelation of the dependent variable. The method of estimation is OLS. The t-

statistics are computed using the Newey-West (with a lag length of 8 weeks) methodology that corrects

for heteroscedasticity and serial correlation. Standard errors with lag length up to 20 are virtually similar.

R2 is the coe�cient of determination (in %). The reported �2(1) is the likelihood ratio test statistic for

the null hypothesis that � = 0. The corresponding p-value is presented under the column \p-value." Only

the results using short-term smiles are shown here.

Panel A: Unrestricted Regressions

LR Test

Ticker � t(�) � t(�) � t(�) R2 �2(1) p-value

1. AIG 0.75 7.80 0.03 0.83 0.44 7.18 46.05 0.68 0.41

2. AIT 1.42 6.70 0.24 4.52 0.21 2.20 46.08 23.12 0.00

3. AN 0.73 6.05 -0.06 -2.23 0.21 3.81 44.64 23.12 0.00

4. AXP 0.35 3.59 0.01 0.95 0.33 3.13 43.76 2.00 0.16

5. BA 0.95 10.21 0.03 1.99 0.26 4.14 66.60 6.56 0.01

6. BAC 0.68 10.42 0.04 2.95 0.39 7.73 68.14 8.53 0.00

7. BEL 1.24 12.11 0.13 4.51 0.28 4.22 64.31 31.83 0.00

8. BMY 1.05 10.06 0.05 2.15 0.37 7.69 71.17 8.00 0.00

9. CCI 0.58 9.50 -0.01 -1.25 0.42 8.78 63.39 1.22 0.27

10. DD 0.57 9.26 0.04 3.04 0.30 4.60 43.80 11.27 0.00

11. DIS 0.52 6.58 0.04 2.47 0.52 10.18 55.87 6.13 0.01

12. F 0.41 5.97 0.02 2.31 0.45 8.25 57.68 7.25 0.01

13. GE 1.07 11.76 0.10 5.62 0.46 9.51 62.34 30.01 0.00

14. GM 0.49 6.90 -0.01 -0.79 0.46 9.22 58.91 0.97 0.33

15. HWP 0.47 8.10 0.06 2.57 0.52 8.54 61.50 10.02 0.00

16. IBM 0.80 6.47 -0.03 -1.12 0.53 8.77 74.85 2.57 0.11

17. JNJ 0.49 4.13 0.01 0.90 0.43 6.74 49.56 1.60 0.21

18. KO 0.86 10.30 0.08 4.57 0.27 4.55 58.65 37.00 0.00

19. MCD 0.87 11.10 0.09 4.62 0.29 3.81 57.54 36.67 0.00

20. MCQ 0.81 7.63 0.03 1.56 0.18 3.10 47.02 3.61 0.06

21. MMM 0.87 5.14 0.08 1.96 0.63 8.17 47.28 3.45 0.06

22. MOB 0.95 8.96 0.05 2.02 0.31 6.31 54.20 6.43 0.01

23. MRK 0.77 7.67 0.07 5.34 0.45 5.77 74.64 32.59 0.00

24. NT 0.58 5.74 0.04 1.53 0.27 6.04 48.61 5.10 0.02

25. PEP 0.78 9.65 0.04 3.43 0.28 6.02 58.67 13.61 0.00

26. SLB 0.95 10.43 0.10 4.25 0.27 7.64 60.76 22.21 0.00

27. T 1.00 10.03 0.08 4.85 0.27 5.09 71.32 33.58 0.00

28. WMT 0.59 13.24 0.04 2.88 0.43 6.65 66.34 11.09 0.00

29. XON 1.11 9.17 0.08 4.13 0.15 3.40 54.49 22.14 0.00

30. XRX 0.57 4.50 0.08 2.71 0.51 10.62 43.09 9.79 0.00

31. OEX 1.83 5.65 0.21 5.02 0.58 7.68 74.82 28.43 0.00
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Panel B of Table 5: Restricted Regressions

Restricted � � 0 Restricted � � 0

(Skewness Alone) (Kurtosis Alone)

Ticker � t(�) � t(�) R2 � t(�) � t(�) R2

1. AIG 0.71 7.22 0.44 7.12 45.91 -0.12 -3.03 0.53 8.69 32.52

2. AIT 0.77 4.19 0.29 3.28 34.23 -0.04 -1.39 0.37 4.19 15.19

3. AN 0.60 2.87 0.24 4.32 38.94 0.00 0.09 0.33 4.90 10.94

4. AXP 0.32 3.85 0.34 3.92 43.29 -0.02 -2.39 0.50 5.34 25.94

5. BA 0.88 9.16 0.27 4.28 65.74 -0.05 -2.36 0.54 7.39 33.50

6. BAC 0.58 10.32 0.39 8.23 67.06 -0.07 -4.93 0.57 11.05 46.62

7. BEL 0.84 10.70 0.29 4.38 59.44 -0.11 -5.32 0.44 5.99 36.56

8. BMY 0.91 7.17 0.37 7.56 70.26 -0.09 -3.29 0.61 10.58 53.23

9. CCI 0.59 10.85 0.43 8.76 63.21 -0.07 -5.31 0.57 10.16 45.56

10. DD 0.47 7.71 0.31 4.58 41.29 -0.01 -1.80 0.44 6.08 20.92

11. DIS 0.49 6.48 0.52 10.67 54.82 0.12 0.94 0.64 14.92 42.43

12. F 0.36 4.78 0.47 8.45 56.46 -0.01 -1.09 0.63 14.54 40.28

13. GE 0.74 7.87 0.49 9.83 57.72 -0.06 -3.30 0.58 11.82 38.70

14. GM 0.49 7.02 0.45 9.01 58.75 -0.03 -2.81 0.63 13.39 41.20

15. HWP 0.41 7.14 0.54 9.30 59.98 0.00 0.09 0.69 12.67 48.80

16. IBM 0.78 7.40 0.54 9.16 74.60 0.00 0.18 0.77 19.31 63.70

17. JNJ 0.45 4.58 0.44 6.99 49.25 -0.04 -2.74 0.58 10.88 37.57

18. KO 0.63 10.01 0.25 4.00 52.27 -0.02 -0.88 0.51 7.83 29.58

19. MCD 0.61 5.97 0.32 4.67 50.81 -0.04 -3.05 0.47 6.67 25.83

20. MCQ 0.77 7.33 0.19 3.15 46.27 -0.03 -1.32 0.35 4.32 13.21

21. MMM 0.70 5.78 0.65 8.73 46.57 -0.03 -1.22 0.66 9.11 42.26

22. MOB 0.87 8.83 0.32 6.38 53.27 -0.05 -2.53 0.48 7.80 24.36

23. MRK 0.53 8.35 0.58 11.36 71.19 -0.03 -1.80 0.77 13.77 58.16

24. NT 0.47 8.56 0.28 6.61 47.41 -0.07 -5.89 0.39 6.84 28.85

25. PEP 0.66 8.58 0.28 5.18 56.33 -0.04 -3.88 0.45 6.01 27.88

26. SLB 0.77 6.60 0.31 8.79 57.23 -0.07 -2.15 0.52 12.71 29.96

27. T 0.65 10.53 0.32 6.43 67.32 -0.07 -5.84 0.53 8.60 49.38

28. WMT 0.51 11.68 0.47 8.25 64.82 -0.03 -1.33 0.68 14.83 47.11

29. XON 0.85 7.33 0.17 3.65 50.40 -0.06 -4.24 0.35 6.95 21.31

30. XRX 0.42 3.70 0.51 10.18 40.90 -0.01 -0.59 0.57 12.13 33.34

31. OEX 0.69 5.38 0.64 9.97 71.90 -0.06 -3.82 0.76 14.57 68.78
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Table 6: The Character of Individual and Index Risk-Neutral Skewness

For each of the 30 stocks and the S&P 100, the table reports three sets of numbers, relating to the weekly risk-neutral
moments estimated. In the �rst two columns, we report (i) the percentage of observations for which SKEWn < 0,
and (ii) the percentage of observations for which the risk-neutral skewness of the stock, SKEWn, is more than the
risk-neutral skewness of the market, SKEWm (i.e., less negative than the risk-neutral index skewness). The next
�ve columns present the results of an OLS regression: SKEWn(t) = 	0 + 	1 SKEWm(t) + �(t), where 	0, 	1 are
the intercept and sensitivity coe�cients, respectively; t(	0); t(	1) are the t-statistics, and R2 is the coe�cient of
determination (in %). The last three columns display the average estimate of the risk-neutral volatility, skew and
kurtosis (with one exception, all moments are statistically signi�cant and omitted). The volatility is the square-
root of the variance contract, reported in %. All moments used are of short-term maturity. The sample period is
1:1:91{12:31:95.

Sign of Univariate Regression Price of Moments

Skewness SKEWn(t) = 	0 +	1 SKEWm(t) + �(t)

SKEWn SKEWn >

Ticker < 0 SKEWm 	0 t(	0) 	1 t(	1) R2
p
V SKEW KURT

1. AIG 68 96 0.11 1.43 0.29 4.46 7.15 7.98 -0.21 2.20
2. AIT 83 77 -0.54 -3.77 0.11 0.85 0.31 6.59 -0.65 4.18
3. AN 69 84 0.35 1.79 0.67 3.92 5.91 6.59 -0.38 5.00
4. AXP 48 90 -0.08 -0.50 0.04 0.28 0.03 10.93 -0.12 4.51
5. BA 58 94 0.17 1.65 0.29 3.21 3.83 9.16 -0.14 4.54
6. BAC 77 88 0.13 1.13 0.52 5.29 9.86 10.48 -0.44 3.99
7. BEL 79 72 -0.89 -4.86 -0.21 -1.28 0.65 7.09 -0.68 5.62
8. BMY 74 86 0.22 1.73 0.63 5.68 11.13 7.42 -0.46 4.46
9. CCI 69 92 -0.01 -0.06 0.25 2.98 3.34 12.71 -0.28 3.88
10. DD 69 92 -0.00 -0.04 0.24 2.77 2.89 8.39 -0.26 3.87
11. DIS 62 98 -0.09 -1.28 0.04 0.61 0.15 10.17 -0.13 3.18
12. F 58 93 0.05 0.39 0.16 1.55 0.93 11.02 -0.13 3.98
13. GE 88 87 -0.08 -0.97 0.41 5.37 10.04 7.60 -0.53 3.90
14. GM 56 95 -0.01 -0.15 0.07 1.00 0.39 11.07 -0.09 3.53
15. HWP 61 96 0.18 2.48 0.32 5.06 9.03 11.85 -0.17 2.33
16. IBM 43 98 0.27 3.92 0.20 3.47 4.47 10.49 0.04 2.89
17. JNJ 65 91 0.28 2.36 0.52 5.20 9.55 8.49 -0.30 4.12
18. KO 87 82 -0.21 -1.93 0.32 3.44 4.39 8.27 -0.56 4.48
19. MCD 71 85 -0.34 -2.22 0.07 0.51 0.10 8.51 -0.41 5.18
20. MCQ 53 91 -0.09 -0.81 0.05 0.48 0.09 12.18 -0.15 3.78
21. MMM 85 95 0.03 0.40 0.36 5.55 10.66 7.27 -0.36 3.28
22. MOB 77 88 -0.15 -1.43 0.22 2.54 2.43 6.47 -0.39 3.47
23. MRK 51 86 -0.43 -2.65 -0.24 -1.76 1.19 9.38 -0.16 4.41
24. NT 37 93 0.16 1.07 0.18 1.40 0.82 10.44 -0.04 4.03
25. PEP 72 87 -0.04 -0.26 0.33 2.78 2.98 8.67 -0.39 5.87
26. SLB 50 94 0.13 1.11 0.19 1.82 1.27 8.74 -0.07 3.09
27. T 78 76 -0.76 -4.75 -0.14 -1.01 0.39 7.28 -0.61 6.10
28. WMT 70 88 0.20 1.53 0.53 4.78 8.23 10.34 -0.38 4.18
29. XON 83 82 -0.25 -1.42 0.31 2.07 1.64 5.93 -0.58 5.49
30. XRX 77 93 -0.09 -1.19 0.22 3.40 4.29 9.27 -0.33 2.50
31. OEX 100 5.56 -1.09 3.99
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Table 7: GMM Tests of the Market Skew Equation

Consider the restrictions imposed by the power utility pricing kernel: b�(t + 1) � SKEWm(t + 1) � SKEWm(t +
1) + 

�
KURTm(t + 1)� 3

�
STDm(t + 1), which is another way to express (13) of Theorem 2. The risk aversion

parameter, , is estimated by generalized method of moments (GMM), as described in the text. In Panel A and
Panel B, we report the GMM results when the risk-neutral market skew, SKEWm, is recovered from 86 day and
58 day options, respectively. Over the entire sample of January 1988 through December 1995, there are, thus,
32 (48) non-overlapping observations for 86 (58) day options. We build the time-series of higher-order physical
return moments, STD, SKEW, and KURT, from daily returns on the OEX. Thus, a lag length (denoted LAGS)
of 350 days means that we go backward 350 days to construct the moments. For consistency, each variable has
been annualized. The degrees of freedom, df, are the number of instruments, Z(t), minus one. In SET 1, the
instrumental variables are a constant plus SKEWm(t). Likewise, SET 2 (SET 3), contains SET 1 (SET 2) plus
SKEWm(t�1) (SKEWm(t�2)). For robustness, other information sets were tried; they yielded similar implications.
The minimized value (multiplied by T) of the GMM criterion function, JT , is chi-squared distributed with degrees
of freedom, df. The impact of physical skews on risk-neutral skews is studied by considering the ad-hoc speci�cation:
~�(t+ 1) � SKEWm(t+ 1)� 0SKEWm(t + 1).

Panel A: Risk-Neutral OEX Skews from 86 Day Options

Efb�(t+ 1)
Z(t)g = 0 Ef~�(t + 1)
 Z(t)g = 0

Z(t) LAGS df  t() JT p-value 0 t(0) JT p-value

SET 1 350 1 2.26 2.11 7.60 0.005 12.01 4.46 7.33 0.006
400 1 2.08 2.32 4.69 0.030 11.20 2.93 4.87 0.027
450 1 1.76 2.48 3.77 0.052 9.82 3.09 3.99 0.045

SET 2 350 2 2.29 1.97 10.93 0.004 15.99 2.66 8.86 0.011
400 2 2.25 2.22 6.96 0.030 12.08 2.85 6.52 0.038
450 2 1.99 2.40 4.26 0.118 10.85 3.01 4.52 0.104

SET 3 350 3 11.39 2.67 7.01 0.071 22.32 2.78 7.44 0.059
400 3 1.76 2.16 11.15 0.010 20.23 2.95 6.17 0.103
450 3 1.89 2.35 6.70 0.082 11.52 2.97 5.59 0.133

Panel B: Risk-Neutral OEX Skews from 58 Day Options

Efb�(t+ 1)
Z(t)g = 0 Ef~�(t+ 1)
Z(t)g = 0

Z(t) LAGS df  t() JT p-value 0 t(0) JT p-value

SET 1 350 1 2.09 2.64 13.97 0.000 11.95 3.63 8.90 0.000
400 1 1.91 2.80 7.81 0.005 9.35 3.64 6.66 0.009
450 1 1.36 3.05 8.90 0.052 7.25 3.99 7.77 0.005

SET 2 350 2 3.21 2.60 14.63 0.000 16.78 3.76 7.53 0.023
400 2 2.12 2.67 14.23 0.000 12.29 3.67 8.56 0.013
450 2 1.44 2.93 11.20 0.003 8.01 3.85 9.04 0.010

SET 3 350 3 5.98 2.66 9.48 0.023 20.87 3.90 5.66 0.129
400 3 2.60 2.60 16.95 0.000 16.51 3.77 7.65 0.053
450 3 1.59 2.89 11.40 0.009 8.84 3.78 8.75 0.032

49



T
a
b
le
2
:
B
la
c
k
-S
c
h
o
le
s
Im
p
lie
d
V
o
la
tilitie
s
v
e
r
s
u
s
A
m
e
r
ic
a
n
O
p
tio
n
Im
p
lie
d
V
o
la
tilitie
s

F
o
r
a
sa
m
p
le
o
f
1
0
sto
ck
s
a
n
d
th
e
O
E
X
,
th
e
ta
b
le
rep
o
rts
th
e
B
la
ck
-S
ch
o
les
(d
en
o
ted
B
S
)
a
n
d
th
e
A
m
erica
n
(d
en
o
ted
A
M
)
o
p
tio
n
im
p
lied
v
o
la
tilities,

o
b
ta
in
ed
b
y
in
v
ertin
g
th
e
B
la
ck
-S
ch
o
les
a
n
d
th
e
A
m
erica
n
o
p
tio
n
p
rice,
resp
ectiv
ely.
T
h
e
A
m
erica
n
o
p
tio
n
p
rice
is
estim
a
ted
b
y
R
ich
a
rd
so
n
ex
tra
p
-

o
la
tio
n
o
f
a
5
0
a
n
d
1
0
0
step
b
in
o
m
ia
l
trees,
a
cco
u
n
tin
g
fo
r
lu
m
p
y
d
iv
id
en
d
s
(see
B
ro
a
d
ie
a
n
d
D
etem
p
le
(1
9
9
6
)).
T
h
e
im
p
lied
v
o
la
tilities
o
f
in
d
iv
id
u
a
l

o
p
tio
n
s
a
re
th
en
a
v
era
g
ed
w
ith
in
ea
ch
m
o
n
ey
n
ess-m
a
tu
rity
ca
teg
o
ry
a
n
d
a
cro
ss
d
a
y
s.
T
w
o
ca
teg
o
ries
o
f
o
u
t
o
f
m
o
n
ey
o
p
tio
n
s
a
re
u
sed
co
rresp
o
n
d
in
g

to
th
e
in
terv
a
ls
[-1
0
%
,-5
%
)
a
n
d
[-5
%
,0
).
S
h
o
rt-term

o
p
tio
n
s
h
a
v
e
rem
a
in
in
g
d
a
y
s
to
ex
p
ira
tio
n
b
etw
een
9
a
n
d
6
0
d
a
y
s,
a
n
d
m
ed
iu
m
term

b
etw
een
6
1

a
n
d
1
2
0
d
a
y
s.
A
ll
n
u
m
b
ers
co
rresp
o
n
d
to
th
e
p
erio
d
o
f
J
a
n
u
a
ry
1
,
1
9
9
5
th
ro
u
g
h
D
ecem
b
er
3
1
,
1
9
9
5
.
A
s
o
u
t
o
f
m
o
n
ey
ca
ll
o
p
tio
n
s
h
a
v
e
th
e
sa
m
e

im
p
lied
s
a
s
in
th
e
m
o
n
ey
p
u
ts
a
t
a
g
iv
en
m
o
n
ey
n
ess
lev
el,
th
e
fo
u
r
co
lu
m
n
s
rep
resen
tin
g
th
e
im
p
lied
s
o
f
o
u
t
o
f
m
o
n
ey
p
u
ts
a
n
d
ca
lls
m
a
y
b
e
a
lso

v
iew
ed
a
s
th
e
en
tire
sm
ile
ra
n
g
in
g
fro
m

o
u
t
o
f
m
o
n
ey
p
u
ts
to
in
th
e
m
o
n
ey
p
u
ts.

S
h
o
r
t-te
r
m

O
p
tio
n
s

M
e
d
iu
m
-t
e
r
m

O
p
tio
n
s

O
T
M

P
u
ts

O
T
M

C
a
lls

O
T
M

P
u
ts

O
T
M

C
a
lls

-1
0
%

to
-5
%

-5
%

to
0
%

0
%

to
-5
%

-5
%

to
-1
0
%

-1
0
%

to
-5
%

-5
%

t
o
0
%

0
%

to
-5
%

-5
%

to
-1
0
%

T
ic
k
e
r

B
S

A
M

B
S

A
M

B
S

A
M

B
S

A
M

B
S

A
M

B
S

A
M

B
S

A
M

B
S

A
M

A
IG

2
1
.5
9

2
1
.5
1

1
9
.9
8

1
9
.7
9

1
8
.8
6

1
8
.8
6

1
9
.1
3

1
9
.1
3

1
9
.8
8

1
9
.6
7

1
9
.8
4

1
9
.3
8

1
8
.4
1

1
8
.4
1

1
8
.4
6

1
8
.4
6

B
A

2
6
.7
3

2
6
.6
4

2
3
.6
1

2
3
.4
1

2
1
.7
8

2
1
.7
7

2
2
.8
7

2
2
.8
7

2
4
.5
0

2
4
.2
8

2
3
.3
9

2
3
.0
2

2
1
.9
3

2
1
.9
0

2
0
.8
9

2
0
.8
8

D
IS

2
6
.4
0

2
6
.3
1

2
3
.9
7

2
3
.7
6

2
2
.7
9

2
2
.7
9

2
4
.0
4

2
4
.0
5

2
5
.5
4

2
5
.3
3

2
4
.3
3

2
3
.9
3

2
2
.6
8

2
2
.6
8

2
2
.3
2

2
2
.3
2

G
E

2
2
.7
8

2
2
.7
0

2
0
.0
4

1
9
.8
5

1
7
.7
9

1
7
.7
9

1
8
.4
8

1
8
.4
8

2
0
.5
3

2
0
.3
3

2
0
.1
1

1
9
.7
5

1
7
.1
0

1
7
.0
9

1
6
.5
0

1
6
.4
9

G
M

2
7
.2
0

2
7
.1
0

2
5
.3
8

2
5
.1
7

2
5
.4
6

2
5
.1
6

2
6
.2
4

2
6
.0
7

2
6
.2
3

2
5
.9
5

2
5
.8
3

2
5
.3
5

2
5
.4
9

2
5
.4
6

2
5
.3
3

2
5
.3
3

H
W

P

3
4
.2
6

3
4
.1
6

3
3
.1
1

3
2
.8
9

3
1
.6
4

3
1
.6
4

3
3
.2
3

3
3
.2
3

3
3
.4
2

3
3
.1
2

3
3
.3
1

3
2
.8
2

3
2
.0
9

3
2
.0
9

3
3
.1
9

3
3
.1
9

IB
M

2
8
.7
6

2
8
.6
7

2
7
.2
4

2
7
.0
3

2
5
.8
8

2
5
.8
8

2
6
.7
1

2
6
.7
1

2
6
.5
9

2
6
.3
3

2
6
.4
2

2
5
.9
4

2
4
.9
5

2
4
.9
5

2
4
.8
0

2
4
.8
0

J
N
J

2
2
.4
5

2
2
.3
7

2
0
.2
2

2
0
.0
3

1
8
.6
4

1
8
.6
0

1
9
.7
2

1
9
.7
0

2
0
.7
4

2
0
.5
2

2
0
.1
3

1
9
.6
7

1
7
.7
8

1
7
.7
8

1
7
.6
4

1
7
.6
4

M
M
M

2
1
.3
5

2
1
.2
6

2
0
.1
9

2
0
.0
0

1
8
.5
3

1
8
.2
5

1
9
.8
1

1
9
.7
4

1
9
.2
7

1
9
.0
3

1
8
.6
5

1
8
.1
9

1
6
.7
1

1
6
.7
1

1
7
.6
2

1
7
.6
2

X
R
X

2
6
.3
2

2
6
.2
4

2
4
.7
8

2
4
.5
8

2
3
.0
9

2
3
.0
9

2
2
.9
7

2
2
.9
8

2
4
.6
9

2
4
.4
3

2
4
.6
8

2
4
.2
0

2
2
.1
8

2
2
.1
8

2
1
.7
2

2
1
.7
2

O
E
X

1
8
.5
2

1
8
.4
9

1
3
.4
5

1
3
.3
6

1
0
.7
2

1
0
.7
2

1
0
.7
6

1
0
.7
6

1
6
.0
1

1
5
.9
3

1
3
.3
1

1
3
.1
0

1
0
.7
3

1
0
.7
3

1
0
.0
8

1
0
.0
8

4
3



T
a
b
le
4
:
S
tr
u
c
tu
r
e
o
f
O
p
tio
n
P
r
ic
e
s
a
n
d
M
o
m
e
n
ts
in
th
e
S
to
c
k
C
r
o
s
s
-s
e
c
t
io
n

F
o
r
sh
o
rt-term
a
n
d
m
ed
iu
m
-term
o
p
tio
n
s
o
n
3
0
sto
ck
s
a
n
d
th
e
S
&
P
1
0
0
,
th
e
ta
b
le
rep
o
rts
th
e
a
v
era
g
e
co
e�
cien
ts
o
f
w
eek
ly
cro
ss-sectio
n
a
l
reg
ressio
n
,

S
L
O
P
E
n

=
�
+
�
S
K
E
W
n

+
�
K
U
R
T
n

+
�
n

n
=
1
;
�
�
�;
N
(t);

w
h
ere,
co
rresp
o
n
d
in
g
to
sto
ck
n
,
S
L
O
P
E
n

is
th
e
slo
p
e
o
f
th
e
sm
ile,
�
n

,
a
s
d
escrib
ed
in
T
a
b
le
3
,
a
n
d
S
K
E
W
n

,
K
U
R
T
n

a
re
th
e
risk
-n
eu
tra
l
sk
ew
s
a
n
d

k
u
rto
sis,
resp
ectiv
ely.
F
o
r
ea
ch
d
a
y
in
th
e
w
eek
,
th
e
risk
-n
eu
tra
l
sk
ew
n
ess
a
n
d
k
u
rto
sis
a
re
estim
a
ted
fro
m
th
e
cro
ss-sectio
n
o
f
o
u
t
o
f
m
o
n
ey
ca
lls
a
n
d

p
u
ts
(a
s
in
T
h
eo
rem

1
).
T
h
e
w
eek
ly
estim
a
te
is
th
en
d
eriv
ed
a
s
th
e
tim
e-a
v
era
g
e
o
f
th
e
d
a
ily
estim
a
tes.
T
h
e
reg
ressio
n
is
estim
a
ted
b
y
O
L
S
fo
r
ea
ch

w
eek
in
th
e
sa
m
p
le
p
erio
d
.
T
h
e
ta
b
le
rep
o
rts
th
e
co
e�
cien
ts
a
n
d
th
e
co
e�
cien
t
o
f
d
eterm
in
a
tio
n
(R
2,
in
%
),
a
s
th
e
tim
e-series
a
v
era
g
e
o
v
er
a
ll
th
e

w
eek
ly
reg
ressio
n
s
(a
s
in
F
a
m
a
-M
cB
eth
(1
9
7
3
))
fo
r
b
o
th
restricted
a
n
d
u
n
restricted
reg
ressio
n
s.
T
h
e
rep
o
rted
t-sta
tistic
is
th
e
tim
e-series
a
v
era
g
e

d
iv
id
ed
b
y
th
e
tim
e-series
sta
n
d
a
rd
erro
r.
N
(t)
is
th
e
n
u
m
b
er
o
f
sto
ck
s
in
th
e
cro
ss-sectio
n
in
w
eek
t.
E
a
ch
ro
w
o
f
th
e
ta
b
le
sh
o
w
s
th
e
resu
lts
fo
r
a

sp
eci�
c
m
a
tu
rity
(sh
o
rt
o
r
m
ed
iu
m
)
a
n
d
tim
e-p
erio
d
.
\
F
u
ll"
refers
to
th
e
en
tire
p
erio
d
fro
m
J
a
n
u
a
ry
1
,
1
9
9
1
th
ro
u
g
h
D
ecem
b
er
3
1
,
1
9
9
5
.

U
n
r
e
str
ic
te
d
R
e
g
r
e
ssio
n

R
e
str
ic
te
d
�
�

0

R
e
str
ic
te
d
�
�

0

(S
k
e
w
n
e
ss
A
lo
n
e
)

(K
u
r
t
o
sis
A
lo
n
e
)

�

�

�

R
2

�

�

R
2

�

�

R
2

Y
ea
r

A
v
g
.

tsta
t

A
v
g
.

tsta
t

A
v
g
.

tsta
t

A
v
g
.

A
v
g
.

tsta
t

A
v
g
.

tsta
t

A
v
g
.

A
v
g
.

tsta
t

A
v
g
.

tsta
t

A
v
g
.

S
h
o
rt-F
u
ll

-1
.5
6

-2
9
.6
6

1
.4
5

5
5
.8
8

0
.4
6

1
6
.5
4

5
1
.3
7

-0
.7
5

-7
2
.2
8

1
.2
6

4
6
.3
9

4
6
.5
4

-0
.7
9

-3
0
.4
2

-0
.0
8

-1
2
.7
2

5
.6
0

S
h
o
rt-1
9
9
1

-1
.5
6

-1
4
.3
9

1
.2
9

2
6
.6
8

0
.4
8

8
.0
8

4
9
.7
0

-0
.7
7

-3
5
.0
5

1
.1
1

1
9
.1
7

4
3
.2
0

-0
.9
8

-1
7
.9
8

-0
.0
2

-1
.8
6

3
.7
0

S
h
o
rt-1
9
9
2

-1
.4
9

-1
4
.3
7

1
.4
1

2
8
.2
8

0
.4
2

7
.3
0

5
2
.0
8

-0
.7
6

-3
2
.1
8

1
.2
3

2
2
.4
6

4
7
.6
0

-0
.7
6

-1
4
.1
9

-0
.1
0

-6
.8
7

6
.7
9

S
h
o
rt-1
9
9
3

-1
.8
3

-1
5
.2
1

1
.6
2

2
6
.4
2

0
.6
3

9
.7
5

5
2
.8
4

-0
.7
2

-3
8
.3
8

1
.4
0

2
2
.6
0

4
8
.0
3

-0
.8
1

-1
5
.7
4

-0
.0
8

-5
.6
6

3
.2
6

S
h
o
rt-1
9
9
4

-1
.7
9

-1
7
.5
2

1
.5
5

2
7
.5
4

0
.5
8

1
0
.7
5

5
4
.8
3

-0
.7
3

-3
4
.2
2

1
.3
0

2
3
.2
9

4
9
.1
2

-0
.8
0

-1
6
.3
3

-0
.0
8

-6
.5
5

4
.9
8

S
h
o
rt-1
9
9
5

-1
.1
2

-8
.7
8

1
.3
7

2
2
.0
5

0
.2
1

3
.3
2

4
7
.3
9

-0
.7
4

-2
6
.0
8

1
.2
4

1
8
.6
2

4
4
.7
4

-0
.6
1

-8
.6
5

-0
.1
4

-8
.4
2

9
.2
7

M
ed
.-F
u
ll

-1
.5
6

-2
4
.5
3

1
.0
4

5
7
.6
3

0
.5
5

1
5
.5
9

5
6
.2
9

-0
.5
7

-7
0
.3
7

1
.0
1

5
2
.0
9

4
8
.1
2

-1
.1
3

-2
7
.3
8

0
.0
7

4
.7
9

9
.2
5

M
ed
.-1
9
9
1

-1
.8
7

-1
6
.9
3

0
.8
8

3
8
.6
4

0
.7
4

1
1
.9
0

6
0
.4
8

-0
.5
7

-4
4
.4
2

0
.8
1

2
5
.2
3

4
7
.0
0

-1
.1
8

-1
7
.3
6

0
.1
0

4
.6
4

7
.5
6

M
ed
.-1
9
9
2

-2
.1
7

-2
0
.6
7

0
.9
2

2
6
.0
4

0
.8
8

1
5
.1
1

5
8
.5
4

-0
.5
7

-3
9
.7
8

0
.9
2

2
7
.5
5

4
4
.5
9

-1
.4
2

-1
6
.9
0

0
.1
8

5
.9
7

1
4
.2
8

M
ed
.-1
9
9
3

-1
.4
1

-1
2
.5
8

1
.1
0

3
0
.6
8

0
.4
7

7
.6
4

5
4
.3
5

-0
.5
3

-4
1
.0
3

1
.1
0

2
8
.1
7

5
0
.1
8

-1
.2
5

-1
3
.7
1

0
.1
0

3
.8
4

5
.4
7

M
ed
.-1
9
9
4

-1
.5
9

-9
.3
7

1
.2
8

4
1
.2
9

0
.5
4

5
.7
2

5
9
.7
3

-0
.5
9

-4
7
.3
6

1
.2
6

3
6
.2
2

5
3
.7
9

-1
.1
0

-9
.0
0

0
.0
5

1
.1
7

9
.6
3

M
ed
.-1
9
9
5

-0
.7
8

-5
.9
7

1
.0
3

2
1
.2
5

0
.1
2

1
.6
6

4
8
.3
7

-0
.6
0

-1
9
.7
4

0
.9
6

2
0
.0
2

4
5
.0
3

-0
.7
2

-1
2
.3
7

-0
.1
0

-7
.6
9

9
.3
2

4
5


