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This article provides several new insights into the economic sources of skewness. First,
we document the differential pricing of individual equity options versus the market index
and relate it to variations in return skewness. Second, we show how risk aversion intro-
duces skewness in the risk-neutral density. Third, we derive laws that decompose indi-
vidual return skewness into a systematic component and an idiosyncratic component.
Empirical analysis of OEX options and 30 stocks demonstrates that individual risk-
neutral distributions differ from that of the market index by being far less negatively
skewed. This article explains the presence and evolution of risk-neutral skewness over
time and in the cross section of individual stocks.

Skewness continues to occupy a prominent role in equity markets. In the
traditional asset pricing literature, stocks with negative coskewness com-
mand a higher equilibrium risk compensation [see Rubinstein (1973), and
the empirical applications in Kraus and Litzenberger (1976) and Harvey and
Siddique (2000)]. Realizing the inherent importance of skewness, Merton
(1976), Rubinstein (1994), Bakshi, Cao, and Chen (1997), Ait-Sahalia and
Lo (1998), Madan, Carr, and Chang (1998), Pan (1999), Bates (2000), and
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Duffie, Pan, and Singleton (2000) have devised option models to character-
ize asymmetries in the underlying risk-neutral pricing distributions. Despite
these advances in empirical and theoretical modeling of skewness, extant
work has not yet formalized restrictions on the physical return density and
the pricing kernel process that could shift the risk-neutral distributions to the
left. What are the sources of risk-neutral skewness? What are its implications
for individual equity options? Our present goal is to fill specific gaps from
theoretical and empirical standpoints. First, our innovations provide a theo-
retical characterization that links risk-neutral skews to risk aversion, and to
the higher-order moments of the physical distribution. Second, we develop a
relationship between individual skews, market index skews, and idiosyncratic
skews, which we call the skew laws. Third, we establish the differential pric-
ing of individual equity options versus the market index. Critical to this thrust
is the link, to first order, between skew laws and the differential pricing of
individual equity options that makes our empirical study tractable.
To make it easy to draw comparisons across option strikes and in the cross

section of equity options, the structure of option prices—how option prices
differ across strikes—is often represented through the slope of the implied
volatility curve [Rubinstein (1985, 1994)]. Given their equivalence, we will
use the slope of the implied volatility curve (or, the smile) and the structure of
option prices to exemplify the same primitive object throughout. Granted, a
one-to-one correspondence also exists between the smile and the risk-neutral
density, modeling the smile as a stochastic process is now a central feature
of some option models. While it is widely acknowledged that the smile is
somehow due to the existence of negatively skewed and heavy-tailed risk-
neutral return distributions, a formal test of this simple idea has proven hard
to implement. For example, is it skewness or kurtosis that is of first-order
importance in explaining the observed variation in the structure of option
prices? When the return distribution is skewed to the left, will a higher level
of kurtosis induce a flatter smile?
The hurdles in quantifying the basic link across a wide spectrum of options

stem from three sources. First, to infer the smile from the initial higher
moments requires the identification of the underlying risk-neutral return den-
sity, and there is no natural way to reconstruct the density from just its higher
moments. Second, even when option models are well-enough specified across
the strike price range, it is not clear that any derived relation between option
prices and risk-neutral moments is a generic property, as opposed to being a
reflection of the particular modeling choice (i.e., parameterization can force
an artificial interdependence between skewness and kurtosis). Thus it appears
important that skews be recovered in a model-free fashion. Third, most stock
options are American and therefore their risk-neutral densities cannot be so
easily characterized using existing methods. Consequently much research in
the estimation of risk-neutral distributions, and its moments, has concentrated
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on index, as opposed to individual equity, options. From a general asset pric-
ing perspective, it is unsettling that we do not yet understand the properties
of individual equity risk-neutral return distributions or the structure of their
option prices.
Our study makes several theoretical contributions. One, we build the con-

nection, in a model-free manner, between the differential pricing of indi-
vidual stock options and the moments of the risk-neutral distribution. Here
we rely on the basic result from Bakshi and Madan (2000): any payoff can
be spanned and priced using an explicit positioning across option strikes.
Specifically we show that the cubic contract can quantify return asymmetry
by a specific position that simultaneously involves a long position in out of
the money calls and a short position in out of the money puts. When the
risk-neutral distribution is left-skewed, the combined cost of the positioning
in puts is larger than that of the combined positioning in calls. We refer to
the cost of reproducing the risk-neutral skewness and kurtosis as the price of
skewness and kurtosis even though the respective payoffs are not actually dis-
counted.1 The contingent claims theory that we use here is applicable to both
European and American options, and the derived measures of tail asymmetry
and tail size are readily comparable across equities and over time.
Next, we develop the relation between the individual and index risk-neutral

return distributions, and analyze what may cause a wedge between the skew-
ness of these distributions. We posit a market model in which individual
stock return can be decomposed into a systematic component and an idiosyn-
cratic component, and derive the relation between the individual, index and
idiosyncratic skews. Provided the idiosyncratic risk component is symmetric
(or positively skewed) and the index distribution is negatively skewed, we can
restrict the risk-neutral individual skew to be less negative than the market.
In one particular example we show that the leverage argument for skews has
the implication that some individual equity returns are risk-neutrally more
left-skewed than the index, which is inconsistent with the data.
Our characterizations impart the crucial insight that negatively skewed

risk-neutral index distributions are possible even when the physical return
distribution is symmetric. Curiously this outcome is achieved when the return
process is in the family of fat-tailed physical distributions and the representa-
tive agent is risk averse. This result holds for a wide class of utility functions
and thereby provides the foundation for negative risk-neutral skewness.
We use our skewness paradigms to test the following hypotheses: (1) Index

volatility smiles are more negatively sloped than individual smiles. (2) In the

1 According to standard economic theory, the physical return density assesses the likelihood of different return
outcomes, while the corresponding risk-neutral density is concerned with the market price of contracts paying
a dollar contingent on various return outcomes. It is generally recognized that the physical and the risk-neutral
densities can be substantially different: large movements commanding a higher price and a lower probability,
while the reverse is true for smaller moves. Due to risk aversion, we typically observe higher prices for
downward market movements versus comparable upward movements.
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stock cross section, or in the time series, the more negatively skewed the risk-
neutral return distribution, the steeper the volatility smiles. (3) Individual risk-
neutral distributions are less skewed to the left than the index distributions.
Our empirical study is based on nearly 350,000 option quotes written on

the S&P 100 index (hereafter OEX) and its 30 largest individual equity com-
ponents over the period January 1991 through December 1995. Our principal
conclusions are as follows. First, the slopes of the individual equity smiles
are persistently negative, but are much less negative than the index. The doc-
umented differences in the slope of index and individual smiles produces a
substantial difference in the relative price of options: for the OEX (a repre-
sentative stock), the implied volatility of a deep out of the money (hereafter
OTM) put is about 22% (29%), as compared to at the money (hereafter ATM)
implied of 14% (26%). Therefore we make the important observation that the
pricing structure of individual equity options is flatter compared with that of
the market index. Our primary explanation for this phenomenon is based on
risk aversion.
Second, we conclude that variations in the risk-neutral skew are instru-

mental in explaining the differential pricing of individual equity options. We
find that the more negatively skewed the return distribution, the steeper is
its volatility smile. Yet when risk-neutral distributions evolve to be more
fat-tailed, the smile gets less downward sloping. Specifically, a higher risk-
neutral kurtosis flattens the smile in the presence of left-tails. The cross-
sectional regressions confirm that, on average, less negatively skewed stocks
have flatter smiles.
Third, our inquiry consolidates a number of core properties mirrored by

all individual risk-neutral (pricing) distributions:

• Individual stocks are mildly left-skewed (or even positively skewed),
while index return distributions are heavily left-skewed. By way of con-
trast, there is no consistent pattern for the price of the fourth moment
in the cross section.

• Although individual skews are negative much of the time, their mag-
nitudes are seldom more negative relative to the index. Our sample
suggests that the index skews are never positive, even periodically.

Finally, we empirically relate the risk-neutral index skews to the higher
moments of the physical distribution. Our results indicate that the substantial
differences in the magnitudes of risk-neutral and physical skews are primar-
ily a consequence of risk aversion and long-tailed physical distributions. A
variety of extended diagnostics support our main empirical findings.
This article is divided into several parts. Section 1 is devoted to formulat-

ing the key elements of the problem. In Section 2, we relate the structure of
option prices to higher-order risk-neutral return moments. Section 3 reviews
the equity options data. The differential pricing of individual equity options
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versus the market index is demonstrated in Section 4. We empirically exam-
ine the role of skews. Conclusions are offered in Section 5. All proofs are
collected in the appendix.

1. Understanding and Recovering Risk-Neutral Skews

This section accomplishes three tasks. At the outset, we propose a method-
ology to span and price skewness and kurtosis. This step is rendered feasible
using only OTM calls and puts and without imposing any structure on the
underlying forcing process. Next, we establish when risk aversion causes the
aggregate index to have negative skews under the risk-neutral measure. We
then decompose the price of individual return skewness into market-induced
skewness and idiosyncratic skewness. Each conceptualization is critical for
the later empirical exercises.

1.1 Generic spanning and pricing characterizations
in Bakshi and Madan (2000)

Since our intent is to frugally represent the risk-neutral distribution (or some
feature thereof) in terms of traded option prices, it is only convenient to adopt
the setting outlined in Bakshi and Madan (2000). That is, to fix notation,
denote the time t price of the stock n by Sn�t� (for n = 1� � � � �N ) and the
market index by Sm�t�. Without any loss of generality, let the interest rate
be a constant r , and S�t� > 0 with probability 1 for all t (suppressing the
subscript n).
To ease equation presentation, write the t+ � period price of the stock,

S�t+��, as S. Let the risk-neutral (pricing) density q�t� �� S�, or simply q�S�,
embody all remaining uncertainty about S. The physical density, p�S�, and
the associated Radon–Nikodym derivative that delivers q�S�, for a given pric-
ing kernel, will be formalized in Section 1.3. For any claim payoff H�S� that
is integrable with respect to risk-neutral density (i.e.,

∫ �
0 � H�S� � q�S�dS <

�), the symbol �∗
t 	
� will represent the expectation operator under risk-

neutral density. That is, in what follows,

�∗
t 	H�S��=

∫ �

0
H�S�q�S�dS
 (1)

With this understanding we can express the price of the European call and put
written on the stock with strike price K and expiring in � periods from time
t as C�t� ��K� = ∫�

0 e−r� �S −K�+q�S�dS, and P�t� ��K� = ∫�
0 e−r� �K −

S�+q�S�dS, where �S−K�+ ≡max�0� S−K�.
As articulated in Bakshi and Madan (2000), any payoff function with

bounded expectation can be spanned by a continuum of OTM European calls
and puts. In particular, a special case of their Theorem 1 is that the entire
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collection of twice-continuously differentiable payoff functions, H�S� ∈ �2,
can be spanned algebraically [see also Carr and Madan (2001)], as in

H�S� = H��S�+ �S−�S�HS��S�+
∫ �

�S
HSS�K��S−K�+dK

+
∫ �S

0
HSS�K��K−S�+dK� (2)

where HS��S� (HSS�K�) represents the first-order (second-order) derivative of
the payoff with respect to S evaluated at some �S (the strike price). Intu-
itively the position in options enables one to buy the curvature of the payoff
function.
Applying risk-neutral valuation to both sides of Equation (2), we have the

arbitrage-free price of the hypothetical claim as

�∗
t 	e

−r�H�S�� = �H��S�−�S HS��S��e−r� +HS��S�S�t�
+
∫ �

�S
HSS�K�C�t� ��K�dK

+
∫ �S

0
HSS�K�P�t� ��K�dK� (3)

which merely formalizes how H�S� can be synthesized from (i) a zero-
coupon bond with positioning: H��S�−�S HS��S�, (ii) the stock with posi-
tioning: HS��S�, and (iii) a linear combination of calls and puts (indexed by
K) with positioning: HSS�K�. By observing the relevant market prices and
appealing to Equation (3), we can statically construct the intrinsic values of
most contingent claims.

1.2 Mimicking risk-neutral skewness and kurtosis
To streamline the discussion of stock return characteristics and the structure
of option prices, let the �-period return be given by the log price relative:
R�t� ��≡ ln�S�t+���− ln�S�t��. Define the volatility contract, the cubic con-
tract, and the quartic contracts to have the payoffs

H�S� =

R�t� ��2 volatility contract
R�t� ��3 cubic contract
R�t� ��4 quartic contract.

(4)

Let V �t� ��≡�∗
t

{
e−r� R�t� ��2

}
, W�t� ��≡�∗

t

{
e−r� R�t� ��3

}
, and X�t� ��≡

�∗
t

{
e−r� R�t� ��4

}
represent the fair value of the respective payoff. The fol-

lowing theorem is a consequence of Equations (2) and (3).
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Theorem 1. Under all martingale pricing measures, the following contract
prices can be recovered from the market prices of OTM European calls and
puts:
1. The �-period risk-neutral return skewness, SKEW�t� ��, is given by

SKEW�t� �� ≡ �∗
t 	�R�t� ��−�∗

t �R�t� ����
3�

	�∗
t �R�t� ��−�∗

t �R�t� ����
2�3/2

= er�W�t� ��−3��t� ��er�V �t� ��+2��t� ��3

�er�V �t� ��−��t� ��2�3/2

 (5)

2. The risk-neutral kurtosis, denoted KURT�t� ��, is

KURT�t� ��≡ �∗
t

{
�R�t� ��−�∗

t �R�t� ����
4}{

�∗
t �R�t� ��−�∗

t �R�t� ����
2}2

= er�X�t� ��−4��t� ��er�W�t� ��+6er���t� ��2 V �t� ��−3��t� ��4

�er�V �t� ��−��t� ��2�
2 � (6)

with ��t� �� displayed in Equation (39) of the appendix. The price of the
volatility contract,

V �t� �� =
∫ �

S�t�

2
(
1− ln

[
K
S�t�

])
K2

C�t� ��K�dK

+
∫ S�t�

0

2
(
1+ ln

[
S�t�

K

])
K2

P�t� ��K�dK� (7)

and the price of the cubic and the quartic contracts,

W�t� �� =
∫ �

S�t�

6 ln
[

K
S�t�

]−3
(
ln
[

K
S�t�

])2
K2

C�t� ��K�dK

−
∫ S�t�

0

6 ln
[
S�t�

K

]+3
(
ln
[
S�t�

K

])2
K2

P�t� ��K�dK� (8)

X�t� �� =
∫ �

S�t�

12
(
ln
[

K
S�t�

])2−4
(
ln
[

K
S�t�

])3
K2

C�t� ��K�dK

+
∫ S�t�

0

12
(
ln
[
S�t�

K

])2+4
(
ln
[
S�t�

K

])3
K2

P�t� ��K�dK� (9)

can each be formulated through a portfolio of options indexed by their
strikes.

The theorem formalizes a mechanism to extract the volatility, the skewness,
and the kurtosis of the risk-neutral return density from a collection of OTM
calls and puts. Notably one must always pay to go long the volatility and the
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quartic/kurtosis contracts. Specifically, to unwind the price of volatility, all
OTM calls and puts are to be weighted by the strike price-dependent amount:
2−2 ln�K/S�t��

K2 . In the quartic contract, the positioning is cubic in moneyness,
however. Heuristically, a more pronounced fourth moment can only give rise
to heavy-tailed distributions, a feature that will bid up the prices of both deep
OTM and in the money (hereafter ITM) calls and puts. When fitting implied
volatility curves, this effect sometimes surfaces as a parabola in the space of
moneyness and implied volatility. Therefore the weighting structure assigning
far higher weight to OTM [versus near the money (hereafter NTM)] options
does have intuitive justification.
The cubic contract displayed in Equation (8) permits a play on the skew.

With return distributions that are left-shifted, all OTM put options will be
priced at a premium relative to OTM calls. In this environment, the cost of the
short position in the linear combination of OTM puts will generally exceed
the call option counterpart. Equation (5) thus blends qualitative as well as
quantitative dimensions of asymmetry. More exactly, when the cubic contract
is normalized by V �t� ��, it quantifies asymmetry both across time and in the
stock cross section. As we shall see, the option portfolio [Equation (5)] is
instrumental in quantifying fluctuations in the smile and in reconciling the
relative structure of individual option prices.
Although it is possible to parameterize skews via a specific jump model,

for reasons already discussed, the model-free determination of skews is desir-
able on theoretical and empirical grounds. In our context, moment discovery
can be contemplated as summing a coarsely available grid of OTM calls
and puts; it also generalizes to American options. The latter assertion can
be supported in two ways. First, OTM options have negligible early exer-
cise premiums. Second, even when early exercise premiums are not modest
[i.e., OTM options in the neighborhood of at the money (hereafter ATM)],
the portfolio weighting in these options is small by construction. In the con-
verse, larger weighting applies to deep OTM options but their market prices
are declining rapidly with strikes. In reality, a finite positioning in options
should effectively span the payoffs of interest. We address issues of accuracy
in our implementations.
Equation (5) may be useful to researchers interested in measuring risk

compensation for individual/index skews [see Harvey and Siddique (2000)].
Suppose an individual holds the claim �Rn�t���−�n�3

�er�Vn�t���−�n�t���2�3/2
, with no idiosyn-

cratic exposure. The market price of this exposure is precisely given by
Equation (5). For any admissible stochastic discount factor, 
, and covari-
ance operator, covt�
� 
�, the reward for bearing skewness risk, �S , is then

�S − r =−covt

(

�t+�t�


�t�
�
SKEW�t+�t� ��

SKEW�t� ��

)
� (10)

which is, in principle, computable once the stochastic discount factor has
been identified. The identification of 
 can be rather involved and requires the
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joint estimation and formulation of the physical and risk-neutral processes.
For details on this procedure we refer the reader to Pan (1999), Chernov and
Ghysels (2000), and Harvey and Siddique (2000).

1.3 Sources of risk-neutral index skews
For our synthesis involving the relationship between risk-neutral and physical
densities, let p�Rm� denote the physical density of the �-period index return,
Rm. Similarly denote the joint physical density of the stock collection by
p�R1� � � � �RN �Rm�. Under certain conditions, we must have, by the Radon–
Nikodym theorem, the identities (see the appendix)

q�Rm� =
e−� Rm ×p�Rm�∫

e−� Rm ×p�Rm� dRm

� and (11)

q�R1� � � � �RN �Rm� =
e−� Rm ×p�R1� � � � �RN �Rm�∫

e−� Rm ×p�R1� � � � �RN �Rm� dR1 · · ·dRN dRm

� (12)

where e−� Rm is the pricing kernel in power utility economies, with coefficient
of relative risk aversion �. Here the risk-neutral index density is obtained by
exponentially tilting the physical density. Note that the normalization factor in
the denominator of Equation (11) ensures q�Rm� is a proper density function
that integrates to unity. We now prove the main result of this subsection.

Theorem 2. Up to a first-order of �, the risk-neutral skewness of index
returns is analytically attached to its physical counterparts via

SKEWm�t� ��≈ SKEWm�t� ��−�
(
KURTm�t� ��−3

)
STDm�t� ��� (13)

where STD�t� ��, SKEW�t� ��, and KURT�t� �� represent return standard
deviation, skewness, and kurtosis, under the physical probability measure,
respectively. Thus exponential tilting of the physical density will produce
negative skew in the risk-neutral index distribution, provided the physical
distribution is fat-tailed (with nonzero �).

Because our characterization of individual equity skews hinge on negative
skewness in the risk-neutral index distribution, the result [Equation (13)] is
of special relevance. At a theoretical level, Theorem 2 provides sound eco-
nomic reasons for the presence of risk-neutral skews, even when the physical
process is symmetric. Essentially it states that there are three sources of neg-
ative skew in the risk-neutral index distribution. First, a negative skew in
the physical distribution causes the risk-neutral index distribution to be left-
skewed, even under � = 0 restriction. Second, risk-neutral index skews and
the kurtosis of the physical measure appear to be inversely related: for a
given volatility level and risk aversion, raising the level of kurtosis beyond
3 generates a more pronounced left tail. In a likewise manner, higher stock
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market volatility will not guarantee left skew unless the parent distribution is
fat-tailed.
At the least, these features match the observations in Bates (1991) and

Rubinstein (1994) that the index distributions have become (risk-neutrally)
more negatively skewed after the crash of 1987. Finally, risk aversion makes
the risk-neutral density inherit negative skew, provided the kurtosis of the
physical distribution is in excess of 3. Since physical distributions esti-
mated in practice are often symmetric [Jackwerth (2000)], according to Equa-
tion (13), heavy-tailed index distributions and risk aversion are the most
likely root of the risk-neutral index skew.
To see the working behind this counterintuitive finding that exponential

tilting of the physical index distribution produces no skew when kurtosis is
equal to 3, let us take a parametric example in which index returns are dis-
tributed normal with mean �m and variance �2

m. With the aid of Equation (11)
and Gaussian p�Rm�, we have (for some constants A0 > 0 and A1 > 0)

q�Rm� = A0 exp�−�Rm�× exp
(
− �Rm − �̄m�

2

2 �̄2
m

)
= A1 exp

(
− �Rm − ��̄m −� �̄2

m��
2

2 �̄2
m

)
(14)

which is again a mean-shifted Gaussian variate with zero skewness. This
is consistent with our first-order analysis that indicates a need for excess
kurtosis to generate a change in skew. The excess kurtosis is well-known to
be prevalent statistically in index returns. So long as the physical distribution
is fat-tailed, the end-result is similar in stochastic volatility and pure-jump
models as well. In Equations (49)–(51) of the appendix, it is explicitly shown
how exponential tilting of the physical density alters the (first) three moments
of the risk-neutral distribution (whether the physical density is generated via
a partial equilibrium or a general equilibrium Lucas economy).
Can Theorem 2 be generalized to a broader family of utility functions? Is

the power utility assumption crucial for generating the negative skew phe-
nomena? To resolve this issue, consider the wider class of marginal utility
functions, U ′�Rm�, given by

U ′�Rm�=
∫ �

0
e−zRm ��dz�� (15)

for a measure � on 	+. This includes as candidates for marginal utility, all
bounded Borel functions vanishing at infinity [Revuz and Yor (1991)]. For
example, the choice of the gamma density for the measure ��
� results in
HARA marginal utility. In particular, we can also accommodate, as a special
case, the bounded versions of the loss aversion utility functions considered by
Kahneman and Tversky (1979). With positive ��
�, all completely monotone
utility functions (i.e., U ′�Rm� > 0, U ′′�Rm� < 0, U ′′′�Rm� > 0, and so on)
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are also nested within Equation (15). Clearly the coefficient of relative risk
aversion, ��Rm�≡−Rm U ′′�Rm�

U ′�Rm�
, can vary stochastically with Rm.

For all such stochastic discount factors, define a � approximation by
U ′�Rm��� =

∫�
0 e−�zRm ��dz�, which is just a functional arc approximation

in the space of marginal utilities. Hence

q�Rm�=
p�Rm�×

∫�
0 e−�zRm ��dz�∫∫�

0 e
−�zRm ��dz�p�Rm� dRm


 (16)

It then follows that SKEWm ≈ SKEWm− 	�
∫�
0 z��dz���KURTm−3�STDm

(see the appendix for intermediate steps). Even though risk aversion may no
longer be time invariant, the skew dynamics are still being determined by
higher-order moments of the physical distribution. In particular, as we have
shown, the even moments are being weighted by a constant proportional to
risk aversion. This is the outcome, as the risk aversion dependence on the
market is getting integrated out. In the more general case of state-dependent
preferences, the skew dynamics can depend on conditional moves in risk
aversion.
Depending on the nature of return autocorrelation, the risk-neutral skews

may not aggregate linearly across the time spectrum. To develop this argu-
ment in some detail, suppose the one-period (say, weekly) rate of return fol-
lows an AR-1 process under the physical measure Rm�t�= �Rm�t−1�+u�t�.
As usual, let the white noise, u�t�, have zero mean with ��� < 1. Keep the
higher moments STDu�t�, SKEWu�t�, and KURTu�t�, unspecified for now.
Define the term structure of risk-neutral skews, SKEWm�t� ��, as a function
of � . Using a standard logic,

STDm�t� ��= STDu�t�×
√
�−La��� ��

�1−�2�2
� (17)

SKEWm�t� ��= SKEWu�t�×
�−Lb��� ��

��−La��� ���
3/2
� and (18)

KURTm�t� ��−3= �KURTu�t�−3�× �−Lc��� ��

��−La��� ���
2
� (19)

where La��� ��≡ 2��1−�� �
1−� − �2�1−�2� �

1−�2 , Lb��� ��≡ 3��1−�� �
1−� − 3�2�1−�2� �

1−�2 + �3�1−�3� �
1−�3 ,

and Lc��� ��≡ 4��1−�� �
1−� − 6�2�1−�2� �

1−�2 + 4�3�1−�3� �
1−�3 − �4�1−�4� �

1−�4 . By combining Equa-
tions (17)–(19) with Theorem 2, several observations are apparent:

• When �=0, La=Lb=Lc=0. Therefore SKEWm�t���= 1√
�
SKEWu�t�−

�√
�
�KURTu�t�− 3�STDu�t�. As a result, absolute skews are declining

in the square root of maturity.
• With moderate levels of positive autocorrelation, the skew term struc-

tures display a U-shaped tendency: getting more negative with � initially
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and then gradually shrinking to zero with large � . With � < 0, the term
structure of skews bears the trait that short skews are always more neg-
ative than long skews. In either case, the presence of autocorrelation
slows down the rate at which the central limit theorem holds.

• If u is symmetric with kurtosis 3, the term structure of risk-neutral
index skews is flat regardless of the nature of return dependency and
risk-taking behavior.

In summary, the preceding analysis integrates two insights about the term
structure of skews. First, the part of skew that relies on risk aversion and fat-
tailed distribution is more consistent with the daily/weekly frequency. Sec-
ond, as the observation frequency is altered from weekly to monthly, the term
structure of absolute skews can get upward-sloping even when KURTm�t� ��
approaches 3. Although not pursued here, higher-order autoregressive pro-
cesses would lead to more flexible forms for absolute skew term structures.
One can take advantage of Equation (13) to reverse engineer an estimate

of the presumed constant risk aversion coefficient, and it requires only simple
inputs. To make the point precise, the risk-neutral index skew is recoverable
from option positioning Equation (5), and higher moments of the physical
distribution can be computed, with some sacrifice of quality, from the time
series of index returns. Informal as it may be, the reasonableness of the
estimates can serve as an additional metric to assess conformance with theory.
One such estimation strategy is discussed in the empirical section.

1.4 Skew laws for individual stocks
To formalize the next aspect of the problem, assume that the individual stock
return, Rn�t� ��, conforms with a generating process of the single-index type

Rn�t� ��= an�t� ��+bn�t� ��Rm�t� ��+�n�t� �� n= 1� � � � �N � (20)

where an�t� �� and bn�t� �� are scalers. Provided drift-induced restrictions
are placed on the parameters an�t� �� and bn�t� ��, the return process [Equa-
tion (20)] is also well-defined under the risk-neutral measure. Presume that
the unsystematic risk component �n�t� �� has zero mean (whether risk neutral
or physical) and is independent of Rm�t� �� for all t. Due to this property,
the coskews, E	�n�t� ���Rm�t� ��−�m�t� ���

2� and E	�2n�t� ���Rm�t� ��−
�m�t� ����, are zero. We can now state:

Theorem 3. If stock returns follow the one-factor linear model displayed
in Equation (20), then

(a) The price of the skewness contract defined in Equation (5), denoted
SKEWn�t� ��, is linked to the price of market skewness, SKEWm�t� ��,
as stated below ( for n= 1� � � � �N ):

SKEWn�t���=�n�t���SKEWm�t���+�n�t���SKEW��t���� (21)
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where SKEW��t� �� represents the skewness of �; and

�n�t� ��≡
(
1+ V��t� ��

b2n�t� ���Vm�t� ��− e−r��2
m�t� ���

)−3/2

(22)

�n�t� ��≡
(
1+ b2n�t� ���Vm�t� ��− e−r��2

m�t� ���

V��t� ��

)−3/2

(23)

with 0 ≤�n�t� ��≤ 1 and 0 ≤ �n�t� ��≤ 1.
(b) The individual skew will be less negative than the skew of the market

SKEWn�t� �� > SKEWm�t� �� n= 1� � � � �N � (24)

under the following conditions: (i) �n�t� �� belongs to a member of
distributions that are symmetric around zero (i.e., �∗

t 	�
3
n�t� ���= 0).

In this case, the variation in the price of individual skewness can
be bounded to be no more than that of the stock market index: 0 ≤
SKEWn�t���

SKEWm�t���
≤ 1; or, (ii) the distribution of �n�t� �� is positively skewed.

In Equation (24), the risk-neutral index distribution is regarded as being
left skewed. The risk-neutral individual and index skews can be recovered
from the option tracking portfolio [Equation (5)].

Since the idiosyncratic return component requires no measure-change con-
versions, the skewness laws postulated in Equation (21) will be obeyed under
both the physical and risk-neutral measures (with appropriate adjustments to
��t� �� and ��t� ��). Either way, this statement of the theorem should not
be interpreted to mean that individual return skewness will move in lockstep
with market skewness. From Equation (12), one can understand why total
volatility matters for pricing derivatives even though the stochastic discount
factor only prices systematic risk. This feature is reflected in the price of
skewness, as the latter is merely a portfolio of options.
Two polar cases can shed light on the precise role of idiosyncratic skew-

ness. Case A: Rn�t� ��= an�t� ��+bn�t� ��Rm�t� ��, accommodates a gener-
ating structure in which individual return is perfectly correlated with the stock
market. When this is so, the risk-neutral skewness of the individual stock
coincides with that of the market. Case B: Rn�t� �� = an�t� ��+ �n�t� ��.
In this setting, the sole source of individual skewness is the idiosyncratic
skewness. In reality, the individual skewness will be partly influenced by
market skewness and partly by idiosyncratic skewness. In a later empirical
exercise, we study the skew law implication that 0 ≤ �n�t� �� ≤ 1. We can
also note that if Equations (21)–(24) hold simultaneously and the market is
heavily skewed to the left, then the idiosyncratic skews are bounded below
and cannot be highly negative.
Even though not stressed in the theorem, more can be said about the

character of individual risk-neutral distributions. Relying on the properties of
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variance operators and Equation (20), first observe that Vn�t� �� = b2n�t� ��
Vm�t� ��+V��t� ��. Thus, provided the variance of the unsystematic factor
is sufficiently well behaved, the individual risk-neutral distributions will be
inherently more volatile than the index. Next, as even moments are correlated
in general, we may expect individual stocks to display more leptokurtosis
than the market.
Due to the aforementioned, the differential pricing of index and individual

equity options is likely. First, as expected, the less negative individual equity
skew tempers the way all individual OTM puts are priced vis-à-vis all OTM
calls. In particular, the skewness premium should get alleviated for individual
stock options. Second, as individual stocks are more inclined to extreme
moves than the market, the valuation of deep OTM calls/puts versus NTM
calls/puts can be expected to diverge as well. These departures between the
index and individual risk-neutral distributions will modify the structure of
option prices (i.e, the smiles).
To get a flavor of the skew laws outside of the single-factor model, con-

sider Rn�t� ��= an�t� ��+bn�t� ��Rm�t� ��+cn�t� ��F �t� ��+�n�t� ��, which
incorporates a systematic factor, F , besides the market index. Assume the
independence of Rm�t� ��, F �t� ��, and �n�t� ��. It can be shown that

SKEWn�t� �� = �n�t� ��SKEWm�t� ��+ ��n�t� ��SKEWF �t� ��

+�n�t� ��SKEW��t� ��� (25)

where �n > 0, ��n > 0, and �n > 0 are given in Equations (56)–(58) of the
appendix. Two parametric cases are of special appeal. Suppose SKEWF �t�
�� < 0. Then, as in the single-factor characterization, �n cannot be relatively
far left skewed with negative index skews. Next, when SKEWF �t� �� > 0,
then SKEWn�t� �� > SKEWm�t� �� with symmetry of �n. Under the auxiliary
assumption that each systematic factor contributes equally to the variance of
Rn, we can see that SKEWn�t� �� > �SKEWm�t� ��+SKEWF �t� ���/2, for
all n and all � .
Our framework is sufficiently versatile to recover coskews between individ-

ual stocks and the market. The risk-neutral coskew is [Harvey and Siddique
(2000)]

COSKEWn�t���

≡ �∗
t 	�Rn�t���−�∗

t �Rn�t�����×�Rm�t���−�∗
t �Rm�t�����

2�

	�∗
t �Rn�t���−�∗

t �Rn�t�����
2×�∗

t �Rm�t���−�∗
t �Rm�t�����

2�1/2
(26)

=bnSKEWm�t���
er�Vm�t���−�2

m�t���√
er�Vn�t���−�2

n�t���
n=1�� � � �N � (27)

from the single-factor assumption of Equation (20). As before, V �t� �� and
��t� �� are known from option positioning Equations (7) and (39). However,
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recognize that bn�t� �� is a risk-neutralized parameter and can be estimated
from individual equity option prices. We leave this application on coskews
to a future empirical examination.
Before closing this section we need to bridge one remaining gap: Can the

leverage effect reproduce risk-neutral skewness patterns, where the aggre-
gate index is more negatively skewed than any individual stock. For this
purpose we parameterize, in the appendix, a model in which stock returns
and volatility correlate negatively at the individual stock level. In this setting
we demonstrate that the leverage effect does impart a negative skew to the
individual stock and to the aggregate index. But its predictions for the skew
magnitudes are sharply at odds with those asserted in Theorem 3. Specif-
ically, leverage suggests that index skews will be less negative than some
individual stocks. The model’s implications for the joint behavior of risk-
neutral and physical distributions are unknown, and outside our scope. For
a different strand of the leverage argument, readers are referred to Toft and
Prucyk (1997).

2. The Structure of Option Prices and Skewness/Kurtosis

We can now merge theoretical elements of the risk-neutral distributions of
the market and the individual stocks on one hand, and the mapping that exists
between the structure of option prices and the risk-neutral moments on the
other. As such, this formalizes the empirical framework for exploring the
observed structure of option prices–individual equities or the stock market
index.
To fix ideas, define the implied volatility as the volatility that equates the

market price of the option to the Black–Scholes value. Accordingly, for risk-
neutral density, q�S�, the implied volatility, � , is obtained by inverting the
Black–Scholes formula∫

�
e−r� �K−S�+q�S�dS = Ke−r� �1−� �d2��−S�t��1−� �d1��� (28)

where d1�y�=− ln�ye−r� �
�
√
�

+ 1
2�

√
� , d2�y�= d1�y�−�

√
� and moneyness y ≡

K
S
. Clearly, to know the implied volatility, one must know the form of q�S�

or the structure of option prices.
We will refer to the implied volatility curves as measuring the relation

among put option implied volatilities that differ only by their moneyness,
going from deep OTM puts to deep ITM puts. For a fixed � , write ��y� t� ��
to reflect its dependence on y, and define the slope of the implied volatility
curve as some notion of change in put-implied volatility with change in
moneyness. Intuitively a flatter implied volatility curve implies that option
prices of adjacent strikes are spaced closer rather than far apart. The market
perception of the price of jump risk is embedded in the evolution of the
implied volatility curve [Rubinstein (1994)].
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The following result—which relates the implied volatility function to the
risk-neutral moments—is borrowed with some modification from Backus
et al. (1997). As in Longstaff (1995), it hinges on an approximate repre-
sentation of any risk-neutral density in terms of the Gaussian.

Theorem 4. Let ��y� t� �� denote Black–Scholes implied volatility [as recov-
ered by solving Equation (28)]. Then, for a given moneyness, the implied
volatility is affine in the risk-neutral moments that surrogate tail asymmetry
and tail size:

�n�y� t� ��≈ �n�y�+�n�y�SKEWn�t� ��+�n�y�KURTn�t� ���

n= 1� � � � �N � (29)

for functions ��y�, ��y� and ��y� that can be obtained in closed form. For
a given (average) moneyness, the slope of the smile is affine in the same
determinants.

The virtue of Theorem 4 is that it justifies the use of simple econometric
specifications to analyze the relationship between the risk-neutral moments
and the structure of option prices.2 Theorem 4 is essentially a first-order
approximation of individual implied volatility, at a given moneyness and
maturity, in terms of higher-order risk-neutral moments of the individual
risk-neutral density. As such, Equation (29) is robust to a wide variety of
specifications for the physical process of equity returns and the market price
of risk. Hence there is little economic content in the validity of Equation (29);
it just relates different statistics of the underlying risk-neutral density. Unlike
Equation (13) and (21), Equation (29) is not a model of risk-neutral skews.
The basic intuition for the coefficients ��y� and ��y� is that firms with

higher negative skew have greater implied volatility at low levels of mon-
eyness, while firms with greater kurtosis have higher implied volatilities for
both OTM and ITM puts. With regard to the effect of higher-order moments
on the shape of the implied volatility curve (at a fixed maturity), we note that
skewness is a first-order effect relative to kurtosis, and a higher negative skew
steepens the implied volatility curve. In contrast, kurtosis is a second-order
effect that symmetrically affects OTM call and put option prices, and this

2 There are cases where one cannot uniquely identify the density from the knowledge of all the moments,
including those for all powers above 4 (i.e., lognormal). Hence Equation (29) may not be true in general. We
can, at best, deduce that the correct option price equals the Black–Scholes price plus other terms surrogating
the price of higher risk-neutral moments. To get implied volatility, one has to pass through the inverse of the
Black–Scholes formula, which does not apply additively. In fact, we will get an abstract mapping of the type
��y� t� ��=��y�V �SKEW� KURT�. We may then take a first-order approximation and attain Equation (29).
To emphasize reliance on one higher odd moment and one higher even moment, we have suppressed the
dependence of �, �, and � on return volatility. As an empirical matter, we did not find smiles (its slope)
to be strongly influenced by risk-neutral volatility; its effect was already impounded in the denominators of
skewness and kurtosis.
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should flatten the slope of the implied volatility curve controlling for skew-
ness. If the skew variable is omitted, one would expect kurtosis to proxy for
the first-order effect and therefore steepen the implied volatility curve.
The discussion of the previous section along with Theorem 4 suggests the

following hypotheses that can be empirically investigated:

Hypothesis 1. The implied volatility curves are less negatively sloped for
individual stock options than for stock index options.

Hypothesis 2. The more negative the risk-neutral skewness, the steeper are
the implied volatility slopes. The more fat-tailed the risk-neutral distribution,
the flatter are the smiles in the presence of skews.

Hypothesis 3. Individual stock return (risk-neutral) distributions are, on
average, less negatively skewed than that of the market. Granted, the physical
distribution of the index is fat-tailed, the risk-neutral distribution of the index
is generally left skewed.

Hypothesis 1 lays the foundation of the investigation—is it true, as com-
monly asserted, that the structure of individual option prices is flatter? Hypoth-
esis 2 associates the slope of the smile to the moments, dynamically in the
time series, as well as in the cross section. Finally, Hypothesis 3 directly
follows from Theorem 3. The restriction it imposes on the price of indi-
vidual skew relative to the price of market skew warrants an idiosyncratic
return component that is not heavily left skewed. These hypotheses are inter-
related. For instance, individual slopes are flatter than the market because
individual stocks are less negatively skewed. This implicitly requires index
risk-neutral distributions to be left-displaced versions of the physical coun-
terparts. Having consolidated the big picture in theory, we now pursue our
empirical objectives in sufficient detail.

3. Description of Stock Options and Choices

The primary data used in this study are a triple panel (in the three dimensions
of strike, maturity, and underlying ticker) of bid-ask option quotes written on
31 stocks and one index, obtained from the Berkeley Options Database. The
sample contains options on the S&P 100 index (the ticker OEX) and options
on the 30 largest stocks in the S&P 100 index. These options are American
and traded on the Chicago Board Options Exchange. For each day in the
sample period of January 1, 1991, through December 31, 1995, only the last
quote prior to 3:00 pm (CST) is retained.
For three reasons, we employ daily data to construct weekly estimates of

our variables. First, the use of daily data minimizes the impact of outliers by
allowing moments to be computed daily and then averaged over the calendar
week. Second, the estimation of the slope of the weekly smile for individual
equity options requires daily data over the week so that there are sufficient
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observations to estimate the smile. Third, the daily risk-neutral index skews
exhibit a Monday seasonality [Harvey and Siddique (1999)]. The exact pro-
cedure to build the time series of the smile and its slope will be outlined
shortly.
The requirement to sample options daily virtually limits the analysis to the

largest 30 stocks by market capitalization. Even with the existing choice, the
raw data contains more than 1.4 million price quotes, and additional stocks
would have made the empirical examination less manageable. The tickers and
names of the individual stock options are displayed in the first two columns
of Table 1. The set includes, among others, such actively traded and familiar
stock options as IBM, General Electric, Ford, and General Motors.

Table 1
Description of OTM calls and puts

Number of Midpoint of
option quotes option quote

OEX
Short Medium Short Medium

Ticker Stock Weight Call Put Call Put Call Put Call Put

1. AIG American Int’l 2.32 3414 3884 1779 2471 1.26 0.99 2.34 1.47
2. AIT Ameritech 1.24 1902 2199 1260 1570 0.62 0.58 0.96 0.89
3. AN Amoco 1.09 2112 1942 1491 1435 0.49 0.48 0.79 0.76
4. AXP American Express 1.27 2325 2367 1458 1696 0.41 0.40 0.66 0.60
5. BA Boeing Company 1.27 2848 2624 1927 1896 0.56 0.48 0.93 0.71
6. BAC BankAmerica Corp. 1.53 2640 3023 1576 2007 0.62 0.53 0.99 0.77
7. BEL Bell Atlantic 1.90 2242 2335 1409 1600 0.47 0.47 0.71 0.74
8. BMY Bristol-Myers 2.85 3040 3311 1927 2335 0.63 0.57 1.04 0.84
9. CCI Citicorp 1.82 2545 2983 1512 2007 0.47 0.41 0.79 0.57
10. DD Du Pont 2.33 2492 2639 1472 1731 0.57 0.53 0.98 0.79
11. DIS Walt Disney Co. 2.04 4020 4677 2297 2905 1.06 0.87 2.00 1.40
12. F Ford Motor 1.66 2924 3068 2062 2264 0.56 0.51 0.90 0.80
13. GE General Electric 7.29 3323 4019 1857 2801 0.67 0.59 1.28 0.93
14. GM General Motors 1.36 3021 3134 2107 2208 0.58 0.53 0.98 0.78
15. HWP Hewlett-Packard 1.73 3973 5305 2168 3978 1.29 0.92 2.57 1.38
16. IBM Int. Bus. Mach. 3.05 5605 4806 3514 2755 0.89 0.84 1.41 1.31
17. JNJ Johnson & Johnson 2.48 2999 3256 1646 2148 0.81 0.70 1.40 1.00
18. KO Coca Cola Co. 5.18 2438 3305 1450 2589 0.62 0.50 1.09 0.69
19. MCD McDonald’s Corp. 1.21 2321 2285 1443 1814 0.51 0.40 0.89 0.60
20. MCQ MCI Comm. 0.99 2437 2311 1503 1508 0.46 0.44 0.74 0.65
21. MMM Minn Mining 1.01 3532 3730 1946 2175 0.80 0.75 1.32 1.21
22. MOB Mobil Corp. 1.63 2573 2618 1795 2232 0.71 0.67 1.15 1.00
23. MRK Merck & Co. 3.75 3283 4163 1865 2639 0.98 0.83 1.69 1.31
24. NT Northern Telecom 0.89 1916 1788 1213 1176 0.60 0.53 0.94 0.72
25. PEP PepsiCo Inc. 1.65 2091 2459 1285 1695 0.40 0.36 0.65 0.51
26. SLB Schlumberger Ltd 1.04 2965 2678 1670 1699 0.77 0.71 1.34 1.06
27. T AT&T Corp. 2.64 2423 2607 1498 1783 0.45 0.36 0.73 0.50
28. WMT Wal-Mart Stores 3.31 2539 2959 1868 2036 0.49 0.42 0.80 0.63
29. XON Exxon Corp. 4.64 2364 2502 1375 1556 0.46 0.44 0.73 0.66
30. XRX Xerox Corp. 0.89 3665 4615 1927 2921 1.23 0.94 2.13 1.43
31. OEX S&P 100 Index 12793 22755 10981 16828 2.15 1.86 4.98 4.47

The table reports the number of observations and the midpoint price as the average of the bid-ask quotes for short-term and
medium-term OTM calls and puts for 30 stocks and the S&P 100. The ticker, name, and recent weight of the stock in the index
(as of May 1998) are also reported. The call (put) is OTM if K/S > 1 (K/S < 1), where S denotes the contemporaneous stock
price and K is the strike. Short-term options have remaining days to expiration of between 9 and 60 days and medium term
between 61 and 120 days. Only the last daily quote prior to 3:00 p.m. CST of each option contract is used in our calculations.
The sample period extends from January 1, 1991, through December 31, 1995 for a total of 358,851 option quotes (162,046
calls and 196,805 puts).
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To be consistent with the existing literature, the data were screened to
eliminate (i) bid-ask option pairs with missing quotes, or zero bids, and
(ii) option prices violating arbitrage restrictions that C�t� ��K� < S�t� or
C�t� ��K� > S�t�− PVD�D�− PVD�K�, for present value function PVD�
�
and dividends D. As longer- (and very short-) maturity stock option quotes
may not be active, options with less than 9 days and more than 120 days to
expiration were also discarded. Finally, as indicated by Theorem 1, we only
keep OTM calls and puts. As a result, puts have moneyness corresponding to
	 K
S�t�

� K
S�t�

< 1�, and calls have moneyness corresponding to 	 K
S�t�

� K
S�t�

> 1�.
Although each series for skewness and kurtosis pertain to a constant � ,

in practice, it is not possible to strictly observe these, as options are seldom
issued daily with a constant maturity. Therefore, in our empirical exercises, if
an OTM option has remaining days to expiration of 9 to 60 days, it is grouped
in the short-term option category; if the remaining days to expiration is 61
to 120 days, the option is grouped in the medium-term category. Thus only
two classifications of smiles and option portfolios are investigated.
Table 1 reports the option price as the average of the bid and ask quotes,

and the number of quotes, for both short-term and medium-term OTM calls
and puts. The table also reports the weight of each stock in the OEX. As
would be expected, the index has considerably more strikes quoted than
individual stock options, with puts more active than calls. In the combined
option sample, there are 358,851 OTM calls and puts.
Because each option under scrutiny has the potential for early exercise, the

treatment of the smile is arguably controversial. To probe this issue we also
calculate the volatility that equates the observed option price to the American
price. For estimating the price of the American option, we follow Broadie
and Detemple (1996). We construct a binomial tree where the Black–Scholes
price is substituted in the penultimate step. The American option price is esti-
mated by extrapolating off the prices estimated from 50- and 100-step trees,
using Richardson extrapolation, and accounts for lumpy dividends. We then
estimate two separate implied volatilities: the volatility that equates the option
price to the American and the Black–Scholes price. In the latter calculations,
discounted dividends are subtracted from the spot stock price.
Table 2 compares the European and American implied volatilities. While

presenting this comparison, three decisions are made for conciseness. First,
options are divided into two moneyness intervals: [−10%�−5%) and [−5%,
0), for calls and puts. Next, only the implied volatilities for a sample of
10 stocks and the OEX are shown. Finally, we focus on the 1995 sample
period, as averaging over the full five-year sample narrows the differences
even further. For the most part, the implied volatility curves tend to taper
downward from deep OTM put options to ATM, and then moves slightly
upward as the call becomes progressively OTM. Although the American
option implied volatility (denoted AM) is smaller than the Black–Scholes
(denoted BS) counterpart, this difference is negligible and within the bid-ask
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Table 2
Black–Scholes implied volatilities versus American option implied volatilities

Short-term options Medium-term options

OTM puts OTM calls OTM puts OTM calls

−10% to −5% −5% to 0% 0% to −5% −5% to −10% −10% to −5% −5% to 0% 0% to −5% −5% to −10%

Ticker BS AM BS AM BS AM BS AM BS AM BS AM BS AM BS AM

AIG 21.59 21.51 19.98 19.79 18.86 18.86 19.13 19.13 19.88 19.67 19.84 19.38 18.41 18.41 18.46 18.46
BA 26.73 26.64 23.61 23.41 21.78 21.77 22.87 22.87 24.50 24.28 23.39 23.02 21.93 21.90 20.89 20.88
DIS 26.40 26.31 23.97 23.76 22.79 22.79 24.04 24.05 25.54 25.33 24.33 23.93 22.68 22.68 22.32 22.32
GE 22.78 22.70 20.04 19.85 17.79 17.79 18.48 18.48 20.53 20.33 20.11 19.75 17.10 17.09 16.50 16.49
GM 27.20 27.10 25.38 25.17 25.46 25.16 26.24 26.07 26.23 25.95 25.83 25.35 25.49 25.46 25.33 25.33
HWP 34.26 34.16 33.11 32.89 31.64 31.64 33.23 33.23 33.42 33.12 33.31 32.82 32.09 32.09 33.19 33.19
IBM 28.76 28.67 27.24 27.03 25.88 25.88 26.71 26.71 26.59 26.33 26.42 25.94 24.95 24.95 24.80 24.80
JNJ 22.45 22.37 20.22 20.03 18.64 18.60 19.72 19.70 20.74 20.52 20.13 19.67 17.78 17.78 17.64 17.64
MMM 21.35 21.26 20.19 20.00 18.53 18.25 19.81 19.74 19.27 19.03 18.65 18.19 16.71 16.71 17.62 17.62
XRX 26.32 26.24 24.78 24.58 23.09 23.09 22.97 22.98 24.69 24.43 24.68 24.20 22.18 22.18 21.72 21.72
OEX 18.52 18.49 13.45 13.36 10.72 10.72 10.76 10.76 16.01 15.93 13.31 13.10 10.73 10.73 10.08 10.08

For a sample of 10 stocks and the OEX, the table reports the Black–Scholes (denoted BS) and the American (denoted AM) option implied volatilities obtained by inverting the Black–Scholes and the American
option price, respectively. The American option price is estimated by Richardson extrapolation of 50- and 100-step binomial trees, accounting for lumpy dividends [see Broadie and Detemple (1996)]. The implied
volatilities of individual options are then averaged within each moneyness-maturity category and across days. Two categories of OTM options are used corresponding to the intervals [−10%, −5%) and [−5%, 0).
Short-term options have remaining days to expiration of between 9 and 60 days, and medium term between 61 and 120 days. All numbers correspond to the period of January 1, 1995, through December 31, 1995.
As OTM call options have the same implieds as ITM puts at a given moneyness level, the four columns representing the implieds of OTM puts and calls may be also viewed as the entire smile ranging from OTM
puts to ITM puts. In all computations, discrete dividends for each stock are collected from CRSP and are assumed known over the life of the option. For the S&P 100, the daily dividends are drawn from Standard
& Poor’s and converted to a dividend yield for each date maturity combination. Following a common practice, when the Eurodollar interest rate matching the option maturity (datasource: Datastream) is unavailable,
it is linearly interpolated.

120



Individual Equity Options

spread. With the assurance that the bias from adopting BS implied volatility
is small enough to be ignored, we adhere to convention and use only Black–
Scholes smiles to surrogate the pricing structure of options.

4. Skewness and the Structure of Option Prices: Empirical Tests

This section establishes the differential pricing of individual stock options
versus the market index and empirically relates it to the asymmetry and the
heaviness of the risk-neutral distributions. We also present a framework to
study the empirical determinants of risk-neutral index skews.

4.1 Quantifying the structure of option prices
To quantify the structure of option prices we use options of maturity � to
estimate the model,

ln���yj ��=�0+� ln�yj�+ �j� j = 1� � � � � J � (30)

across our sample of 30 stocks and the OEX, where, recall, y = K/S is
option moneyness (and deterministic). An advantage of the specification in
Equation (30) is its potential consistency with empirical implied volatility
curves that are both decreasing and convex in moneyness. This suggests a
� less than 0. We interpret � as a measure of the flatness of the implied
volatility curve and designate it as the sensitivity of the implied volatility
curve to moneyness. In economic terms, a flatter implied volatility curve
simply states that prices of put options of nearby strikes are closer, while
those options that constitute a steeper curve have prices farther apart.
The model of Equation (30) is estimated weekly, and the estimated coeffi-

cients are pooled over all the weeks in the sample. Briefly the procedure is as
follows. Over each calendar day in the week we index the available options
by j and estimate the said model by least squares. Thus, for each stock, we
estimate Equation (30) for each of the 260 weeks for which sufficient data
exist. Next, as in Fama and McBeth (1973), we time average the regression
coefficients (say, 1

T

∑T
t=1��t�). Each reported t-statistic is computed under

a first-order serial correlation assumption for the coefficient. The model is
estimated using OTM puts and calls. As in the money puts (K/S > 1) can be
proxied by OTM calls, this is tantamount to using all the strikes in the cross
section of puts.
Table 3 reports the average slope of the implied volatility curve for each

of the 30 stocks and the OEX. We also report the estimated ATM implied
volatility as exp��0�. Consider first, the results for short-term smiles. The
average ATM implied volatility for the OEX is 14%, while the average ATM
implied volatility over the 30 stocks is about 26%. With reference to the
estimate of �, we can make three observations. First, on average, � is nega-
tive for all the individual stocks and the OEX. The slopes are all statistically
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Table 3
Quantifying the structure of option prices

Short-term options Medium-term options

Slope of Slope of
the smile, the smile,

exp��0� � R2 �<0 exp��0� � R2 �<0

Ticker Avg. t Avg. t Avg. % Avg. t Avg. t Avg. %

1. AIG 0
22 32
12 −1
09 −13
01 43
57 97 0
22 119
84 −0
62 −7
61 38
2 76
2. AIT 0
19 38
45 −1
96 −14
34 55
41 96 0
19 108
39 −1
59 −15
22 31
9 57
3. AN 0
19 25
61 −0
96 −8
25 36
08 80 0
19 80
11 −0
97 −6
60 41
4 83
4. AXP 0
31 17
09 −0
26 −3
87 27
62 74 0
31 66
60 −0
32 −6
52 56
9 97
5. BA 0
27 24
78 −0
69 −7
39 33
29 80 0
25 96
42 −0
57 −4
09 73
2 97
6. BAC 0
30 18
27 −1
16 −13
03 56
81 95 0
29 93
15 −0
84 −8
30 74
7 98
7. BEL 0
21 23
70 −1
54 −10
14 48
12 86 0
20 89
94 −1
23 −7
98 59
0 95
8. BMY 0
21 22
70 −1
38 −7
78 46
55 89 0
20 93
39 −1
07 −5
02 71
5 98
9. CCI 0
35 12
87 −0
83 −10
20 42
32 90 0
35 58
59 −0
63 −6
79 75
8 97

10. DD 0
24 30
96 −0
86 −15
39 42
01 95 0
23 129
37 −0
76 −14
08 48
8 90
11. DIS 0
28 31
94 −0
91 −13
67 48
29 95 0
28 146
50 −0
69 −12
79 71
7 99
12. F 0
31 38
78 −0
62 −8
86 37
77 88 0
30 137
45 −0
50 −7
32 57
6 96
13. GE 0
21 31
67 −1
85 −19
55 61
02 99 0
20 117
81 −1
55 −22
11 81
1 98
14. GM 0
31 26
48 −0
52 −8
27 34
86 83 0
30 138
09 −0
40 −5
22 76
7 99
15. HWP 0
33 29
96 −0
83 −11
86 50
95 96 0
32 147
65 −0
50 −10
44 56
8 96
16. IBM 0
29 18
79 −0
36 −3
09 29
85 71 0
27 103
52 −0
28 −2
03 65
5 97
17. JNJ 0
24 19
64 −1
00 −10
79 41
70 93 0
24 96
00 −0
88 −5
57 69
7 99
18. KO 0
24 28
06 −1
62 −20
64 62
87 99 0
22 113
41 −1
22 −10
15 77
6 100
19. MCD 0
25 30
49 −1
16 −11
84 46
17 93 0
24 90
25 −0
99 −12
77 73
1 96
20. MCQ 0
34 31
15 −0
53 −7
22 26
34 74 0
33 81
57 −0
32 −3
63 49
6 68
21. MMM 0
21 60
43 −1
21 −6
19 42
65 90 0
19 151
90 −1
21 −11
52 67
5 96
22. MOB 0
19 30
92 −1
34 −14
75 44
17 94 0
18 124
79 −1
18 −13
29 44
9 80
23. MRK 0
27 17
46 −0
62 −3
51 38
67 72 0
26 98
47 −0
55 −3
49 76
1 98
24. NT 0
31 17
38 −0
31 −3
05 28
40 72 0
29 69
44 −0
25 −3
77 34
6 72
25. PEP 0
26 19
31 −1
13 −11
85 45
50 91 0
25 84
13 −0
92 −6
99 80
3 100
26. SLB 0
25 30
00 −0
54 −5
49 30
84 76 0
24 129
84 −0
55 −5
19 30
0 67
27. T 0
21 31
21 −1
44 −11
51 48
59 95 0
21 104
26 −1
11 −10
53 85
5 100
28. WMT 0
29 23
53 −0
95 −8
65 44
85 88 0
28 93
92 −0
50 −3
53 67
7 92
29. XON 0
17 32
56 −1
47 −14
51 41
97 91 0
16 107
16 −1
43 −9
12 75
5 99
30. XRX 0
26 36
39 −1
31 −17
38 55
73 98 0
25 162
13 −0
87 −18
17 49
8 88
31. OEX 0
14 24
80 −4
42 −22
32 86
08 100 0
14 84
31 −3
47 −20
31 93
8 100

For 30 stocks and the S&P 100, the table displays the average coefficients for the specification

ln��j �=�0+� ln�yj �+ �j j = 1� � � � � J 


Here, � is the Black–Scholes implied volatility of option with moneyness y ≡ K
S . The regression is estimated via OLS for each

of the 260 weeks in the period January 1, 1991, to December 31, 1995 in which there are a minimum of eight observations,
using OTM puts ( KS < 1) and OTM calls ( KS > 1). The table reports the estimated (i) ATM implied volatility corresponding
to K/S = 1 as exp��0�, (ii) the slope of the smile, �, and (iii) the coefficient of determination, R2 (in %), as the time-series
average over all the weekly regressions [Fama and McBeth (1973)]. The reported t-statistic is the time-series average divided by
the standard deviation of the mean. We have computed the standard deviation of the mean under a first-order serial correlation
assumption for the coefficient, and used this assumption to adjust the reported t-statistics. The table also displays (in percentage)
the fraction of the weekly estimates of the slope that satisfy �< 0.

significant, and the R2 of the regression range from 26% (for MCQ) to 86%
(for the OEX). Second, the slope for the OEX is much steeper than that
for individual stocks. Compared to the short-term OEX slope of −4
42, the
average slope over the 30 stocks is −1
02 (the difference between OEX and
a representative individual implied volatility slope is almost seven standard
deviations away).
The difference between the slopes translates into a substantial difference in

pricing. For the OEX, the slope of −4
42 indicates that the implied volatility
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of a 10% OTM put (y= 0
9) will be 22% as compared with the ATM implied
of 14%. In contrast, for the individual equity, the 10% OTM put will be priced
at 29% as compared with the ATM implied of 26%. Finally, the table reports
the statistic � < 0, a counting indicator for the number of weeks in which
the slope of the implied volatility curve is negative. This statistic ranges from
71% in the case of IBM to 100% for the OEX. Although over this sample
period the slope is always downward sloping for the index, it is not always
so for individual equities. We also examined the slope of the smile in the
yearly subsamples and still found index smiles to be much steeper than any
individual equity smile. Table 3 also shows that the regression findings from
medium-term smiles are comparable.
As may be observed from Table 1, OTM puts are far more active than OTM

calls for the OEX. To investigate the pricing differential between individual
stocks and the OEX for OTM puts alone, we also estimated Equation (30) by
trimming the option data to include only OTM puts. The average (short-term)
slope coefficient for the OEX is −5
00, as compared to an average of −2
04
over the 30 stocks. The conclusion from the one-sided smile is essentially
the same—that OTM puts are relatively more expensive than ATM puts for
OEX than in the individual option markets.
In summary, two conclusions emerge. First, the slope of the OEX smile is

persistently more negative than individual equity slopes. Second, unlike the
OEX, the slopes of individual smiles are not always negative. Thus OTM
puts are consistently and substantially more expensive than OTM calls for
the index. In contrast, the difference between OTM puts and OTM calls is
smaller for the individual equity, and may, in fact, change signs. But why
are index smiles always downward sloping? What causes the slope of the
individual smiles to reverse its sign? The differential pricing in the cross
section of strikes and in the cross section of stocks is puzzling.3

4.2 Explaining the behavior of options in the stock cross section
Although, as in the previous subsection, it is possible to establish that the
implied volatility curve is flatter for the individual equity than for the OEX,
it is difficult to provide an economic rationale for the differential pricing
of individual equity options. In this subsection and the next, we investigate

3 To verify the results, we also model the implied volatility curve as quadratic in moneyness: �j = �0 +
�1�Kj/S − 1�+�2�Kj/S − 1�2 + �j � j = 1� � � � � J [see Heynen (1994) and Dumas, Fleming, and Whaley
(1998)]. Empirically we find that the �1 of the index (slope of the smile at K

S
= 1) is consistently more

negative than the individual counterparts. In addition, the convexity parameter, �2, is persistently positive in
the cross section of stocks. Consequently the quadratic specification has in common with its log predecessor
the feature that the first-order (second-order) derivative of the implied volatility function with respect to
moneyness is negative (positive). Toft and Prucyk (1997) and Dennis and Mayhew (1999) adopt an alternative
measure where the slope is standardized to impute the distance between the implied volatilities of 10% ITM
and OTM options. This measure of the implied volatility slope is particular to just two option strikes that
are themselves almost two standard deviations OTM for short-term options, and hence constitutes a crude
measure of volatility skews.
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whether we can parsimoniously relate the structure of option prices to the
respective risk-neutral moments, and, if so, what judgments can be drawn
from the analysis.
Unlike the implied volatility curve, the risk-neutral moments are intrinsi-

cally unobservable. Here we make use of our model-free characterizations in
Theorem 1 to estimate each moment. Consider, as an example, the estimation
of the skew. This requires first replicating the cubic contract in Equation (8),
and we do this by constructing positions in both OTM calls and puts that
approximate the corresponding integral. The long position in the calls is dis-
cretized as

lim
K→�

K−S�t�
�K∑
j=1

w�S�t�+ j�K�C�t� �� S�t�+ j�K��K� (31)

where w�K�≡ 6 ln� K
S�t� �−3�ln� K

S�t� ��
2

K2 , and the short position in the puts as

S�t�−�K
�K∑
j=1

w�j�K�P�t� �� j�K��K� (32)

where now w�K� ≡ 6 ln� S�t�K �+3�ln� S�t�K ��
2

K2 . We similarly discretize and estimate
the volatility contract and the quartic contract, and next, using the formulas
in Equations (5) and (6), we estimate the risk-neutral skewness and kurtosis.
The moments are estimated daily, separately for both short-term and medium-
term options.
Motivated by Theorem 4, we investigate whether a stock with a greater

absolute skew has a steeper smile. To this end we estimate an ordinary least
squares regression

SLOPEn�t���=�+�SKEWn�t���+�KURTn�t���+�n� n=1�� � � �N �
(33)

where the series for the slope of the smile are the weekly estimates of the
coefficient � obtained from regressing log implied volatility on log money-
ness. As we have compiled weekly estimates of slopes and the corresponding
moments for each of the 30 stocks, we estimate the cross-sectional regression
weekly for each of the 260 weeks (January 1991 to December 1995). In so
doing, we follow the standard procedure of averaging the estimated regres-
sion coefficients and their R2. As before, the t-statistic is computed under
a first-order serial correlation assumption for the regression coefficient. We
report, in Table 4, results for both the multivariate regression, as well as the
univariate regressions.
Irrespective of the sample period, and regardless of the maturity structure

of the options, the coefficient for skewness, �, is positive and statistically
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Table 4
Structure of option prices and moments in the stock cross section

Restricted � ≡ 0 Restricted �≡ 0
Unrestricted regression (skewness alone) (kurtosis alone)

� � � R2 � � R2 � � R2

Year Avg. t Avg. t Avg. t Avg. Avg. t Avg. t Avg. Avg. t Avg. t Avg.

Short-Full −1
56 −23
04 1.45 40.93 0
46 12
86 51.3 −0
75 −50
59 1.26 35.44 46.5 −0
79 −25
30 −0
08 −10
07 5.6
Short-1991 −1
56 −9
95 1.29 21.89 0
48 6
21 49.7 −0
77 −20
72 1.11 13.08 43.2 −0
98 −10
44 −0
02 −1
19 3.7
Short-1993 −1
83 −12
07 1.62 20.90 0
63 7
64 52.8 −0
72 −27
73 1.40 19.66 48.0 −0
81 −14
31 −0
08 −5
31 3.2
Short-1995 −1
12 −8
65 1.37 22.05 0
21 3
18 47.3 −0
74 −19
76 1.24 14.49 44.7 −0
61 −9
01 −0
14 −7
96 9.2

Medium-Full −1
56 −13
52 1.04 32.27 0
55 8
45 56.2 −0
57 −39
50 1.01 27.88 48.1 −1
13 −16
88 0
07 2
74 9.2
Medium-1991 −1
87 −11
27 0.88 40.94 0
74 7
84 60.4 −0
57 −37
54 0.81 19.78 47.0 −1
18 −10
29 0
10 2
77 7.5
Medium-1993 −1
41 −8
78 1.10 19.79 0
47 5
24 54.3 −0
53 −23
28 1.10 17.14 50.1 −1
25 −8
44 0
10 2
41 5.4
Medium-1995 −0
78 −4
28 1.03 12.46 0
12 1
03 48.3 −0
60 −10
26 0.96 12.06 45.0 −0
72 −9
74 −0
10 −6
65 9.3

For short-term and medium-term options on 30 stocks and the S&P 100, the table reports the average coefficients of weekly cross-sectional regression,

SLOPEn = �+�SKEWn+�KURTn+ �n n= 1� � � � �N �t��

where, corresponding to stock n, SLOPEn is the slope of the smile, �n , as described in Table 3, and SKEWn and KURTn are the risk-neutral skews and kurtosis, respectively. For each day in the week, the
risk-neutral skewness and kurtosis are estimated from the cross section of OTM calls and puts (as in Theorem 1). The weekly estimate is then derived as the time average of the daily estimates. The regression is
estimated by OLS for each week in the sample period. The table reports the coefficients and the coefficient of determination (R2, in percent), as the time-series average over all the weekly regressions [as in Fama
and McBeth (1973)] for both restricted and unrestricted regressions. The reported t-statistics are computed under the assumption of first-order serial correlation for the regression coefficients. N�t� is the number of
stocks in the cross section in week t. Each row of the table shows the results for a specific maturity (short or medium) and time period. “Full” refers to the entire period from January 1, 1991, through December
31, 1995.
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significant. Thus, as premised, each week, a more negatively skewed stock
displays a steeper smile. Over the entire sample, the average coefficient for
skewness is 1.45 (t-statistic of 55.88), while that of kurtosis is 0.46 (t-statistic
of 16.54), for short-term smiles. Subperiod results for each year are consistent
with those of the overall sample period: the estimate of � is in the range of
1.29 to 1.62, and � in the range of 0.21 to 0.63. The results are stable across
both option maturities, and the fit of the regression has an average R2 of
51.37% for short-term options and 56.29% for medium-term options.
To determine the individual explanatory powers of skewness and kurtosis,

we performed two separate univariate regressions where we constrain � ≡ 0
and � ≡ 0, respectively. These restricted regressions support two additional
findings. First, the cross-sectional behavior of equity options is primarily
driven by the degree of asymmetry in the risk-neutral distributions; the aver-
age R2 in the short-term univariate regression is 46.54% with skewness alone,
as compared to 5.6% with kurtosis alone. Therefore the model performance
worsens substantially when a role for skews is omitted. We infer from this
reduction in performance that the first-order effect on the implied volatil-
ity slopes is driven by risk-neutral skews. The second point to note is that
although the sign on � remains unaltered between the restricted and the
unrestricted regressions, the coefficient on kurtosis reverses sign and turns
negative. Thus, consistent with our hypotheses, in the presence (absence) of
negative skewness, the kurtosis makes the smile flatter (steeper).
A possible explanation of the estimation results for � is that a fatter tail

is accompanied by a greater negative skew and a steeper smile, but that
the marginal effect of kurtosis is to flatten the smile. Indeed, for our sam-
ple of individual stocks and the index, the average time-series correlation
between (risk-neutral) skew and kurtosis is −0
48. Thus the negative covari-
ation between skew and kurtosis will downward bias � when skewness is
left uncontrolled in the estimation of Equation (33). To examine the role of
kurtosis separate from its covariation with the skew, we linearly project kur-
tosis onto skewness, KURT�t� �� = a0 +a1SKEW�t� ��+ K̂URT�t� ��, and
extracted the orthogonalized component of kurtosis, K̂URT�t� ��. Repeating
the cross-sectional regression of Equation (33), we get the following results
for short-term options (all coefficients are significant):

SLOPEn=−0
81+1
29SKEWn+0
10K̂URTn+�n� R2=49
98%� and

SLOPEn=−1
11+0
12K̂URTn+�n� R2=5
91%


As our evidence verifies, the orthogonal component of kurtosis also flattens
the smile. This is also true across each of the annual subsamples. To sum up,
skewness does not completely subsume the effect of kurtosis, and individual
skew variation is responsible for explaining the bulk of the variation in the
cross section of individual equity option prices. We will provide an economic
explanation for these results shortly.
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4.3 Explaining dynamic variations in individual option prices
We next research the link between the risk-neutral moments and the individ-
ual option prices in the time series (suppressing dependence on � in each
entity):

SLOPE�t�= �+�SKEW�t�+� KURT�t�+�SLOPE�t−1�+ ��t�� (34)

which involves a time-series regression of the slope of the smile on individ-
ual name risk-neutral skew and kurtosis. The SLOPE�t− 1� is included to
accommodate the possibility of serial correlation in the dependent variable,
SLOPE. Equation (34) is estimated by ordinary least squares (OLS), and the
standard errors are computed using the Newey–West procedure (with a lag
length of 8).
Panel A of Table 5 presents the unrestricted regression results for short-

term options. For all stocks and the OEX, � is positive and statistically
significant. Thus, as anticipated, the smile steepens when the risk-neutral
skew becomes more negative from one week to another. The sensitivity of
the slope to risk-neutral skewness is by far the highest for the OEX which has

Table 5
Variation in individual equity option prices across time

Panel A: Unrestricted regressions

LR test

Ticker � t��� � t��� � t��� R2  2�1� p value

1. AIG 0.75 7
80 0
03 0
83 0.44 7
18 46.0 0
68 .41
2. AIT 1.42 6
70 0
24 4
52 0.21 2
20 46.1 23
12 .00
3. AN 0.73 6
05 −0
06 −2
23 0.21 3
81 44.6 23
12 .00
4. AXP 0.35 3
59 0
01 0
95 0.33 3
13 43.7 2
00 .16
5. BA 0.95 10
21 0
03 1
99 0.26 4
14 66.6 6
56 .01
6. BAC 0.68 10
42 0
04 2
95 0.39 7
73 68.1 8
53 .00
7. BEL 1.24 12
11 0
13 4
51 0.28 4
22 64.3 31
83 .00
8. BMY 1.05 10
06 0
05 2
15 0.37 7
69 71.1 8
00 .00
9. CCI 0.58 9
50 −0
01 −1
25 0.42 8
78 63.3 1
22 .27

10. DD 0.57 9
26 0
04 3
04 0.30 4
60 43.8 11
27 .00
11. DIS 0.52 6
58 0
04 2
47 0.52 10
18 55.8 6
13 .01
12. F 0.41 5
97 0
02 2
31 0.45 8
25 57.6 7
25 .01
13. GE 1.07 11
76 0
10 5
62 0.46 9
51 62.3 30
01 .00
14. GM 0.49 6
90 −0
01 −0
79 0.46 9
22 58.9 0
97 .33
15. HWP 0.47 8
10 0
06 2
57 0.52 8
54 61.5 10
02 .00
16. IBM 0.80 6
47 −0
03 −1
12 0.53 8
77 74.8 2
57 .11
17. JNJ 0.49 4
13 0
01 0
90 0.43 6
74 49.5 1
60 .21
18. KO 0.86 10
30 0
08 4
57 0.27 4
55 58.6 37
00 .00
19. MCD 0.87 11
10 0
09 4
62 0.29 3
81 57.5 36
67 .00
20. MCQ 0.81 7
63 0
03 1
56 0.18 3
10 47.0 3
61 .06
21. MMM 0.87 5
14 0
08 1
96 0.63 8
17 47.2 3
45 .06
22. MOB 0.95 8
96 0
05 2
02 0.31 6
31 54.2 6
43 .01
23. MRK 0.77 7
67 0
07 5
34 0.45 5
77 74.6 32
59 .00
24. NT 0.58 5
74 0
04 1
53 0.27 6
04 48.6 5
10 .02
25. PEP 0.78 9
65 0
04 3
43 0.28 6
02 58.6 13
61 .00
26. SLB 0.95 10
43 0
10 4
25 0.27 7
64 60.7 22
21 .00
27. T 1.00 10
03 0
08 4
85 0.27 5
09 71.3 33
58 .00
28. WMT 0.59 13
24 0
04 2
88 0.43 6
65 66.3 11
09 .00
29. XON 1.11 9
17 0
08 4
13 0.15 3
40 54.4 22
14 .00
30. XRX 0.57 4
50 0
08 2
71 0.51 10
62 43.0 9
79 .00
31. OEX 1.83 5
65 0
21 5
02 0.58 7
68 74.8 28
43 .00
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Table 5
(continued)

Panel B: Restricted regressions

Restricted � ≡ 0 Restricted �≡ 0
(skewness alone) (kurtosis alone)

Ticker � t��� � t��� R2 � t��� � t��� R2

1. AIG 0.71 7
22 0.44 7
12 45.9 −0
12 −3
03 0.53 8
69 32.5
2. AIT 0.77 4
19 0.29 3
28 34.2 −0
04 −1
39 0.37 4
19 15.1
3. AN 0.60 2
87 0.24 4
32 38.9 0
00 0
09 0.33 4
90 10.9
4. AXP 0.32 3
85 0.34 3
92 43.2 −0
02 −2
39 0.50 5
34 25.9
5. BA 0.88 9
16 0.27 4
28 65.7 −0
05 −2
36 0.54 7
39 33.5
6. BAC 0.58 10
32 0.39 8
23 67.0 −0
07 −4
93 0.57 11
05 46.6
7. BEL 0.84 10
70 0.29 4
38 59.4 −0
11 −5
32 0.44 5
99 36.5
8. BMY 0.91 7
17 0.37 7
56 70.2 −0
09 −3
29 0.61 10
58 53.2
9. CCI 0.59 10
85 0.43 8
76 63.2 −0
07 −5
31 0.57 10
16 45.5

10. DD 0.47 7
71 0.31 4
58 41.2 −0
01 −1
80 0.44 6
08 20.9
11. DIS 0.49 6
48 0.52 10
67 54.8 0
12 0
94 0.64 14
92 42.4
12. F 0.36 4
78 0.47 8
45 56.4 −0
01 −1
09 0.63 14
54 40.2
13. GE 0.74 7
87 0.49 9
83 57.7 −0
06 −3
30 0.58 11
82 38.7
14. GM 0.49 7
02 0.45 9
01 58.7 −0
03 −2
81 0.63 13
39 41.2
15. HWP 0.41 7
14 0.54 9
30 59.9 0
00 0
09 0.69 12
67 48.8
16. IBM 0.78 7
40 0.54 9
16 74.6 0
00 0
18 0.77 19
31 63.7
17. JNJ 0.45 4
58 0.44 6
99 49.2 −0
04 −2
74 0.58 10
88 37.5
18. KO 0.63 10
01 0.25 4
00 52.2 −0
02 −0
88 0.51 7
83 29.5
19. MCD 0.61 5
97 0.32 4
67 50.8 −0
04 −3
05 0.47 6
67 25.8
20. MCQ 0.77 7
33 0.19 3
15 46.2 −0
03 −1
32 0.35 4
32 13.2
21. MMM 0.70 5
78 0.65 8
73 46.5 −0
03 −1
22 0.66 9
11 42.2
22. MOB 0.87 8
83 0.32 6
38 53.2 −0
05 −2
53 0.48 7
80 24.3
23. MRK 0.53 8
35 0.58 11
36 71.1 −0
03 −1
80 0.77 13
77 58.1
24. NT 0.47 8
56 0.28 6
61 47.4 −0
07 −5
89 0.39 6
84 28.8
25. PEP 0.66 8
58 0.28 5
18 56.3 −0
04 −3
88 0.45 6
01 27.8
26. SLB 0.77 6
60 0.31 8
79 57.2 −0
07 −2
15 0.52 12
71 29.9
27. T 0.65 10
53 0.32 6
43 67.3 −0
07 −5
84 0.53 8
60 49.3
28. WMT 0.51 11
68 0.47 8
25 64.8 −0
03 −1
33 0.68 14
83 47.1
29. XON 0.85 7
33 0.17 3
65 50.4 −0
06 −4
24 0.35 6
95 21.3
30. XRX 0.42 3
70 0.51 10
18 40.9 −0
01 −0
59 0.57 12
13 33.3
31. OEX 0.69 5
38 0.64 9
97 71.9 −0
06 −3
82 0.76 14
57 68.7

For each of the 30 stocks and the S&P 100, the table reports the results of a time-series regression: SLOPE�t�=�+�SKEW�t�+
�KURT�t�+�SLOPE�t−1�+ ��t�, where SLOPE(t) is the (weekly) slope of the smile (i.e., the previously computed ��t� in
Table 3). SKEW(t) and KURT(t) are the risk-neutral skew and kurtosis for each of the 260 weeks in the sample period, January
1, 1991, to December 31, 1995. We include SLOPE(t− 1) to correct for the autocorrelation of the dependent variable. The
method of estimation is OLS. The t-statistics are computed using the Newey–West (with a lag length of 8 weeks) methodology
that corrects for heteroscedasticity and serial correlation. Standard errors with lag length up to 20 are virtually similar. R2 is the
coefficient of determination (in %). The reported  2�1� is the likelihood ratio test statistic for the null hypothesis that � = 0.
The corresponding p value is presented under the column “p value.” Only the results using short-term smiles are shown here.

a � of 2.44, in contrast to a range of 0.35 to 1.42 for the individual stocks.
The kurtosis coefficient, �, is typically small and positive, with 21 significant
t-statistics. As in the case of the cross-sectional regressions, an increase in
risk-neutral kurtosis flattens the smile in the time series as well. Overall, all
regressions appear to have a reasonable fit. The serial correlation coefficient,
�, is positive and statistically significant (all names and the OEX).
Two additional tests are performed to better appreciate the role of risk-

neutral skew and kurtosis. First, we perform the restricted regressions and
examine the fit of each model (see panel B of Table 5). For the vast majority
of the stocks, risk-neutral skewness tracks the dynamic movements in the
slope of the smile fairly well (on average, the R2 is 55.40%). When kurtosis
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is included by itself in Equation (34), there is some deterioration in model
fit (on average, the R2 is 36.57%). While not shown in a table, the key
conclusions are unchanged with medium-term options. Therefore, as hypoth-
esized, the tail asymmetry and the tail size of the risk-neutral distribution are
reflected in the asymmetry of the implied volatility curves.
Second, returning to panel A of Table 5, we also present the likelihood

ratio test statistic for the exclusion restriction that � = 0. As is standard
[Hamilton (1994)], this statistic is distributed  2(1). From the last two col-
umns of panel A of Table 5, we can observe that most of the chi-square
statistics are large in magnitude. In fact, 23 of the p values are lower than
.05 and only 6 p values exceed .10. Based on this test, we can conclude that,
even in the presence of negative skew, risk-neutral kurtosis is important in
explaining dynamic movements in the slope of the smile. The marginal effect
of omitting risk-neutral kurtosis is strongest for the market index.
One concern with the regression results that we just presented is that

the slope of the smile as well as the risk-neutral moments are based on
the same set of options. To verify our results, we perform integrity checks
from two angles. First, consistent with the term structure of risk-neutral
skews, we regress the medium-term slope of the smile on short-term skew-
ness: SLOPEmed�t�= �̂+ �̂SKEWsh�t�+ �̂SLOPEmed�t−1�+��t�, and, sec-
ond, we regress the medium-term slope on lagged medium-term skewness:
SLOPEmed�t�= �̃+ �̃SKEWmed�t−1�+ �̃SLOPEmed�t−1�+��t�. For each
regression, the slope and the risk-neutral skew are now estimated from a
collection of option prices with no overlap. If the results of Table 5 are
not spurious, then using either the lagged medium-term skew or the short-
term skew as an instrumental variable for the medium-term skew should give
qualitatively similar (albeit weaker) results. In the first candidate specifica-
tion, the index and 22 of the 30 stocks show significant positive coefficients.
For the second specification, all 30 stocks and the index show significant
positive coefficients, with comparable goodness-of-fit R2 statistics. Both sets
of regressions indicate that increasing the absolute magnitude of risk-neutral
skewness makes puts more expensive relative to calls.
If there are strong cross-sectional comovements in the estimated slope of

the smile and the risk-neutral moments, then a multivariate version of Equa-
tion (34) may be more informative. Therefore, as an additional check, we
also estimate a multivariate multiple regression across 31 individual names.
This seemingly unrelated regression (SUR) equation system not only allows
regression disturbances to be correlated, but also permits a joint test for
�n = 0 for n = 1� � � � �31. While not shown, the results of the SUR are
similar to those reported in Table 5. For instance, all the estimated � are
positive and significant, while only 21 of the 31 estimated � are significant.
Moreover, a (multivariate) likelihood ratio test that � ≡ 0 is rejected with a
p value< 
001 ( 2�31�= 239
11�.
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Equation (34) and Equation (13), which relate risk-neutral index skews
to physical index higher moments via risk aversion, are part of the same
underlying economic equilibrium, and may be combined. In the one-factor
generating structure, one may view the implied volatility slope as reflecting
risk-neutral index skews, with the idiosyncratic component providing a per-
turbation. On the other hand, one can think of individual risk-neutral skew
and kurtosis as noisy proxies for the respective index moments. Following
the derivation of Theorem 2, one may relate the risk-neutral index kurtosis
to risk aversion and the physical moments by

KURTm ≈ KURTm −��2�KURTm +2�SKEWm +PKEWm�STDm� (35)

where PKEW is the fifth (physical) moment normalized by the variance
raised to the power 5/2; other physical moments are as previously defined.
We thereby observe that individual-name implied volatility curves are related,
in a one-factor setting, to normalized physical moments up to order five. As
already stated, if risk aversion is strong and there is considerable excess kur-
tosis, it leads to strong negative risk-neutral index skew. Consistent with this
notion, as corroborated in Tables 4 and 5, risk-neutral skews account, to a
first order, for the observed steepness of the implied volatility curves. Con-
ditional on negative risk-neutral skewness, the effect of risk-neutral kurtosis
is of second order, as reflected in the relative small magnitudes of �.
If risk-neutral skewness is not controlled, then risk-neutral kurtosis proxies

for the fundamental effect of risk-neutral skewness. The findings in Tables 4
and Table 5 remain broadly consistent with the viewpoint that the primary
action on the structure of option prices is aversion to market risk and the
existence of fat-tailed physical distributions. It follows then that to understand
the relative structure of individual equity options and the market index, one
must equivalently characterize their relative risk-neutral skews.

4.4 Skewness patterns for individual stocks
Our goal here is to describe the empirical properties of the risk-neutral
moments, and present the relationship that exists between the skew of the
individual equities and the stock market index. Let us start with the average
short-term skew for individual stocks and the OEX (shown in Table 6). In
comparison with its 30 stock components, the OEX is substantially more
negatively skewed, with an average skewness of −1
09 (over the entire
1991–1995 sample). In contrast, the skewness of GE, HWP, and XRX are
−0
53�−0
17, and −0
33, respectively. For each of the stocks, the difference
between individual and OEX skews is statistically significant, with a mini-
mum t-statistic of 5.72 (not reported). We also incorporate estimates for (i)
the fraction of weeks in which the individual skew is higher than the index
skew (i.e., the occurrence frequency for the event SKEWn > SKEWm), and
(ii) the fraction of weeks in which the individual/index skews are negative
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Table 6
The character of individual and index risk-neutral skewness

Sign of
skewness

SKEWn SKEWn >
Ticker < 0 SKEWm

Univariate regression
SKEWn�t�=�0 +�1SKEWm�t�+ ��t� Price of moments

�0 t��0� �1 t��1� R2
√
V SKEW KURT

1. AIG 68 96 0
11 1
43 0
29 4
46 7
2 7
98 −0
21 2.20
2. AIT 83 77 −0
54 −3
77 0
11 0
85 0
3 6
59 −0
65 4.18
3. AN 69 84 0
35 1
79 0
67 3
92 5
9 6
59 −0
38 5.00
4. AXP 48 90 −0
08 −0
50 0
04 0
28 0
0 10
93 −0
12 4.51
5. BA 58 94 0
17 1
65 0
29 3
21 3
8 9
16 −0
14 4.54
6. BAC 77 88 0
13 1
13 0
52 5
29 9
9 10
48 −0
44 3.99
7. BEL 79 72 −0
89 −4
86 −0
21 −1
28 0
7 7
09 −0
68 5.62
8. BMY 74 86 0
22 1
73 0
63 5
68 11
1 7
42 −0
46 4.46
9. CCI 69 92 −0
01 −0
06 0
25 2
98 3
3 12
71 −0
28 3.88

10. DD 69 92 −0
00 −0
04 0
24 2
77 2
9 8
39 −0
26 3.87
11. DIS 62 98 −0
09 −1
28 0
04 0
61 0
2 10
17 −0
13 3.18
12. F 58 93 0
05 0
39 0
16 1
55 0
9 11
02 −0
13 3.98
13. GE 88 87 −0
08 −0
97 0
41 5
37 10
0 7
60 −0
53 3.90
14. GM 56 95 −0
01 −0
15 0
07 1
00 0
4 11
07 −0
09 3.53
15. HWP 61 96 0
18 2
48 0
32 5
06 9
0 11
85 −0
17 2.33
16. IBM 43 98 0
27 3
92 0
20 3
47 4
5 10
49 0
04 2.89
17. JNJ 65 91 0
28 2
36 0
52 5
20 9
6 8
49 −0
30 4.12
18. KO 87 82 −0
21 −1
93 0
32 3
44 4
4 8
27 −0
56 4.48
19. MCD 71 85 −0
34 −2
22 0
07 0
51 0
1 8
51 −0
41 5.18
20. MCQ 53 91 −0
09 −0
81 0
05 0
48 0
1 12
18 −0
15 3.78
21. MMM 85 95 0
03 0
40 0
36 5
55 10
7 7
27 −0
36 3.28
22. MOB 77 88 −0
15 −1
43 0
22 2
54 2
4 6
47 −0
39 3.47
23. MRK 51 86 −0
43 −2
65 −0
24 −1
76 1
2 9
38 −0
16 4.41
24. NT 37 93 0
16 1
07 0
18 1
40 0
8 10
44 −0
04 4.03
25. PEP 72 87 −0
04 −0
26 0
33 2
78 2
9 8
67 −0
39 5.87
26. SLB 50 94 0
13 1
11 0
19 1
82 1
3 8
74 −0
07 3.09
27. T 78 76 −0
76 −4
75 −0
14 −1
01 0
4 7
28 −0
61 6.10
28. WMT 70 88 0
20 1
53 0
53 4
78 8
2 10
34 −0
38 4.18
29. XON 83 82 −0
25 −1
42 0
31 2
07 1
6 5
93 −0
58 5.49
30. XRX 77 93 −0
09 −1
19 0
22 3
40 4
3 9
27 −0
33 2.50
31. OEX 100 5
56 −1
09 3.99

For each of the 30 stocks and the S&P 100, the table reports three sets of numbers relating to the weekly risk-neutral moments
estimated. In the first two columns, we report (i) the percentage of observations for which SKEWn < 0, and (ii) the percentage
of observations for which the risk-neutral skewness of the stock, SKEWn , is more than the risk-neutral skewness of the market,
SKEWm (i.e., less negative than the risk-neutral index skewness). The next five columns present the results of an OLS regression:
SKEWn�t�=�0+�1SKEWm�t�+��t�, where �0, �1 are the intercept and sensitivity coefficients, respectively; t��0�� t��1�
are the t-statistics, and R2 is the coefficient of determination (in percent). The last three columns display the average estimate
of the risk-neutral volatility, skew, and kurtosis (with one exception, all moments are statistically significant and omitted). The
volatility is the square root of the variance contract, reported in percent. All moments used are of short-term maturity. The
sample period is January 1, 1991, to December 31, 1995.

(that is, SKEWn < 0). Together these statistics again highlight the dichotomy
between the market index and the individual stocks. Unlike any individ-
ual stock return distribution, the OEX risk-neutral distribution is persistently
skewed to the left in each of the 260 weeks in the sample. Finally, on aver-
age across the 30 stocks, the individual skew is less negative than the market
89% of the time. Only occasionally do individual stocks have skews that are
more negative than the OEX (13% and 2% for GE and IBM, respectively).
How do we interpret the fact that individual skews are almost always less

negative than that of the market index? In light of the underlying theory,
there are at least three explanations. First, if there is indeed a market com-
ponent in the individual return, then our characterizations indicate that the
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idiosyncratic return component is, most likely, not heavily negatively skewed.
Second, if a market component is nonexistent, then idiosyncratic skewness
decides the skewness of the individual stock. In this hypothetical case, the
small negative skew of the individual stock may simply reflect that of the
idiosyncratic return component. However, amongst our sample, all stocks
have a sizable market component to its return—in a (weekly) regression of
stock return on the market return, each stock has a significant b�t� ��. Thus
the less negative skew of the individual stock appears to be a symptom of an
unsystematic return component that is either positive, symmetric, or mildly
negatively skewed. Third, the leverage explanation implies that at least some
stocks are more negatively skewed than the market index, which we do not
empirically detect. While the feedback between return and volatility is suf-
ficient to produce negative individual skews, it is inadequate for creating an
index distribution that is overly left skewed.
To isolate the contribution of market skews for individual return skews,

consider the regression

SKEWn�t�=�0+�1 SKEWm�t�+ �n�t�
 (36)

In essence this regression follows from the skew laws in Equation (21) of
Theorem 3 and assesses time variations in the individual risk-neutral skew
via time variations in the risk-neutral market skew (the idiosyncratic skew is
unidentified). The regression will be well specified, for instance, if the rela-
tion between Vm�t� �� and Vn�t� �� (or equivalently V��t� ��) is stable, so that
the coefficient �1 can be assumed constant over this sample period. Again
exploiting short-term options, Table 6 reports the results of this regression.
The following observations can be made. First, each �1 that is significantly
greater than zero at the 5% level is also significantly less than 1. This is
broadly in line with our theory that the individual risk-neutral skew is a
weighted combination of the risk-neutral market skew and the idiosyncratic
skew, with weights that are bounded between 0 and 1. However, the coeffi-
cient �1 should not be interpreted as the coefficient of coskewness [which
is properly defined in Harvey and Siddique (2000)]. The latter captures the
covariation between the first moment in the individual names and the second
moment of the market, as per Equation (26). Equation (36), on the other
hand, assesses the covariation between third moments.
Second, about one-third of the stocks do not show a significant dynamic

relation between the market and the individual skew. Even for the stocks
that have a meaningful relation, the R2 of the regression is small, with only
three stocks having R2 greater than 10%. One possible interpretation of these
results is that the time-variation in the idiosyncratic skew is more important
than that of the market skew in determining the risk-neutral individual skew.
Alternatively, the idiosyncratic skew may be directionally offsetting the nega-
tive market skew. Finally, the results for medium-term options are comparable
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(both quantitatively and quantitatively), with 21 of the 22 significant coeffi-
cients being positive and less than 1 (not reported here).4

The results of this subsection point to substantial differences in the risk-
neutral distributions of individual stocks and the stock market index. While
the volatility (see the price of volatility contracts in Table 6) of individual
return distributions is greater than that of the index, the individual stock risk-
neutral skew is less negative than the market skew. The price of individual
kurtosis can be higher or lower than the market (the t-statistics are omitted,
as all moments except one are statistically significant).
That the first two higher moments of the risk-neutral distribution of indi-

vidual stocks can be so radically different from the index distribution has
important implications. In particular, it indicates that we can make limited
inference about the risk-neutral distribution of the individual stock by track-
ing only the risk-neutral distribution of the market. Although the single-factor
model postulated in Equation (20) is consistent with our findings, the nature
of individual multivariate risk-neutral return distributions remains unresolved.
Specifically, under what economic conditions can each marginal return dis-
tribution possess a low negative skew and yet a portfolio represented by the
market index be heavily left skewed?

4.5 Determinants of risk-neutral index skews
In this final subsection, we test the market skew equation [Equation (13)]
using Hansen’s (1982) generalized method of moments (GMM). Fix the hori-
zon � and define the disturbance, �̂, from Theorem 2 as

�̂�t+1� ≡ SKEWm�t+1�−SKEWm�t+1�

+��KURTm�t+1�−3�STDm�t+1�� (37)

where � is the risk aversion parameter and STDm�t+1�, SKEWm�t+1�, and
KURTm�t+1� are the higher-order t+1-conditional moments of the physical
index distribution. Equation (37) can be potentially viewed as a model for
risk-neutral skews when �̂�t+ 1� is independent of the physical moments.
Allowing for possible dependencies, we rely merely on the orthogonality
of �̂�t+ 1� with time t-determined instrumental variables, ��t�. Under the
null hypothesis of a power utility stochastic discount factor [and those in the
class of Equation (15)] and identifying orthogonality conditions, we must
have E	�̂�t+1�⊗��t��= 0.

4 So far we have not discussed the preciseness of our weekly estimates for risk-neutral return skew and kurtosis.
How much of the cubic and quartic contract price comes from outside of the available strike price range (say,
±20% range)? To see whether this area is negligible in general, let us compute the fourth moment in a (risk-
neutral) Gaussian setting with standard deviation h (keeping r = 0). The reader can verify that the area in the
tail, 1

h
√
2!

∫�
0
20 R

4 exp�−R2/2h2� dR, is relatively small (as a fraction of the total) for plausible values of h.
Thus despite the absence of a continuum of strikes [and our discretizations in Equations (31) and (32)], the
results with finite strikes appear reliable on a theoretical basis. In any case, the commonality of our findings
across the OEX (for which we have abundant strikes) and the individual stocks suggest that even a few strikes
are reliable for mimicking skew and kurtosis. Our conclusions are, mostly, robust.
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As our intent is to estimate a single coefficient, �, and test the restrictions
embedded within Equation (37), the GMM appears to be an attractive estima-
tion method for several reasons. First, unlike return volatility, the estimates
of physical skews and kurtosis require a fairly long time series and will be
measured with error [Merton (1980) and Harvey and Siddique (2000)]. There-
fore the market skew formulation of Equation (37) is susceptible to an errors
in variables problem. Second, the return standard deviation and the excess
kurtosis enter nonlinearly in Equation (37) and may be correlated with �̂.
Finally, the minimized GMM criterion function (multiplied by T ), �T , offers
a convenient approach to assess misspecifications in Equation (37). The �T
statistic is chi-square distributed with L− 1 degrees of freedom (given L
instruments).
Before turning to a discussion of GMM estimation results reported in

panels A and B of Table 7, some clarifications are in order. First, Theorem 2
applies for a particular � . We therefore generate a nonoverlapping series of
risk-neutral index skews from options with maturities of 58 and 86 days.
Second, estimates of physical skews and kurtosis are sensitive to the choice

Table 7
GMM tests of the market skew equation

E	�̂�t+1�⊗��t��= 0 E	�̃�t+1�⊗��t��= 0
Size

��t� (days) df � t(�) �T p �0 t(�0) �T p

Panel A: Risk-neutral OEX skews from 86-day options
SET 1 350 1 2
26 2.11 7
60 0.005 12
01 4.46 7.33 .006

400 1 2
08 2.32 4
69 0.030 11
20 2.93 4.87 .027
450 1 1
76 2.48 3
77 0.052 9
82 3.09 3.99 .045

SET 2 350 2 2
29 1.97 10
93 0.004 15
99 2.66 8.86 .011
400 2 2
25 2.22 6
96 0.030 12
08 2.85 6.52 .038
450 2 1
99 2.40 4
26 0.118 10
85 3.01 4.52 .104

SET 3 350 3 11
39 2.67 7
01 0.071 22
32 2.78 7.44 .059
400 3 1
76 2.16 11
15 0.010 20
23 2.95 6.17 .103
450 3 1
89 2.35 6
70 0.082 11
52 2.97 5.59 .133

Panel B: Risk-neutral OEX skews from 58-day options
SET 1 350 1 2
09 2.64 13
97 0.000 11
95 3.63 8.90 .000

400 1 1
91 2.80 7
81 0.005 9
35 3.64 6.66 .009
450 1 1
36 3.05 8
90 0.052 7
25 3.99 7.77 .005

SET 2 350 2 3
21 2.60 14
63 0.000 16
78 3.76 7.53 .023
400 2 2
12 2.67 14
23 0.000 12
29 3.67 8.56 .013
450 2 1
44 2.93 11
20 0.003 8
01 3.85 9.04 .010

SET 3 350 3 5
98 2.66 9
48 0.023 20
87 3.90 5.66 .129
400 3 2
60 2.60 16
95 0.000 16
51 3.77 7.65 .053
450 3 1
59 2.89 11
40 0.009 8
84 3.78 8.75 .032

Consider the restrictions imposed by the power utility pricing kernel: �̂�t + 1� ≡ SKEWm�t + 1� − SKEWm�t + 1� +
��KURTm�t+1�−3�STDm�t+1�, which is another way to express Equation (13) of Theorem 2. The risk aversion parameter,
�, is estimated by generalized method of moments (GMM). In panels A and B, we report the GMM results when the risk-
neutral market skew, SKEWm, is recovered from 86-day and 58-day options, respectively. Over the entire sample of January
1988 through December 1995 there are thus 32 (48) nonoverlapping observations for 86- (58-) day options. We build the time
series of higher-order physical return moments, STD, SKEW, and KURT, from daily returns on the OEX. Thus a sample size
(denoted Size) of 350 days means that we go backward 350 days to construct the moments. For consistency, each variable has
been annualized. The degrees of freedom, df, are the number of instruments, ��t�, minus one. In SET 1, the instrumental vari-
ables are a constant plus SKEWm�t�. Likewise, SET 2 (SET 3), contains SET 1 (SET 2) plus SKEWm�t−1� (SKEWm�t−2�).
For robustness, other information sets were tried; they yielded similar implications. The minimized value (multiplied by T ) of
the GMM criterion function, �T , is chi-square distributed with df. The impact of physical skews on risk-neutral skews is studied
by considering the ad hoc specification �̃�t+1�≡ SKEWm�t+1�−�0SKEWm�t+1�.
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of histories. We experiment with moments estimated from OEX returns using
sample sizes of 350 days, 400 days, and 450 days (in the column marked
Size). All inputs into Equation (37) are annualized for consistency. Over the
1988–1995 sample period (we have added three more years) there are thus
48 (32) matched observations for 58-day (86-day) index skews. Moreover,
as theory offers little direction on the choice of instrumental variables to be
used in the GMM estimation, three different sets were tried. SET 1 contains
a constant and SKEWm lagged once; SET 2 (SET 3) contains a constant
and two (three) lags of SKEWm. Each information set is picked to keep the
number of orthogonality conditions manageable relative to the sample size.
Proceed now to the estimation results for 86-day skews (in panel A). Sup-

portive of Theorem 2 predictions, the estimate of � are reasonable and in the
range 1.76 and 2.26 for SET 1, in the range 1.99 to 2.29 for SET 2, and in the
range 1.76 to 11.39 for SET 3. Each estimate of � is statistically significant.
With sample size set to 450, the overidentifying restrictions imposed by the
model are not rejected (as reflected in p values higher than 5%). Otherwise
the model may be incomplete in that it has omitted higher-order terms in the
first-order approximation. To appreciate the point that employing a longer
sample size will possibly improve the quality of the estimation, notice that
with sample size set to 450 days, the daily (sample average) STDm = 16
32%,
SKEWm = −1
26, and KURTm = 19
12. In contrast, for sample size set to
300 days, STDm = 17
76%, SKEWm = −0
96, and KURTm = 14
08. With
shorter sample size, the skew and kurtosis may be underestimated.
If we choose � = 0 in Equation (37), it trivially imposes the constraint

�0 = 1 in �̃�t+ 1� ≡ SKEWm�t+ 1�−�0 SKEWm�t+ 1�. Although ad hoc,
this alternative specification helps evaluate the relation between the physical
and the risk-neutral skews. As our GMM results demonstrate, the estimate
of �0 is always more than 9.82 and significant. In other words, the statistical
skews are too small and must be multiplied by a factor of at least 10 to be
consistent with risk-neutral index skews. This confirms our earlier claim that
the risk-neutral skew magnitudes are not sustainable without risk aversion
and fat-tailed physical index distributions.
The inferences that we have drawn are not too different with 58-day risk-

neutral skews. Future work should extend the estimation methodology to
include state-dependent stochastic discount factors. As risk aversion may be
stochastically time varying in that context, it may impose more stringent
testable restrictions on the dynamics of risk-neutral index skews.

5. Concluding Remarks and Possible Extensions

It has been noted that risk-neutral moments influence the relative pricing of
an option of a particular strike to another. But basic questions like how to
quantify the relationship between the risk-neutral density and the moments of
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the physical return distribution have not been addressed. The central contribu-
tions of this article can be summarized as follows. First, we theoretically rec-
oncile when negative risk-neutral skews are feasible from symmetric physical
distributions. For a large class of utility functions, we show that risk-neutral
index skews are a consequence of risk aversion and fat-tailed physical distri-
butions. Next, we formalize the skew laws of individual equities, and propose
a framework to recover risk-neutral moments from option prices. It is shown
that the individual risk-neutral stock distributions are qualitatively distinct
from the index counterpart.
Empirically we demonstrate the differential pricing of individual equity

options. The slope of the individual smiles is flatter than that of the mar-
ket index. This finding is consistent with the idiosyncratic component of the
return being less negatively skewed (risk neutrally) than that market. Further-
more, a more negative risk-neutral skew is related to a steeper negative slope
of the implied volatility curve. In large part, the empirical analysis suggests
that when negative risk-neutral skew is internalized, a higher risk-neutral
kurtosis produces a flatter volatility smile.
Our framework allows us to understand and reconcile two stylized facts

of economic significance: that the index option smile is highly skewed,
and the differential pricing of individual equity options versus the market
index. Overall our findings remain consistent with the belief that the primary
action on the structure of equity options is fat-tailed physical distributions
and risk aversion. The econometric tests provide support for this economic
argument.
The verdict is still out on a number of related research questions. First,

future research should examine the nature of risk-neutral skews from other
models. One possibility is to study the interaction of biased beliefs and the
pricing of puts and calls [David and Veronesi (1999)], suggestive of general-
izations to the marginal-utility tilting of the physical density studied in this
article. Second, spanning the characteristic function with the option basis and
then inferring the risk-neutral density is a natural extension to our work on
moments. At an abstract level, our approach of directly pricing risk-neutral
moments from option portfolios can serve as a useful check in evaluating
parametric methods for jointly estimating the physical and the risk-neutral
densities [Ferson, Heuson, and Su (1999), Chernov and Ghysels (2000), and
Harvey and Siddique (2000)]. Finally, a large body of literature [e.g., Canina
and Figlewski (1993), Lamoureux and Lastrapes (1993), Fleming (1998), and
Christensen and Prabhala (1998)] has attempted to determine whether ATM
implied volatilities are unbiased predictors of future return volatility. Since
we have designed option positioning to infer volatility, forecasting exercises
can be performed without taking any stand on the parametric option model
or on the form of the volatility risk premium. This study has provided the
incentive to expand research on individual stock options.
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Appendix

Proof of Theorem 1. Setting �S ≡ S�t� in Equation (2) and performing standard differentiation
steps, we can observe that

HSS�K�=



2�1− ln�K/S�t���
K2

volatility contract

6 ln�K/S�t��−3�ln�K/S�t���2

K2
cubic contract

12�ln�S�t�/K��2 +4�ln�S�t�/K��3

K2
quartic contract


(38)

Equations (7)–(9) of Theorem 1 follow from substituting Equation (38) into Equation (2). For the
mean stock return, we note that

∫
�
e−r�Sq�S�dS = S�t� (by the martingale property). Therefore

er� = �∗
t

{
S�t+ ��

S�t�

}
= �∗

t 	exp�R�t� ����

= 1+�∗
t �R�t� ���+

1
2
�∗
t �R�t� ��

2�+ 1
6
�∗
t �R�t� ��

3�+ 1
24

�∗
t �R�t� ��

4�

since exp�R�= 1+R+R2/2+R3/6+R4/24+o�R4�. Reorganizing,

��t� ��≡ �∗
t ln

[
S�t+ ��

S�t�

]
= er� −1− er�

2
V �t� ��− er�

6
W�t� ��− er�

24
X�t� ��
 (39)

The final pricing formulas for risk-neutral skewness and kurtosis in Equations (5) and (6) now
follow by using Equation (39), and expanding on their definitions. �

Proof of Equations (11) and (12). Strictly, the Radon–Nikodym theorem is a statement about
two equivalent probability measures, Q and �P , on some measurable space (recall we have
reserved P for the put price). In general, we have measures on a sigma field of subsets of �
and the Radon–Nikodym theorem allows us to assert

Q�d"�= 
�"��P�d"�� (40)

where 
�"� is an �1 measurable function with respect to the underlying sigma field [Halmos
(1974)]. For any (Borel measurable) test function f �S�, the density of the stock price (if it
exists) is defined by the condition

∫
f �S�p�S�dS = ∫

f �S��P�d"�. Analogously the risk-neutral
density satisfies

∫
f �S�q�S�dS = ∫

f �S�
�"��P�d"�. Armed with this result, define the condi-
tional expectation of 
, given the filtration generated by the stock price as E�
 � S� by the
condition that (for all test functions f �Sm�)∫

f �Sm�
�"��P�d"�=
∫
f �Sm�E�
 � Sm��P�d"�=

∫
f �Sm�E	
 � Sm�p�Sm�dSm
 (41)

Applying this property of conditional expectations to the above equation, we get
∫
f �Sm�×

q�Sm� dSm = ∫
f �Sm�E	
 � Sm�p�Sm�dSm. Thus we may deduce q�Sm� = E	
 � Sm�×p�Sm�. As

is traditional, one conjectures a form for the unnormalized Radon–Nikodym derivative, and in
this case

q�Sm�=
E	
 � Sm�×p�Sm�∫
E	
�Sm�×p�Sm�dSm

� (42)

where 
 can be interpreted as a general unnormalized change-of-measure pricing kernel. Under
the maintained hypothesis of a power utility function in wealth, we may specialize the stochastic
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discount factor to E	
 � Sm� = S−�
m = e−� ln�Sm �. Then dividing the denominator and numerator

by S−�
m �t� and making a change of variable, we derive Equation (11). For recent applications of

Equation (11), check Amin and Ng (1993), Chernov and Ghysels (2000), Harrison and Kreps
(1979), Stutzer (1996), and Jackwerth (2000). �

Proof of Theorem 2: Exponential Tilting of the Physical Measure can Introduce Skew in the
Risk-Neutral Measure. We wish to relate the skewness of q�R� to that of p�R� (suppressing
the subscript on Rm). Without loss of generality, we may suppose that the parent density, p�R�,
has been mean shifted and has zero mean (i.e., suppose #̄1 = 0). Let the first three successive
higher moments of p�R� be

#̄2 ≡
∫ �

−�
R2p�R�dR (43)

#̄3 ≡
∫ �

−�
R3p�R�dR (44)

#̄4 ≡
∫ �
−�R

4p�R�dR
 (45)

As is standard, define the moment-generating function, ���$�, of p�R�, for any real number $,
by

���$� ≡
∫ �

−�
e$Rp�R�dR

= 1+ $2

2
#̄2 +

$3

6
#̄3+

$4

24
#̄4+o�$4�� (46)

and can thus be expressed in terms of its uncentered moments.
Now consider the moment-generating function, ��$�, of q�R�. From the relation q�R� =

e−�R×p�R�∫
e−�R×p�R�dR , it holds that

��$� ≡
∫ �

−�
e$Rq�R�dR=

∫ �
−� e

$Re−�Rp�R�dR∫ �
−� e

−�Rp�R�dR
(47)

= ���$−��

���−�� 
 (48)

Hence ��$� can be recovered from the (parent) moment-generating function of p�R�.
Using the properties of moment-generating functions, up to a first-order effect of �, we see

that the moments of q�R� satisfy a recursive relationship. Thus we have

#1 ≡
∫ �

−�
Rq�R�dR≈ #̄1−�#̄2 (49)

#2 ≡
∫ �

−�
R2q�R�dR≈ #̄2 −�#̄3 (50)

#3 ≡
∫ �

−�
R3q�R�dR≈ #̄3−�#̄4 (51)

and ���−��= 1+o���. Now we are ready to compute the risk-neutral index skew, which is,

SKEWm�t� �� ≡
∫ �
−��R−#1�

3q�R�dR

�
∫ �
−��R−#1�

2q�R�dR�3/2
�

= #̄3−��#̄4−3#̄2
2�

#̄
3/2
2

+o���
 (52)

Simplifying the resulting expression, and noting KURT×#2
2 = #4, the theorem is proved.
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For our generalization to marginal utilities in the class of U ′�Rm��� =
∫ �
0 e−�zRm��dz�, we

can note that up to a first-order in � that #1 ≈ #̄1−	�
∫ �
0 z��dz��#̄2, #2 ≈ #̄2−	�

∫ �
0 z��dz��#̄3,

and #3 ≈ #̄3− 	�
∫ �
0 z��dz��#̄4. From the same argument as in the derivation of Equation (52),

we have SKEWm ≈ SKEWm − 	�
∫ �
0 z��dz���KURTm −3�STDm. �

Proof of Parts (a) and (b) of Theorem 3. Recall that the stock return follows a single-index
return-generating process. Suppressing time arguments, write R�t� �� as R and the risk-neutral
density of stock return (idiosyncratic risk) as q�R� (q����. Impose the square-integrability con-
ditions V��t� �� ≡ e−r�

∫
�2q���d� <� and Vm�t� �� ≡ e−r�

∫
R2

mq�Rm�dRm <�, which bound
the price of idiosyncratic volatility and index volatility. The risk-neutral skewness of the index
must be

SKEWm�t� �� ≡
∫ �
−��Rm −�m�

3 q�Rm� dRm{∫ �
−��Rm −�m�

2 q�Rm� dRm

}3/2 
 (53)

Exploiting the return-generating process in Equation (20), and using the independence of � and
Rm,

SKEWn�t� �� =
b3
n

∫ �
−��Rm −�m�

3 q�Rm� dRm + ∫ �
−� �

3
n q���d�{

b2
n�t� ��

∫ �
−� �Rm −�m�

2q�Rm� dRm + ∫ �
−� �

2
n q���d�

}3/2 (54)

since the coskews, E	�n�Rm −�m�
2� and E	�2

n�Rm −�m��, vanish. Rearranging Equation (54),
we obtain (for n= 1� � � � �N )

SKEWn�t� �� = �n�t� ��SKEWm�t� ��+�n�t� ��
�∗
t ��n�t� ��

3�

	�∗
t ��n�t� ��

2��3/2
(55)

with �n�t� �� and �n�t� ��, as displayed in Equations (22) and (23) of the text. If the density
q��� is symmetric around the origin, �∗

t ���t� ��
3�= 0. Inserting this restriction into Equation (55)

proves this element of the theorem.
This procedure can be extended to the two-factor context: Rn�t� ��= an�t� ��+bn�t� ��Rm�t�

��+ cn�t� �� F �t� ��+�n�t� ��, which decomposes the systematic part of the individual return
into two forces. Repeating the above steps, we derive Equation (25) with

�n�t� ��≡
(
1+ c2n�t� ���VF �t� ��− e−r��2

F �t� ���+V��t� ��

b2
n�t� ���Vm�t� ��− e−r��2

m�t� ���

)−3/2

� (56)

��n�t� ��≡
(
1+ b2

n�t� ���Vm�t� ��− e−r��2
m�t� ���+V��t� ��

c2n�t� ���VF �t� ��− e−r��2
F �t� ���

)−3/2

� and (57)

�n�t���≡
(
1+ b2

n�t����Vm�t���−e−r��2
m�t����+c2n�t����VF �t���−e−r��2

F �t����

V��t���

)−3/2

�

(58)

which is the final step of the proof. �

Proof that Leverage Implies Index Skew is Less Negative than Some Individual Skews. Before
presenting the proof, we need a result on the moment-generating function of vector standard
normal variates and its derivatives. That is, �∗	exp�%1 &1+%2 &2��= exp�0
5%21 +0
5%22 +'%1%2�,
which is exponential affine in the variance-covariance matrix.
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To stay focused on this counterexample, we adopt a two-period and two-stock setting. Fix
N = 2 and hypothesize the two-period return evolution (with (n > 0)

Rn�1�= r+ &n�1� &n ∼ � �0�1� (59)

Rn�2�= r+ &n�2�+��&n�1��)n�2� )n ∼ � �0�1� (60)

��&n�1��= (n exp �−&n�1�� (61)

for n= 1�2. Equation (61) goes to the heart of the leverage argument: the volatility of the second-
period return increases (decreases) as lagged return innovations goes down (up) [see Cox and
Ross (1976) and Beckers (1980)]. Let &n�t� be independent of )n�2�, ' ≡ covt �&1�t�� &2�t��,
and *≡ covt �)1�t��)2�t��. Note that second-period volatilities are correlated across stocks and
the individual return process is autocorrelated. This model yields

SKEWn�2�=− 6(2
n exp�2�

�1+(2
n exp�2��3/2

n= 1�2
 (62)

Therefore leverage produces negative skewness in individual names. Now cross-sectionally
aggregate the second-period return equally to get the return on the market (basket): Rm�2� =
R1�2�+R2�2�

2
. With some algebraic manipulation we arrive at the leverage implied index skew:

SKEWm�2� = +0 +
2∑

n=1

+n×SKEWn�2�� (63)

where

+0 ≡− 6* �1+'�(1 (2 exp�1+'�

2�1+'�+(2
1 exp�2�+(2

2 exp�2�+2*(1 (2 exp�1+'�
� (64)

+n ≡
0
50 �1+'��1+(n exp�2��

2�1+'�+(2
1 exp�2�+(2

2 exp�2�+2*(1 (2 exp�1+'�
< 1� n= 1�2
 (65)

Thus the market skew is just a convex combination of the individual skews and imposes the
restriction that at least one of the individual skews be more negative than the market skew. To
see this, set ' = 0 and * = 0. In this special case, +0 is identically zero. Now set * > 0 and
reexamine Equation (63). In sum, while leverage generates negative skew, its implications for
index skewness are diametrically opposite to those originating from risk aversion and fat-tailed
physical distributions. �

Proof of Equation (29) in Theorem 4. Although the proof is available in Backus et al. (1997),
we sketch the basic steps to make our analysis self-contained. To justify the functional form of
Equation (29), standardize stock returns so that they have mean zero and unit variance. Accord-
ingly, let x≡ R�t���−�

�̄
, where, as before, �≡ �∗

t �R�t� ���, and �̄ ≡√
�∗
t 	R�t� ��−�∗

t �R�t� ����
2.

Now return to Equation (28) and redefine the exercise region as � ≡ 	 ln�K�−ln�S�t��−�
�̄

> x�. As a
consequence∫

�
e−r� �K−S�t� exp�x�̄ +��� q�x�dx = Ke−r� �1−� �d2��−S�t� �1−� �d1�� 
 (66)

From probability theory, a robust class of density functions can be approximated in terms of its
moments and the Gaussian density [see Johnson, Kotz, and Balakrishnan (1994, p. 25)], as in

q�x�≈,�x�− 1
3!

-3,�x�

-x3
×SKEW�t� ��+ 1

4!
-4,�x�

-x4
× �KURT�t� ��−3�� (67)
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where ,�x�= 1√
2!
e−x

2/2 denotes the standard normal density function. Thus the left-hand side
of Equation (66) becomes∫

�
e−r� �K−S�t� exp�x�̄ +��� q�x�dx

=
∫
�
e−r� �K−S�t� exp�x�̄ +��� ,�x�dx

− 1
3! SKEW�t� ��×

∫
�
e−r� �K−S�t� exp�x�̄ +���

-3,�x�

-x3
dx

+ 1
4! �KURT�t� ��−3�×

∫
�
e−r� �K−S�t� exp�x�̄ +���

-4,�x�

-x4
dx� (68)

which gives the theoretical put price linearly in terms of the Black–Scholes price (evaluated at
the true volatility), the risk-neutral skewness, and (excess) risk-neutral kurtosis.

Two remaining steps need some explanation. First, take a Taylor series of � �d1� around �̄ ,
and use the Leibnitz differentiation rule to simplify the expression

Ke−r� �1−� �d2��−S�t� �1−� �d1��−
∫
�
e−r� �K−S�t� exp�x�̄ +��� ,�x�dx
 (69)

Second, -3,�x�

-x3
and -4,�x�

-x4
can be directly computed by differentiating the normal density function.

That is,

-3,�x�

-x3
= 1√

2!
�3x−x3� e−x

2/2

-4,�x�

-x4
= 1√

2!
�3x−6x2 +x4� e−x

2/2


Collecting the remaining terms, and exploiting the moment-generating function of the Gaussian
(i.e., its translates and derivatives), we achieve the desired result in Equation (29). This result
is, however, not observationally equivalent to the counterpart one (i.e., Proposition 2) in Backus
et al. (1997) (it is unnecessary to approximate ��y�, ��y�, and ��y�). As the closed forms for
��y�, ��y�, and ��y� are not particularly instructive, they are omitted here. This completes the
proof that the structure of option prices, as represented through the Black–Scholes implied
volatility curve, is affine in risk-neutral skewness and kurtosis. �
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