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[Russell’s blurb from the original dustcover:]

This book is intended for those who have no previous acquain-
tance with the topics of which it treats, and no more knowledge
of mathematics than can be acquired at a primary school or
even at Eton. It sets forth in elementary form the logical defini-
tion of number, the analysis of the notion of order, the modern
doctrine of the infinite, and the theory of descriptions and
classes as symbolic fictions. The more controversial and uncer-
tain aspects of the subject are subordinated to those which can
by now be regarded as acquired scientific knowledge. These
are explained without the use of symbols, but in such a way
as to give readers a general understanding of the methods and
purposes of mathematical logic, which, it is hoped, will be
of interest not only to those who wish to proceed to a more
serious study of the subject, but also to that wider circle who
feel a desire to know the bearings of this important modern
science.
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PREFACE

v This book is intended essentially as an “Introduction,” and
does not aim at giving an exhaustive discussion of the prob-
lems with which it deals. It seemed desirable to set forth certain
results, hitherto only available to those who have mastered log-
ical symbolism, in a form offering the minimum of difficulty to
the beginner. The utmost endeavour has been made to avoid
dogmatism on such questions as are still open to serious doubt,
and this endeavour has to some extent dominated the choice
of topics considered. The beginnings of mathematical logic are
less definitely known than its later portions, but are of at least
equal philosophical interest. Much of what is set forth in the
following chapters is not properly to be called “philosophy,”
though the matters concerned were included in philosophy so
long as no satisfactory science of them existed. The nature of
infinity and continuity, for example, belonged in former days
to philosophy, but belongs now to mathematics. Mathemati-
cal philosophy, in the strict sense, cannot, perhaps, be held to
include such definite scientific results as have been obtained
in this region; the philosophy of mathematics will naturally be
expected to deal with questions on the frontier of knowledge,
as to which comparative certainty is not yet attained. But spec-
ulation on such questions is hardly likely to be fruitful unless
the more scientific parts of the principles of mathematics are
known. A book dealing with those parts may, therefore, claim
to be an introduction to mathematical philosophy, though it

iv
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can hardly claim, except where it steps outside its province, to
be actually dealing with a part of philosophy. It does deal, |

vihowever, with a body of knowledge which, to those who accept
it, appears to invalidate much traditional philosophy, and even
a good deal of what is current in the present day. In this way, as
well as by its bearing on still unsolved problems, mathematical
logic is relevant to philosophy. For this reason, as well as on
account of the intrinsic importance of the subject, some pur-
pose may be served by a succinct account of the main results
of mathematical logic in a form requiring neither a knowledge
of mathematics nor an aptitude for mathematical symbolism.
Here, however, as elsewhere, the method is more important
than the results, from the point of view of further research; and
the method cannot well be explained within the framework of
such a book as the following. It is to be hoped that some read-
ers may be sufficiently interested to advance to a study of the
method by which mathematical logic can be made helpful in
investigating the traditional problems of philosophy. But that
is a topic with which the following pages have not attempted
to deal.

BERTRAND RUSSELL.



EDITOR’S NOTE

vii [The note below was written by J. H. Muirhead, LL.D., editor
of the Library of Philosophy series in which Introduction to
Mathematical Philosophy was originally published.]

Those who, relying on the distinction between Mathematical
Philosophy and the Philosophy of Mathematics, think that this
book is out of place in the present Library, may be referred
to what the author himself says on this head in the Preface.
It is not necessary to agree with what he there suggests as to
the readjustment of the field of philosophy by the transference
from it to mathematics of such problems as those of class, conti-
nuity, infinity, in order to perceive the bearing of the definitions
and discussions that follow on the work of “traditional philoso-
phy.” If philosophers cannot consent to relegate the criticism
of these categories to any of the special sciences, it is essential,
at any rate, that they should know the precise meaning that the
science of mathematics, in which these concepts play so large
a part, assigns to them. If, on the other hand, there be math-
ematicians to whom these definitions and discussions seem
to be an elaboration and complication of the simple, it may
be well to remind them from the side of philosophy that here,
as elsewhere, apparent simplicity may conceal a complexity
which it is the business of somebody, whether philosopher or
mathematician, or, like the author of this volume, both in one,
to unravel.

vi

CHAPTER I

THE SERIES OF NATURAL NUMBERS

Mathematics is a study which, when we start from its most
familiar portions, may be pursued in either of two opposite
directions. The more familiar direction is constructive, towards
gradually increasing complexity: from integers to fractions,
real numbers, complex numbers; from addition and multiplica-
tion to differentiation and integration, and on to higher math-
ematics. The other direction, which is less familiar, proceeds,
by analysing, to greater and greater abstractness and logical
simplicity; instead of asking what can be defined and deduced
from what is assumed to begin with, we ask instead what more
general ideas and principles can be found, in terms of which
what was our starting-point can be defined or deduced. It is
the fact of pursuing this opposite direction that characterises
mathematical philosophy as opposed to ordinary mathemat-
ics. But it should be understood that the distinction is one,
not in the subject matter, but in the state of mind of the in-
vestigator. Early Greek geometers, passing from the empirical
rules of Egyptian land-surveying to the general propositions
by which those rules were found to be justifiable, and thence to
Euclid’s axioms and postulates, were engaged in mathematical
philosophy, according to the above definition; but when once
the axioms and postulates had been reached, their deductive
employment, as we find it in Euclid, belonged to mathematics
in the | ordinary sense. The distinction between mathematics
and mathematical philosophy is one which depends upon the


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interest inspiring the research, and upon the stage which the
research has reached; not upon the propositions with which
the research is concerned.

We may state the same distinction in another way. The
most obvious and easy things in mathematics are not those
that come logically at the beginning; they are things that, from
the point of view of logical deduction, come somewhere in
the middle. Just as the easiest bodies to see are those that are
neither very near nor very far, neither very small nor very great,
so the easiest conceptions to grasp are those that are neither
very complex nor very simple (using “simple” in a logical sense).
And as we need two sorts of instruments, the telescope and the
microscope, for the enlargement of our visual powers, so we
need two sorts of instruments for the enlargement of our logical
powers, one to take us forward to the higher mathematics, the
other to take us backward to the logical foundations of the
things that we are inclined to take for granted in mathematics.
We shall find that by analysing our ordinary mathematical
notions we acquire fresh insight, new powers, and the means of
reaching whole new mathematical subjects by adopting fresh
lines of advance after our backward journey. It is the purpose
of this book to explain mathematical philosophy simply and
untechnically, without enlarging upon those portions which
are so doubtful or difficult that an elementary treatment is
scarcely possible. A full treatment will be found in Principia
Mathematica; the treatment in the present volume is intended
merely as an introduction.

To the average educated person of the present day, the obvi-
ous starting-point of mathematics would be the series of whole
numbers,

, , , , . . . etc. |

Cambridge University Press, vol. i., ; vol. ii., ; vol. iii., .
By Whitehead and Russell.

Chap. I. The Series of Natural Numbers 

Probably only a person with some mathematical knowledge
would think of beginning with  instead of with , but we
will presume this degree of knowledge; we will take as our
starting-point the series:

, , , , . . . n, n+ , . . .

and it is this series that we shall mean when we speak of the
“series of natural numbers.”

It is only at a high stage of civilisation that we could take
this series as our starting-point. It must have required many
ages to discover that a brace of pheasants and a couple of days
were both instances of the number : the degree of abstraction
involved is far from easy. And the discovery that  is a number
must have been difficult. As for , it is a very recent addition;
the Greeks and Romans had no such digit. If we had been
embarking upon mathematical philosophy in earlier days, we
should have had to start with something less abstract than the
series of natural numbers, which we should reach as a stage
on our backward journey. When the logical foundations of
mathematics have grown more familiar, we shall be able to
start further back, at what is now a late stage in our analysis.
But for the moment the natural numbers seem to represent
what is easiest and most familiar in mathematics.

But though familiar, they are not understood. Very few
people are prepared with a definition of what is meant by
“number,” or “,” or “.” It is not very difficult to see that, start-
ing from , any other of the natural numbers can be reached
by repeated additions of , but we shall have to define what we
mean by “adding ,” and what we mean by “repeated.” These
questions are by no means easy. It was believed until recently
that some, at least, of these first notions of arithmetic must be
accepted as too simple and primitive to be defined. Since all
terms that are defined are defined by means of other terms,
it is clear that human knowledge must always be content to
accept some terms as intelligible without definition, in order |
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 to have a starting-point for its definitions. It is not clear that
there must be terms which are incapable of definition: it is
possible that, however far back we go in defining, we always
might go further still. On the other hand, it is also possible that,
when analysis has been pushed far enough, we can reach terms
that really are simple, and therefore logically incapable of the
sort of definition that consists in analysing. This is a question
which it is not necessary for us to decide; for our purposes
it is sufficient to observe that, since human powers are finite,
the definitions known to us must always begin somewhere,
with terms undefined for the moment, though perhaps not
permanently.

All traditional pure mathematics, including analytical ge-
ometry, may be regarded as consisting wholly of propositions
about the natural numbers. That is to say, the terms which
occur can be defined by means of the natural numbers, and
the propositions can be deduced from the properties of the
natural numbers—with the addition, in each case, of the ideas
and propositions of pure logic.

That all traditional pure mathematics can be derived from
the natural numbers is a fairly recent discovery, though it had
long been suspected. Pythagoras, who believed that not only
mathematics, but everything else could be deduced from num-
bers, was the discoverer of the most serious obstacle in the
way of what is called the “arithmetising” of mathematics. It
was Pythagoras who discovered the existence of incommensu-
rables, and, in particular, the incommensurability of the side
of a square and the diagonal. If the length of the side is  inch,
the number of inches in the diagonal is the square root of ,
which appeared not to be a number at all. The problem thus
raised was solved only in our own day, and was only solved
completely by the help of the reduction of arithmetic to logic,
which will be explained in following chapters. For the present,
we shall take for granted the arithmetisation of mathematics,
though this was a feat of the very greatest importance. |

Chap. I. The Series of Natural Numbers 

Having reduced all traditional pure mathematics to the
theory of the natural numbers, the next step in logical analysis
was to reduce this theory itself to the smallest set of premisses
and undefined terms from which it could be derived. This
work was accomplished by Peano. He showed that the entire
theory of the natural numbers could be derived from three
primitive ideas and five primitive propositions in addition to
those of pure logic. These three ideas and five propositions thus
became, as it were, hostages for the whole of traditional pure
mathematics. If they could be defined and proved in terms of
others, so could all pure mathematics. Their logical “weight,”
if one may use such an expression, is equal to that of the whole
series of sciences that have been deduced from the theory of
the natural numbers; the truth of this whole series is assured
if the truth of the five primitive propositions is guaranteed,
provided, of course, that there is nothing erroneous in the
purely logical apparatus which is also involved. The work of
analysing mathematics is extraordinarily facilitated by this
work of Peano’s.

The three primitive ideas in Peano’s arithmetic are:

, number, successor.

By “successor” he means the next number in the natural order.
That is to say, the successor of  is , the successor of  is , and
so on. By “number” he means, in this connection, the class of
the natural numbers. He is not assuming that we know all the
members of this class, but only that we know what we mean
when we say that this or that is a number, just as we know what
we mean when we say “Jones is a man,” though we do not know
all men individually.

The five primitive propositions which Peano assumes are:

()  is a number.

We shall use “number” in this sense in the present chapter. Afterwards
the word will be used in a more general sense.
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() The successor of any number is a number.
() No two numbers have the same successor. |
()  is not the successor of any number.
() Any property which belongs to , and also to the succes-

sor of every number which has the property, belongs
to all numbers.

The last of these is the principle of mathematical induction. We
shall have much to say concerning mathematical induction in
the sequel; for the present, we are concerned with it only as it
occurs in Peano’s analysis of arithmetic.

Let us consider briefly the kind of way in which the theory
of the natural numbers results from these three ideas and five
propositions. To begin with, we define  as “the successor of
,”  as “the successor of ,” and so on. We can obviously go
on as long as we like with these definitions, since, in virtue of
(), every number that we reach will have a successor, and, in
virtue of (), this cannot be any of the numbers already defined,
because, if it were, two different numbers would have the same
successor; and in virtue of () none of the numbers we reach in
the series of successors can be . Thus the series of successors
gives us an endless series of continually new numbers. In
virtue of () all numbers come in this series, which begins with
 and travels on through successive successors: for (a)  belongs
to this series, and (b) if a number n belongs to it, so does its
successor, whence, by mathematical induction, every number
belongs to the series.

Suppose we wish to define the sum of two numbers. Taking
any number m, we define m +  as m, and m + (n + ) as the
successor of m+n. In virtue of () this gives a definition of the
sum of m and n, whatever number n may be. Similarly we can
define the product of any two numbers. The reader can easily
convince himself that any ordinary elementary proposition of
arithmetic can be proved by means of our five premisses, and
if he has any difficulty he can find the proof in Peano.

Chap. I. The Series of Natural Numbers 

It is time now to turn to the considerations which make it
necessary to advance beyond the standpoint of Peano, who |

represents the last perfection of the “arithmetisation” of math-
ematics, to that of Frege, who first succeeded in “logicising”
mathematics, i.e. in reducing to logic the arithmetical notions
which his predecessors had shown to be sufficient for math-
ematics. We shall not, in this chapter, actually give Frege’s
definition of number and of particular numbers, but we shall
give some of the reasons why Peano’s treatment is less final
than it appears to be.

In the first place, Peano’s three primitive ideas—namely, “,”
“number,” and “successor”—are capable of an infinite number
of different interpretations, all of which will satisfy the five
primitive propositions. We will give some examples.

() Let “” be taken to mean , and let “number” be taken
to mean the numbers from  onward in the series of natural
numbers. Then all our primitive propositions are satisfied,
even the fourth, for, though  is the successor of ,  is not
a “number” in the sense which we are now giving to the word
“number.” It is obvious that any number may be substituted for
 in this example.

() Let “” have its usual meaning, but let “number” mean
what we usually call “even numbers,” and let the “successor”
of a number be what results from adding two to it. Then “”
will stand for the number two, “” will stand for the number
four, and so on; the series of “numbers” now will be

, two, four, six, eight . . .

All Peano’s five premisses are satisfied still.
() Let “” mean the number one, let “number” mean the

set
,  ,


 ,

 ,

 , . . .

and let “successor” mean “half.” Then all Peano’s five axioms
will be true of this set.
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It is clear that such examples might be multiplied indefi-
nitely. In fact, given any series

x, x, x, x, . . . xn, . . . |

 which is endless, contains no repetitions, has a beginning, and
has no terms that cannot be reached from the beginning in a
finite number of steps, we have a set of terms verifying Peano’s
axioms. This is easily seen, though the formal proof is some-
what long. Let “” mean x, let “number” mean the whole set
of terms, and let the “successor” of xn mean xn+. Then

() “ is a number,” i.e. x is a member of the set.
() “The successor of any number is a number,” i.e. taking

any term xn in the set, xn+ is also in the set.
() “No two numbers have the same successor,” i.e. if xm

and xn are two different members of the set, xm+ and xn+ are
different; this results from the fact that (by hypothesis) there
are no repetitions in the set.

() “ is not the successor of any number,” i.e. no term in
the set comes before x.

() This becomes: Any property which belongs to x, and
belongs to xn+ provided it belongs to xn, belongs to all the x’s.

This follows from the corresponding property for numbers.
A series of the form

x, x, x, . . . xn, . . .

in which there is a first term, a successor to each term (so that
there is no last term), no repetitions, and every term can be
reached from the start in a finite number of steps, is called a
progression. Progressions are of great importance in the princi-
ples of mathematics. As we have just seen, every progression
verifies Peano’s five axioms. It can be proved, conversely, that
every series which verifies Peano’s five axioms is a progression.
Hence these five axioms may be used to define the class of pro-
gressions: “progressions” are “those series which verify these

Chap. I. The Series of Natural Numbers 

five axioms.” Any progression may be taken as the basis of pure
mathematics: we may give the name “” to its first term, the
name “number” to the whole set of its terms, and the name
“successor” to the next in the progression. The progression need
not be composed of numbers: it may be | composed of points in
space, or moments of time, or any other terms of which there is
an infinite supply. Each different progression will give rise to
a different interpretation of all the propositions of traditional
pure mathematics; all these possible interpretations will be
equally true.

In Peano’s system there is nothing to enable us to distinguish
between these different interpretations of his primitive ideas.
It is assumed that we know what is meant by “,” and that we
shall not suppose that this symbol means  or Cleopatra’s
Needle or any of the other things that it might mean.

This point, that “” and “number” and “successor” cannot
be defined by means of Peano’s five axioms, but must be in-
dependently understood, is important. We want our numbers
not merely to verify mathematical formulæ, but to apply in the
right way to common objects. We want to have ten fingers and
two eyes and one nose. A system in which “” meant , and
“” meant , and so on, might be all right for pure mathemat-
ics, but would not suit daily life. We want “” and “number”
and “successor” to have meanings which will give us the right
allowance of fingers and eyes and noses. We have already some
knowledge (though not sufficiently articulate or analytic) of
what we mean by “” and “” and so on, and our use of num-
bers in arithmetic must conform to this knowledge. We cannot
secure that this shall be the case by Peano’s method; all that we
can do, if we adopt his method, is to say “we know what we
mean by ‘’ and ‘number’ and ‘successor,’ though we cannot
explain what we mean in terms of other simpler concepts.” It
is quite legitimate to say this when we must, and at some point
we all must; but it is the object of mathematical philosophy to
put off saying it as long as possible. By the logical theory of
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arithmetic we are able to put it off for a very long time.
It might be suggested that, instead of setting up “” and

“number” and “successor” as terms of which we know the mean-
ing although we cannot define them, we might let them | stand
for any three terms that verify Peano’s five axioms. They will
then no longer be terms which have a meaning that is definite
though undefined: they will be “variables,” terms concerning
which we make certain hypotheses, namely, those stated in
the five axioms, but which are otherwise undetermined. If we
adopt this plan, our theorems will not be proved concerning
an ascertained set of terms called “the natural numbers,” but
concerning all sets of terms having certain properties. Such
a procedure is not fallacious; indeed for certain purposes it
represents a valuable generalisation. But from two points of
view it fails to give an adequate basis for arithmetic. In the
first place, it does not enable us to know whether there are
any sets of terms verifying Peano’s axioms; it does not even
give the faintest suggestion of any way of discovering whether
there are such sets. In the second place, as already observed,
we want our numbers to be such as can be used for counting
common objects, and this requires that our numbers should
have a definite meaning, not merely that they should have cer-
tain formal properties. This definite meaning is defined by the
logical theory of arithmetic.

CHAPTER II

DEFINITION OF NUMBER

The question “What is a number?” is one which has been often
asked, but has only been correctly answered in our own time.
The answer was given by Frege in , in his Grundlagen der
Arithmetik. Although this book is quite short, not difficult, and
of the very highest importance, it attracted almost no atten-
tion, and the definition of number which it contains remained
practically unknown until it was rediscovered by the present
author in .

In seeking a definition of number, the first thing to be clear
about is what we may call the grammar of our inquiry. Many
philosophers, when attempting to define number, are really
setting to work to define plurality, which is quite a different
thing. Number is what is characteristic of numbers, as man is
what is characteristic of men. A plurality is not an instance
of number, but of some particular number. A trio of men, for
example, is an instance of the number , and the number 
is an instance of number; but the trio is not an instance of
number. This point may seem elementary and scarcely worth
mentioning; yet it has proved too subtle for the philosophers,
with few exceptions.

A particular number is not identical with any collection
of terms having that number: the number  is not identical

The same answer is given more fully and with more development in his
Grundgesetze der Arithmetik, vol. i., .


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with | the trio consisting of Brown, Jones, and Robinson. The
number  is something which all trios have in common, and
which distinguishes them from other collections. A number is
something that characterises certain collections, namely, those
that have that number.

Instead of speaking of a “collection,” we shall as a rule
speak of a “class,” or sometimes a “set.” Other words used in
mathematics for the same thing are “aggregate” and “manifold.”
We shall have much to say later on about classes. For the
present, we will say as little as possible. But there are some
remarks that must be made immediately.

A class or collection may be defined in two ways that at
first sight seem quite distinct. We may enumerate its mem-
bers, as when we say, “The collection I mean is Brown, Jones,
and Robinson.” Or we may mention a defining property, as
when we speak of “mankind” or “the inhabitants of London.”
The definition which enumerates is called a definition by “ex-
tension,” and the one which mentions a defining property is
called a definition by “intension.” Of these two kinds of def-
inition, the one by intension is logically more fundamental.
This is shown by two considerations: () that the extensional
definition can always be reduced to an intensional one; () that
the intensional one often cannot even theoretically be reduced
to the extensional one. Each of these points needs a word of
explanation.

() Brown, Jones, and Robinson all of them possess a cer-
tain property which is possessed by nothing else in the whole
universe, namely, the property of being either Brown or Jones
or Robinson. This property can be used to give a definition by
intension of the class consisting of Brown and Jones and Robin-
son. Consider such a formula as “x is Brown or x is Jones or x is
Robinson.” This formula will be true for just three x’s, namely,
Brown and Jones and Robinson. In this respect it resembles a
cubic equation with its three roots. It may be taken as assigning
a property common to the members of the class consisting of

Chap. II. Definition of Number 

these three | men, and peculiar to them. A similar treatment
can obviously be applied to any other class given in extension.

() It is obvious that in practice we can often know a great
deal about a class without being able to enumerate its members.
No one man could actually enumerate all men, or even all the
inhabitants of London, yet a great deal is known about each
of these classes. This is enough to show that definition by
extension is not necessary to knowledge about a class. But when
we come to consider infinite classes, we find that enumeration
is not even theoretically possible for beings who only live for
a finite time. We cannot enumerate all the natural numbers:
they are , , , , and so on. At some point we must content
ourselves with “and so on.” We cannot enumerate all fractions
or all irrational numbers, or all of any other infinite collection.
Thus our knowledge in regard to all such collections can only
be derived from a definition by intension.

These remarks are relevant, when we are seeking the def-
inition of number, in three different ways. In the first place,
numbers themselves form an infinite collection, and cannot
therefore be defined by enumeration. In the second place, the
collections having a given number of terms themselves pre-
sumably form an infinite collection: it is to be presumed, for
example, that there are an infinite collection of trios in the
world, for if this were not the case the total number of things
in the world would be finite, which, though possible, seems
unlikely. In the third place, we wish to define “number” in such
a way that infinite numbers may be possible; thus we must be
able to speak of the number of terms in an infinite collection,
and such a collection must be defined by intension, i.e. by a
property common to all its members and peculiar to them.

For many purposes, a class and a defining characteristic of
it are practically interchangeable. The vital difference between
the two consists in the fact that there is only one class having a
given set of members, whereas there are always many different
characteristics by which a given class may be defined. Men |
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 may be defined as featherless bipeds, or as rational animals, or
(more correctly) by the traits by which Swift delineates the Ya-
hoos. It is this fact that a defining characteristic is never unique
which makes classes useful; otherwise we could be content
with the properties common and peculiar to their members.

Any one of these properties can be used in place of the class
whenever uniqueness is not important.

Returning now to the definition of number, it is clear that
number is a way of bringing together certain collections, name-
ly, those that have a given number of terms. We can suppose
all couples in one bundle, all trios in another, and so on. In
this way we obtain various bundles of collections, each bundle
consisting of all the collections that have a certain number of
terms. Each bundle is a class whose members are collections,
i.e. classes; thus each is a class of classes. The bundle consisting
of all couples, for example, is a class of classes: each couple is a
class with two members, and the whole bundle of couples is a
class with an infinite number of members, each of which is a
class of two members.

How shall we decide whether two collections are to belong
to the same bundle? The answer that suggests itself is: “Find
out how many members each has, and put them in the same
bundle if they have the same number of members.” But this
presupposes that we have defined numbers, and that we know
how to discover how many terms a collection has. We are so
used to the operation of counting that such a presupposition
might easily pass unnoticed. In fact, however, counting, though
familiar, is logically a very complex operation; moreover it is
only available, as a means of discovering how many terms a
collection has, when the collection is finite. Our definition
of number must not assume in advance that all numbers are
finite; and we cannot in any case, without a vicious circle, |
As will be explained later, classes may be regarded as logical fictions,

manufactured out of defining characteristics. But for the present it will
simplify our exposition to treat classes as if they were real.
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use counting to define numbers, because numbers are used in
counting. We need, therefore, some other method of deciding
when two collections have the same number of terms.

In actual fact, it is simpler logically to find out whether two
collections have the same number of terms than it is to define
what that number is. An illustration will make this clear. If
there were no polygamy or polyandry anywhere in the world,
it is clear that the number of husbands living at any moment
would be exactly the same as the number of wives. We do not
need a census to assure us of this, nor do we need to know what
is the actual number of husbands and of wives. We know the
number must be the same in both collections, because each
husband has one wife and each wife has one husband. The
relation of husband and wife is what is called “one-one.”

A relation is said to be “one-one” when, if x has the relation
in question to y, no other term x′ has the same relation to y,
and x does not have the same relation to any term y′ other than
y. When only the first of these two conditions is fulfilled, the
relation is called “one-many”; when only the second is fulfilled,
it is called “many-one.” It should be observed that the number
 is not used in these definitions.

In Christian countries, the relation of husband to wife is
one-one; in Mahometan countries it is one-many; in Tibet it
is many-one. The relation of father to son is one-many; that
of son to father is many-one, but that of eldest son to father is
one-one. If n is any number, the relation of n to n+ is one-one;
so is the relation of n to n or to n. When we are consider-
ing only positive numbers, the relation of n to n is one-one;
but when negative numbers are admitted, it becomes two-one,
since n and −n have the same square. These instances should
suffice to make clear the notions of one-one, one-many, and
many-one relations, which play a great part in the principles of
mathematics, not only in relation to the definition of numbers,
but in many other connections.

Two classes are said to be “similar” when there is a one-
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one | relation which correlates the terms of the one class each
with one term of the other class, in the same manner in which
the relation of marriage correlates husbands with wives. A few
preliminary definitions will help us to state this definition more
precisely. The class of those terms that have a given relation
to something or other is called the domain of that relation:
thus fathers are the domain of the relation of father to child,
husbands are the domain of the relation of husband to wife,
wives are the domain of the relation of wife to husband, and
husbands and wives together are the domain of the relation of
marriage. The relation of wife to husband is called the converse
of the relation of husband to wife. Similarly less is the converse
of greater, later is the converse of earlier, and so on. Generally,
the converse of a given relation is that relation which holds
between y and x whenever the given relation holds between x
and y. The converse domain of a relation is the domain of its
converse: thus the class of wives is the converse domain of the
relation of husband to wife. We may now state our definition
of similarity as follows:—

One class is said to be “similar” to another when there is a
one-one relation of which the one class is the domain, while the
other is the converse domain.

It is easy to prove () that every class is similar to itself,
() that if a class α is similar to a class β, then β is similar to
α, () that if α is similar to β and β to γ , then α is similar to
γ . A relation is said to be reflexive when it possesses the first
of these properties, symmetrical when it possesses the second,
and transitive when it possesses the third. It is obvious that a
relation which is symmetrical and transitive must be reflexive
throughout its domain. Relations which possess these proper-
ties are an important kind, and it is worth while to note that
similarity is one of this kind of relations.

It is obvious to common sense that two finite classes have
the same number of terms if they are similar, but not other-
wise. The act of counting consists in establishing a one-one
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correlation | between the set of objects counted and the nat-
ural numbers (excluding ) that are used up in the process.
Accordingly common sense concludes that there are as many
objects in the set to be counted as there are numbers up to the
last number used in the counting. And we also know that, so
long as we confine ourselves to finite numbers, there are just n
numbers from  up to n. Hence it follows that the last number
used in counting a collection is the number of terms in the col-
lection, provided the collection is finite. But this result, besides
being only applicable to finite collections, depends upon and
assumes the fact that two classes which are similar have the
same number of terms; for what we do when we count (say) 
objects is to show that the set of these objects is similar to the
set of numbers  to . The notion of similarity is logically pre-
supposed in the operation of counting, and is logically simpler
though less familiar. In counting, it is necessary to take the
objects counted in a certain order, as first, second, third, etc.,
but order is not of the essence of number: it is an irrelevant
addition, an unnecessary complication from the logical point
of view. The notion of similarity does not demand an order:
for example, we saw that the number of husbands is the same
as the number of wives, without having to establish an order
of precedence among them. The notion of similarity also does
not require that the classes which are similar should be finite.
Take, for example, the natural numbers (excluding ) on the
one hand, and the fractions which have  for their numerator
on the other hand: it is obvious that we can correlate  with
/,  with /, and so on, thus proving that the two classes are
similar.

We may thus use the notion of “similarity” to decide when
two collections are to belong to the same bundle, in the sense
in which we were asking this question earlier in this chapter.
We want to make one bundle containing the class that has no
members: this will be for the number . Then we want a bundle
of all the classes that have one member: this will be for the
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number . Then, for the number , we want a bundle consist-
ing | of all couples; then one of all trios; and so on. Given any
collection, we can define the bundle it is to belong to as being
the class of all those collections that are “similar” to it. It is very
easy to see that if (for example) a collection has three members,
the class of all those collections that are similar to it will be
the class of trios. And whatever number of terms a collection
may have, those collections that are “similar” to it will have
the same number of terms. We may take this as a definition of
“having the same number of terms.” It is obvious that it gives
results conformable to usage so long as we confine ourselves to
finite collections.

So far we have not suggested anything in the slightest de-
gree paradoxical. But when we come to the actual definition
of numbers we cannot avoid what must at first sight seem a
paradox, though this impression will soon wear off. We natu-
rally think that the class of couples (for example) is something
different from the number . But there is no doubt about the
class of couples: it is indubitable and not difficult to define,
whereas the number , in any other sense, is a metaphysical en-
tity about which we can never feel sure that it exists or that we
have tracked it down. It is therefore more prudent to content
ourselves with the class of couples, which we are sure of, than to
hunt for a problematical number  which must always remain
elusive. Accordingly we set up the following definition:—

The number of a class is the class of all those classes that are
similar to it.

Thus the number of a couple will be the class of all couples.
In fact, the class of all couples will be the number , according
to our definition. At the expense of a little oddity, this definition
secures definiteness and indubitableness; and it is not difficult
to prove that numbers so defined have all the properties that
we expect numbers to have.

We may now go on to define numbers in general as any one
of the bundles into which similarity collects classes. A number
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will be a set of classes such as that any two are similar to each |
other, and none outside the set are similar to any inside the set.

In other words, a number (in general) is any collection which is
the number of one of its members; or, more simply still:

A number is anything which is the number of some class.
Such a definition has a verbal appearance of being circular,

but in fact it is not. We define “the number of a given class”
without using the notion of number in general; therefore we
may define number in general in terms of “the number of a
given class” without committing any logical error.

Definitions of this sort are in fact very common. The class of
fathers, for example, would have to be defined by first defining
what it is to be the father of somebody; then the class of fathers
will be all those who are somebody’s father. Similarly if we
want to define square numbers (say), we must first define what
we mean by saying that one number is the square of another,
and then define square numbers as those that are the squares
of other numbers. This kind of procedure is very common, and
it is important to realise that it is legitimate and even often
necessary.

We have now given a definition of numbers which will serve
for finite collections. It remains to be seen how it will serve for
infinite collections. But first we must decide what we mean by
“finite” and “infinite,” which cannot be done within the limits
of the present chapter.



CHAPTER III

FINITUDE AND MATHEMATICAL
INDUCTION

 The series of natural numbers, as we saw in Chapter I., can all
be defined if we know what we mean by the three terms “,”
“number,” and “successor.” But we may go a step farther: we
can define all the natural numbers if we know what we mean by
“” and “successor.” It will help us to understand the difference
between finite and infinite to see how this can be done, and
why the method by which it is done cannot be extended beyond
the finite. We will not yet consider how “” and “successor”
are to be defined: we will for the moment assume that we know
what these terms mean, and show how thence all other natural
numbers can be obtained.

It is easy to see that we can reach any assigned number,
say ,. We first define “” as “the successor of ,” then
we define “” as “the successor of ,” and so on. In the case
of an assigned number, such as ,, the proof that we can
reach it by proceeding step by step in this fashion may be made,
if we have the patience, by actual experiment: we can go on
until we actually arrive at ,. But although the method of
experiment is available for each particular natural number, it is
not available for proving the general proposition that all such
numbers can be reached in this way, i.e. by proceeding from
 step by step from each number to its successor. Is there any
other way by which this can be proved?

Let us consider the question the other way round. What
are the numbers that can be reached, given the terms “” and |

 “successor”? Is there any way by which we can define the whole

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class of such numbers? We reach , as the successor of ; , as
the successor of ; , as the successor of ; and so on. It is this
“and so on” that we wish to replace by something less vague and
indefinite. We might be tempted to say that “and so on” means
that the process of proceeding to the successor may be repeated
any finite number of times; but the problem upon which we
are engaged is the problem of defining “finite number,” and
therefore we must not use this notion in our definition. Our
definition must not assume that we know what a finite number
is.

The key to our problem lies in mathematical induction. It
will be remembered that, in Chapter I., this was the fifth of
the five primitive propositions which we laid down about the
natural numbers. It stated that any property which belongs to
, and to the successor of any number which has the property,
belongs to all the natural numbers. This was then presented
as a principle, but we shall now adopt it as a definition. It is
not difficult to see that the terms obeying it are the same as the
numbers that can be reached from  by successive steps from
next to next, but as the point is important we will set forth the
matter in some detail.

We shall do well to begin with some definitions, which will
be useful in other connections also.

A property is said to be “hereditary” in the natural-number
series if, whenever it belongs to a number n, it also belongs
to n + , the successor of n. Similarly a class is said to be
“hereditary” if, whenever n is a member of the class, so is n+ .
It is easy to see, though we are not yet supposed to know, that
to say a property is hereditary is equivalent to saying that it
belongs to all the natural numbers not less than some one of
them, e.g. it must belong to all that are not less than , or all
that are not less than , or it may be that it belongs to all
that are not less than , i.e. to all without exception.

A property is said to be “inductive” when it is a hereditary
| property which belongs to . Similarly a class is “inductive”
when it is a hereditary class of which  is a member.
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Given a hereditary class of which  is a member, it follows
that  is a member of it, because a hereditary class contains the
successors of its members, and  is the successor of . Similarly,
given a hereditary class of which  is a member, it follows that
 is a member of it; and so on. Thus we can prove by a step-by-
step procedure that any assigned natural number, say ,,
is a member of every inductive class.

We will define the “posterity” of a given natural number
with respect to the relation “immediate predecessor” (which is
the converse of “successor”) as all those terms that belong to
every hereditary class to which the given number belongs. It is
again easy to see that the posterity of a natural number consists
of itself and all greater natural numbers; but this also we do
not yet officially know.

By the above definitions, the posterity of  will consist of
those terms which belong to every inductive class.

It is now not difficult to make it obvious that the posterity
of  is the same set as those terms that can be reached from 
by successive steps from next to next. For, in the first place,
 belongs to both these sets (in the sense in which we have
defined our terms); in the second place, if n belongs to both
sets, so does n + . It is to be observed that we are dealing
here with the kind of matter that does not admit of precise
proof, namely, the comparison of a relatively vague idea with
a relatively precise one. The notion of “those terms that can
be reached from  by successive steps from next to next” is
vague, though it seems as if it conveyed a definite meaning; on
the other hand, “the posterity of ” is precise and explicit just
where the other idea is hazy. It may be taken as giving what we
meant to mean when we spoke of the terms that can be reached
from  by successive steps.

We now lay down the following definition:—
The “natural numbers” are the posterity of  with respect to

the | relation “immediate predecessor” (which is the converse of
“successor”).
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We have thus arrived at a definition of one of Peano’s three
primitive ideas in terms of the other two. As a result of this
definition, two of his primitive propositions—namely, the one
asserting that  is a number and the one asserting mathematical
induction—become unnecessary, since they result from the
definition. The one asserting that the successor of a natural
number is a natural number is only needed in the weakened
form “every natural number has a successor.”

We can, of course, easily define “” and “successor” by
means of the definition of number in general which we arrived
at in Chapter II. The number  is the number of terms in a
class which has no members, i.e. in the class which is called the
“null-class.” By the general definition of number, the number
of terms in the null-class is the set of all classes similar to the
null-class, i.e. (as is easily proved) the set consisting of the
null-class all alone, i.e. the class whose only member is the
null-class. (This is not identical with the null-class: it has one
member, namely, the null-class, whereas the null-class itself has
no members. A class which has one member is never identical
with that one member, as we shall explain when we come to the
theory of classes.) Thus we have the following purely logical
definition:—
 is the class whose only member is the null-class.
It remains to define “successor.” Given any number n, let

α be a class which has n members, and let x be a term which
is not a member of α. Then the class consisting of α with x
added on will have n+ members. Thus we have the following
definition:—

The successor of the number of terms in the class α is the number
of terms in the class consisting of α together with x, where x is any
term not belonging to the class.

Certain niceties are required to make this definition perfect,
but they need not concern us. It will be remembered that we

See Principia Mathematica, vol. ii. ∗.
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| have already given (in Chapter II.) a logical definition of the
number of terms in a class, namely, we defined it as the set of
all classes that are similar to the given class.

We have thus reduced Peano’s three primitive ideas to ideas
of logic: we have given definitions of them which make them
definite, no longer capable of an infinity of different meanings,
as they were when they were only determinate to the extent of
obeying Peano’s five axioms. We have removed them from the
fundamental apparatus of terms that must be merely appre-
hended, and have thus increased the deductive articulation of
mathematics.

As regards the five primitive propositions, we have already
succeeded in making two of them demonstrable by our defini-
tion of “natural number.” How stands it with the remaining
three? It is very easy to prove that  is not the successor of any
number, and that the successor of any number is a number. But
there is a difficulty about the remaining primitive proposition,
namely, “no two numbers have the same successor.” The diffi-
culty does not arise unless the total number of individuals in
the universe is finite; for given two numbers m and n, neither
of which is the total number of individuals in the universe, it is
easy to prove that we cannot have m+  = n+  unless we have
m = n. But let us suppose that the total number of individuals
in the universe were (say) ; then there would be no class of
 individuals, and the number  would be the null-class. So
would the number . Thus we should have  = ; therefore
the successor of  would be the same as the successor of ,
although  would not be the same as . Thus we should have
two different numbers with the same successor. This failure of
the third axiom cannot arise, however, if the number of indi-
viduals in the world is not finite. We shall return to this topic
at a later stage.

Assuming that the number of individuals in the universe is

See Chapter XIII.
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not finite, we have now succeeded not only in defining Peano’s |
three primitive ideas, but in seeing how to prove his five primi-

tive propositions, by means of primitive ideas and propositions
belonging to logic. It follows that all pure mathematics, in so
far as it is deducible from the theory of the natural numbers,
is only a prolongation of logic. The extension of this result to
those modern branches of mathematics which are not deducible
from the theory of the natural numbers offers no difficulty of
principle, as we have shown elsewhere.

The process of mathematical induction, by means of which
we defined the natural numbers, is capable of generalisation.
We defined the natural numbers as the “posterity” of  with
respect to the relation of a number to its immediate successor.
If we call this relation N, any number m will have this relation
tom+. A property is “hereditary with respect to N,” or simply
“N-hereditary,” if, whenever the property belongs to a number
m, it also belongs to m+ , i.e. to the number to which m has
the relation N. And a number n will be said to belong to the
“posterity” of m with respect to the relation N if n has every
N-hereditary property belonging to m. These definitions can
all be applied to any other relation just as well as to N. Thus
if R is any relation whatever, we can lay down the following
definitions:—

A property is called “R-hereditary” when, if it belongs to a
term x, and x has the relation R to y, then it belongs to y.

A class is R-hereditary when its defining property is R-
hereditary.

A term x is said to be an “R-ancestor” of the term y if y has
every R-hereditary property that x has, provided x is a term

For geometry, in so far as it is not purely analytical, see Principles of
Mathematics, part vi.; for rational dynamics, ibid., part vii.
These definitions, and the generalised theory of induction, are due to

Frege, and were published so long ago as  in his Begriffsschrift. In spite
of the great value of this work, I was, I believe, the first person who ever
read it—more than twenty years after its publication.
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which has the relation R to something or to which something
has the relation R. (This is only to exclude trivial cases.) |

The “R-posterity” of x is all the terms of which x is an R-
ancestor.

We have framed the above definitions so that if a term is
the ancestor of anything it is its own ancestor and belongs to
its own posterity. This is merely for convenience.

It will be observed that if we take for R the relation “parent,”
“ancestor” and “posterity” will have the usual meanings, except
that a person will be included among his own ancestors and
posterity. It is, of course, obvious at once that “ancestor” must
be capable of definition in terms of “parent,” but until Frege
developed his generalised theory of induction, no one could
have defined “ancestor” precisely in terms of “parent.” A brief
consideration of this point will serve to show the importance
of the theory. A person confronted for the first time with the
problem of defining “ancestor” in terms of “parent” would
naturally say that A is an ancestor of Z if, between A and Z,
there are a certain number of people, B, C, . . . , of whom B is a
child of A, each is a parent of the next, until the last, who is a
parent of Z. But this definition is not adequate unless we add
that the number of intermediate terms is to be finite. Take, for
example, such a series as the following:—

−, − , − , − , . . .  ,  ,  , .
Here we have first a series of negative fractions with no end,
and then a series of positive fractions with no beginning. Shall
we say that, in this series, −/ is an ancestor of /? It will
be so according to the beginner’s definition suggested above,
but it will not be so according to any definition which will
give the kind of idea that we wish to define. For this purpose,
it is essential that the number of intermediaries should be
finite. But, as we saw, “finite” is to be defined by means of
mathematical induction, and it is simpler to define the ancestral
relation generally at once than to define it first only for the case
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of the relation of n to n+ , and then extend it to other cases.
Here, as constantly elsewhere, generality from the first, though
it may | require more thought at the start, will be found in the
long run to economise thought and increase logical power.

The use of mathematical induction in demonstrations was,
in the past, something of a mystery. There seemed no reason-
able doubt that it was a valid method of proof, but no one
quite knew why it was valid. Some believed it to be really a
case of induction, in the sense in which that word is used in
logic. Poincaré considered it to be a principle of the utmost im-
portance, by means of which an infinite number of syllogisms
could be condensed into one argument. We now know that
all such views are mistaken, and that mathematical induction
is a definition, not a principle. There are some numbers to
which it can be applied, and there are others (as we shall see
in Chapter VIII.) to which it cannot be applied. We define the
“natural numbers” as those to which proofs by mathematical
induction can be applied, i.e. as those that possess all induc-
tive properties. It follows that such proofs can be applied to
the natural numbers, not in virtue of any mysterious intuition
or axiom or principle, but as a purely verbal proposition. If
“quadrupeds” are defined as animals having four legs, it will
follow that animals that have four legs are quadrupeds; and the
case of numbers that obey mathematical induction is exactly
similar.

We shall use the phrase “inductive numbers” to mean the
same set as we have hitherto spoken of as the “natural numbers.”
The phrase “inductive numbers” is preferable as affording a
reminder that the definition of this set of numbers is obtained
from mathematical induction.

Mathematical induction affords, more than anything else,
the essential characteristic by which the finite is distinguished
from the infinite. The principle of mathematical induction

Science and Method, chap. iv.
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might be stated popularly in some such form as “what can be
inferred from next to next can be inferred from first to last.”
This is true when the number of intermediate steps between
first and last is finite, not otherwise. Anyone who has ever |

 watched a goods train beginning to move will have noticed
how the impulse is communicated with a jerk from each truck
to the next, until at last even the hindmost truck is in motion.
When the train is very long, it is a very long time before the last
truck moves. If the train were infinitely long, there would be
an infinite succession of jerks, and the time would never come
when the whole train would be in motion. Nevertheless, if there
were a series of trucks no longer than the series of inductive
numbers (which, as we shall see, is an instance of the smallest
of infinites), every truck would begin to move sooner or later
if the engine persevered, though there would always be other
trucks further back which had not yet begun to move. This
image will help to elucidate the argument from next to next,
and its connection with finitude. When we come to infinite
numbers, where arguments from mathematical induction will
be no longer valid, the properties of such numbers will help
to make clear, by contrast, the almost unconscious use that
is made of mathematical induction where finite numbers are
concerned.

CHAPTER IV

THE DEFINITION OF ORDER

We have now carried our analysis of the series of natural num-
bers to the point where we have obtained logical definitions of
the members of this series, of the whole class of its members,
and of the relation of a number to its immediate successor. We
must now consider the serial character of the natural numbers
in the order , , , , . . . We ordinarily think of the numbers as
in this order, and it is an essential part of the work of analysing
our data to seek a definition of “order” or “series” in logical
terms.

The notion of order is one which has enormous importance
in mathematics. Not only the integers, but also rational frac-
tions and all real numbers have an order of magnitude, and this
is essential to most of their mathematical properties. The order
of points on a line is essential to geometry; so is the slightly
more complicated order of lines through a point in a plane, or
of planes through a line. Dimensions, in geometry, are a devel-
opment of order. The conception of a limit, which underlies all
higher mathematics, is a serial conception. There are parts of
mathematics which do not depend upon the notion of order,
but they are very few in comparison with the parts in which
this notion is involved.

In seeking a definition of order, the first thing to realise
is that no set of terms has just one order to the exclusion of
others. A set of terms has all the orders of which it is capable.
Sometimes one order is so much more familiar and natural to


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our | thoughts that we are inclined to regard it as the order of
that set of terms; but this is a mistake. The natural numbers—
or the “inductive” numbers, as we shall also call them—occur
to us most readily in order of magnitude; but they are capable
of an infinite number of other arrangements. We might, for
example, consider first all the odd numbers and then all the
even numbers; or first , then all the even numbers, then all
the odd multiples of , then all the multiples of  but not
of  or , then all the multiples of  but not of  or  or ,
and so on through the whole series of primes. When we say
that we “arrange” the numbers in these various orders, that
is an inaccurate expression: what we really do is to turn our
attention to certain relations between the natural numbers,
which themselves generate such-and-such an arrangement. We
can no more “arrange” the natural numbers than we can the
starry heavens; but just as we may notice among the fixed stars
either their order of brightness or their distribution in the sky,
so there are various relations among numbers which may be
observed, and which give rise to various different orders among
numbers, all equally legitimate. And what is true of numbers is
equally true of points on a line or of the moments of time: one
order is more familiar, but others are equally valid. We might,
for example, take first, on a line, all the points that have integral
co-ordinates, then all those that have non-integral rational
co-ordinates, then all those that have algebraic non-rational
co-ordinates, and so on, through any set of complications we
please. The resulting order will be one which the points of the
line certainly have, whether we choose to notice it or not; the
only thing that is arbitrary about the various orders of a set of
terms is our attention, for the terms themselves have always all
the orders of which they are capable.

One important result of this consideration is that we must
not look for the definition of order in the nature of the set of
terms to be ordered, since one set of terms has many orders. The
order lies, not in the class of terms, but in a relation among | the
members of the class, in respect of which some appear as earlier
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and some as later. The fact that a class may have many orders
is due to the fact that there can be many relations holding
among the members of one single class. What properties must
a relation have in order to give rise to an order?

The essential characteristics of a relation which is to give
rise to order may be discovered by considering that in respect
of such a relation we must be able to say, of any two terms in
the class which is to be ordered, that one “precedes” and the
other “follows.” Now, in order that we may be able to use these
words in the way in which we should naturally understand
them, we require that the ordering relation should have three
properties:—

() If x precedes y, y must not also precede x. This is an
obvious characteristic of the kind of relations that lead to series.
If x is less than y, y is not also less than x. If x is earlier in time
than y, y is not also earlier than x. If x is to the left of y, y is not
to the left of x. On the other hand, relations which do not give
rise to series often do not have this property. If x is a brother
or sister of y, y is a brother or sister of x. If x is of the same
height as y, y is of the same height as x. If x is of a different
height from y, y is of a different height from x. In all these cases,
when the relation holds between x and y, it also holds between
y and x. But with serial relations such a thing cannot happen.
A relation having this first property is called asymmetrical.

() If x precedes y and y precedes z, x must precede z. This
may be illustrated by the same instances as before: less, earlier,
left of. But as instances of relations which do not have this
property only two of our previous three instances will serve.
If x is brother or sister of y, and y of z, x may not be brother
or sister of z, since x and z may be the same person. The same
applies to difference of height, but not to sameness of height,
which has our second property but not our first. The relation
“father,” on the other hand, has our first property but not |

our second. A relation having our second property is called
transitive.

() Given any two terms of the class which is to be ordered,
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there must be one which precedes and the other which follows.
For example, of any two integers, or fractions, or real numbers,
one is smaller and the other greater; but of any two complex
numbers this is not true. Of any two moments in time, one
must be earlier than the other; but of events, which may be
simultaneous, this cannot be said. Of two points on a line, one
must be to the left of the other. A relation having this third
property is called connected.

When a relation possesses these three properties, it is of the
sort to give rise to an order among the terms between which
it holds; and wherever an order exists, some relation having
these three properties can be found generating it.

Before illustrating this thesis, we will introduce a few defi-
nitions.

() A relation is said to be an aliorelative, or to be contained
in or imply diversity, if no term has this relation to itself. Thus,
for example, “greater,” “different in size,” “brother,” “husband,”
“father” are aliorelatives; but “equal,” “born of the same par-
ents,” “dear friend” are not.

() The square of a relation is that relation which holds
between two terms x and z when there is an intermediate term y
such that the given relation holds between x and y and between
y and z. Thus “paternal grandfather” is the square of “father,”
“greater by ” is the square of “greater by ,” and so on.

() The domain of a relation consists of all those terms that
have the relation to something or other, and the converse domain
consists of all those terms to which something or other has
the relation. These words have been already defined, but are
recalled here for the sake of the following definition:—

() The field of a relation consists of its domain and converse
domain together. |

() One relation is said to contain or be implied by another if
it holds whenever the other holds.

This term is due to C. S. Peirce.
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It will be seen that an asymmetrical relation is the same thing
as a relation whose square is an aliorelative. It often happens
that a relation is an aliorelative without being asymmetrical,
though an asymmetrical relation is always an aliorelative. For
example, “spouse” is an aliorelative, but is symmetrical, since
if x is the spouse of y, y is the spouse of x. But among transitive
relations, all aliorelatives are asymmetrical as well as vice versa.

From the definitions it will be seen that a transitive rela-
tion is one which is implied by its square, or, as we also say,
“contains” its square. Thus “ancestor” is transitive, because an
ancestor’s ancestor is an ancestor; but “father” is not transitive,
because a father’s father is not a father. A transitive aliorelative
is one which contains its square and is contained in diversity;
or, what comes to the same thing, one whose square implies
both it and diversity—because, when a relation is transitive,
asymmetry is equivalent to being an aliorelative.

A relation is connected when, given any two different terms
of its field, the relation holds between the first and the second
or between the second and the first (not excluding the possibil-
ity that both may happen, though both cannot happen if the
relation is asymmetrical).

It will be seen that the relation “ancestor,” for example, is
an aliorelative and transitive, but not connected; it is because it
is not connected that it does not suffice to arrange the human
race in a series.

The relation “less than or equal to,” among numbers, is tran-
sitive and connected, but not asymmetrical or an aliorelative.

The relation “greater or less” among numbers is an aliorela-
tive and is connected, but is not transitive, for if x is greater or
less than y, and y is greater or less than z, it may happen that x
and z are the same number.

Thus the three properties of being () an aliorelative, () |
transitive, and () connected, are mutually independent, since

a relation may have any two without having the third.
We now lay down the following definition:—



 Introduction to Mathematical Philosophy

A relation is serial when it is an aliorelative, transitive, and
connected; or, what is equivalent, when it is asymmetrical,
transitive, and connected.

A series is the same thing as a serial relation.
It might have been thought that a series should be the field

of a serial relation, not the serial relation itself. But this would
be an error. For example,

, , ; , , ; , , ; , , ; , , ; , , 

are six different series which all have the same field. If the field
were the series, there could only be one series with a given field.
What distinguishes the above six series is simply the different
ordering relations in the six cases. Given the ordering relation,
the field and the order are both determinate. Thus the ordering
relation may be taken to be the series, but the field cannot be
so taken.

Given any serial relation, say P, we shall say that, in respect
of this relation, x “precedes” y if x has the relation P to y, which
we shall write “xPy” for short. The three characteristics which
P must have in order to be serial are:

() We must never have xPx, i.e. no term must precede itself.
() P must imply P, i.e. if x precedes y and y precedes z, x

must precede z.
() If x and y are two different terms in the field of P, we

shall have xPy or yPx, i.e. one of the two must precede
the other.

The reader can easily convince himself that, where these three
properties are found in an ordering relation, the characteristics
we expect of series will also be found, and vice versa. We are
therefore justified in taking the above as a definition of order |

 or series. And it will be observed that the definition is effected
in purely logical terms.

Although a transitive asymmetrical connected relation al-
ways exists wherever there is a series, it is not always the rela-
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tion which would most naturally be regarded as generating the
series. The natural-number series may serve as an illustration.
The relation we assumed in considering the natural numbers
was the relation of immediate succession, i.e. the relation be-
tween consecutive integers. This relation is asymmetrical, but
not transitive or connected. We can, however, derive from it, by
the method of mathematical induction, the “ancestral” relation
which we considered in the preceding chapter. This relation
will be the same as “less than or equal to” among inductive
integers. For purposes of generating the series of natural num-
bers, we want the relation “less than,” excluding “equal to.”
This is the relation of m to n when m is an ancestor of n but
not identical with n, or (what comes to the same thing) when
the successor of m is an ancestor of n in the sense in which a
number is its own ancestor. That is to say, we shall lay down
the following definition:—

An inductive number m is said to be less than another num-
ber n when n possesses every hereditary property possessed by
the successor of m.

It is easy to see, and not difficult to prove, that the relation
“less than,” so defined, is asymmetrical, transitive, and con-
nected, and has the inductive numbers for its field. Thus by
means of this relation the inductive numbers acquire an order
in the sense in which we defined the term “order,” and this
order is the so-called “natural” order, or order of magnitude.

The generation of series by means of relations more or less
resembling that of n to n +  is very common. The series of
the Kings of England, for example, is generated by relations of
each to his successor. This is probably the easiest way, where
it is applicable, of conceiving the generation of a series. In
this method we pass on from each term to the next, as long
as there | is a next, or back to the one before, as long as there
is one before. This method always requires the generalised
form of mathematical induction in order to enable us to define
“earlier” and “later” in a series so generated. On the analogy
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of “proper fractions,” let us give the name “proper posterity of
x with respect to R” to the class of those terms that belong to
the R-posterity of some term to which x has the relation R, in
the sense which we gave before to “posterity,” which includes
a term in its own posterity. Reverting to the fundamental
definitions, we find that the “proper posterity” may be defined
as follows:—

The “proper posterity” of x with respect to R consists of all
terms that possess every R-hereditary property possessed by
every term to which x has the relation R.

It is to be observed that this definition has to be so framed
as to be applicable not only when there is only one term to
which x has the relation R, but also in cases (as e.g. that of
father and child) where there may be many terms to which x
has the relation R. We define further:

A term x is a “proper ancestor” of y with respect to R if y
belongs to the proper posterity of x with respect to R.

We shall speak for short of “R-posterity” and “R-ancestors”
when these terms seem more convenient.

Reverting now to the generation of series by the relation R
between consecutive terms, we see that, if this method is to be
possible, the relation “proper R-ancestor” must be an aliorel-
ative, transitive, and connected. Under what circumstances
will this occur? It will always be transitive: no matter what
sort of relation R may be, “R-ancestor” and “proper R-ancestor”
are always both transitive. But it is only under certain circum-
stances that it will be an aliorelative or connected. Consider, for
example, the relation to one’s left-hand neighbour at a round
dinner-table at which there are twelve people. If we call this
relation R, the proper R-posterity of a person consists of all
who can be reached by going round the table from right to
left. This includes everybody at the table, including the person
himself, since | twelve steps bring us back to our starting-point.
Thus in such a case, though the relation “proper R-ancestor” is
connected, and though R itself is an aliorelative, we do not get
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a series because “proper R-ancestor” is not an aliorelative. It is
for this reason that we cannot say that one person comes before
another with respect to the relation “right of” or to its ancestral
derivative.

The above was an instance in which the ancestral relation
was connected but not contained in diversity. An instance
where it is contained in diversity but not connected is derived
from the ordinary sense of the word “ancestor.” If x is a proper
ancestor of y, x and y cannot be the same person; but it is not
true that of any two persons one must be an ancestor of the
other.

The question of the circumstances under which series can
be generated by ancestral relations derived from relations of
consecutiveness is often important. Some of the most important
cases are the following: Let R be a many-one relation, and let us
confine our attention to the posterity of some term x. When so
confined, the relation “proper R-ancestor” must be connected;
therefore all that remains to ensure its being serial is that it
shall be contained in diversity. This is a generalisation of the
instance of the dinner-table. Another generalisation consists in
taking R to be a one-one relation, and including the ancestry
of x as well as the posterity. Here again, the one condition
required to secure the generation of a series is that the relation
“proper R-ancestor” shall be contained in diversity.

The generation of order by means of relations of consecu-
tiveness, though important in its own sphere, is less general
than the method which uses a transitive relation to define the
order. It often happens in a series that there are an infinite
number of intermediate terms between any two that may be se-
lected, however near together these may be. Take, for instance,
fractions in order of magnitude. Between any two fractions
there are others—for example, the arithmetic mean of the two.
Consequently there is no such thing as a pair of consecutive
fractions. If we depended | upon consecutiveness for defining
order, we should not be able to define the order of magnitude
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among fractions. But in fact the relations of greater and less
among fractions do not demand generation from relations of
consecutiveness, and the relations of greater and less among
fractions have the three characteristics which we need for defin-
ing serial relations. In all such cases the order must be defined
by means of a transitive relation, since only such a relation is
able to leap over an infinite number of intermediate terms. The
method of consecutiveness, like that of counting for discover-
ing the number of a collection, is appropriate to the finite; it
may even be extended to certain infinite series, namely, those in
which, though the total number of terms is infinite, the number
of terms between any two is always finite; but it must not be
regarded as general. Not only so, but care must be taken to erad-
icate from the imagination all habits of thought resulting from
supposing it general. If this is not done, series in which there
are no consecutive terms will remain difficult and puzzling.
And such series are of vital importance for the understanding
of continuity, space, time, and motion.

There are many ways in which series may be generated, but
all depend upon the finding or construction of an asymmet-
rical transitive connected relation. Some of these ways have
considerable importance. We may take as illustrative the gen-
eration of series by means of a three-term relation which we
may call “between.” This method is very useful in geometry,
and may serve as an introduction to relations having more than
two terms; it is best introduced in connection with elementary
geometry.

Given any three points on a straight line in ordinary space,
there must be one of them which is between the other two. This
will not be the case with the points on a circle or any other
closed curve, because, given any three points on a circle, we
can travel from any one to any other without passing through
the third. In fact, the notion “between” is characteristic of open
series—or series in the strict sense—as opposed to what may be
called | “cyclic” series, where, as with people at the dinner-table,
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a sufficient journey brings us back to our starting-point. This
notion of “between” may be chosen as the fundamental notion
of ordinary geometry; but for the present we will only consider
its application to a single straight line and to the ordering of
the points on a straight line. Taking any two points a, b, the
line (ab) consists of three parts (besides a and b themselves):

() Points between a and b.
() Points x such that a is between x and b.
() Points y such that b is between y and a.

Thus the line (ab) can be defined in terms of the relation “be-
tween.”

In order that this relation “between” may arrange the points
of the line in an order from left to right, we need certain as-
sumptions, namely, the following:—

() If anything is between a and b, a and b are not identical.
() Anything between a and b is also between b and a.
() Anything between a and b is not identical with a (nor,

consequently, with b, in virtue of ()).
() If x is between a and b, anything between a and x is also

between a and b.
() If x is between a and b, and b is between x and y, then b

is between a and y.
() If x and y are between a and b, then either x and y are

identical, or x is between a and y, or x is between y and b.
() If b is between a and x and also between a and y, then

either x and y are identical, or x is between b and y, or y is
between b and x.

These seven properties are obviously verified in the case
of points on a straight line in ordinary space. Any three-term
relation which verifies them gives rise to series, as may be seen
from the following definitions. For the sake of definiteness, let

Cf. Rivista di Matematica, iv. pp. ff.; Principles of Mathematics, p. 
(§).
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us assume | that a is to the left of b. Then the points of the line
(ab) are () those between which and b, a lies—these we will
call to the left of a; () a itself; () those between a and b; ()
b itself; () those between which and a lies b—these we will
call to the right of b. We may now define generally that of two
points x, y, on the line (ab), we shall say that x is “to the left of”
y in any of the following cases:—

() When x and y are both to the left of a, and y is between
x and a;

() When x is to the left of a, and y is a or b or between a
and b or to the right of b;

() When x is a, and y is between a and b or is b or is to the
right of b;

() When x and y are both between a and b, and y is between
x and b;

() When x is between a and b, and y is b or to the right of b;
() When x is b and y is to the right of b;
() When x and y are both to the right of b and x is between

b and y.

It will be found that, from the seven properties which we
have assigned to the relation “between,” it can be deduced that
the relation “to the left of,” as above defined, is a serial relation
as we defined that term. It is important to notice that nothing
in the definitions or the argument depends upon our meaning
by “between” the actual relation of that name which occurs
in empirical space: any three-term relation having the above
seven purely formal properties will serve the purpose of the
argument equally well.

Cyclic order, such as that of the points on a circle, cannot be
generated by means of three-term relations of “between.” We
need a relation of four terms, which may be called “separation
of couples.” The point may be illustrated by considering a
journey round the world. One may go from England to New
Zealand by way of Suez or by way of San Francisco; we cannot
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| say definitely that either of these two places is “between”
England and New Zealand. But if a man chooses that route to
go round the world, whichever way round he goes, his times in
England and New Zealand are separated from each other by his
times in Suez and San Francisco, and conversely. Generalising,
if we take any four points on a circle, we can separate them
into two couples, say a and b and x and y, such that, in order
to get from a to b one must pass through either x or y, and in
order to get from x to y one must pass through either a or b.
Under these circumstances we say that the couple (a, b) are
“separated” by the couple (x, y). Out of this relation a cyclic
order can be generated, in a way resembling that in which we
generated an open order from “between,” but somewhat more
complicated.

The purpose of the latter half of this chapter has been to
suggest the subject which one may call “generation of serial
relations.” When such relations have been defined, the gen-
eration of them from other relations possessing only some of
the properties required for series becomes very important, es-
pecially in the philosophy of geometry and physics. But we
cannot, within the limits of the present volume, do more than
make the reader aware that such a subject exists.

Cf. Principles of Mathematics, p.  (§), and references there given.



CHAPTER V

KINDS OF RELATIONS

 A great part of the philosophy of mathematics is concerned
with relations, and many different kinds of relations have dif-
ferent kinds of uses. It often happens that a property which
belongs to all relations is only important as regards relations of
certain sorts; in these cases the reader will not see the bearing
of the proposition asserting such a property unless he has in
mind the sorts of relations for which it is useful. For reasons
of this description, as well as from the intrinsic interest of the
subject, it is well to have in our minds a rough list of the more
mathematically serviceable varieties of relations.

We dealt in the preceding chapter with a supremely impor-
tant class, namely, serial relations. Each of the three properties
which we combined in defining series—namely, asymmetry,
transitiveness, and connexity—has its own importance. We will
begin by saying something on each of these three.

Asymmetry, i.e. the property of being incompatible with the
converse, is a characteristic of the very greatest interest and
importance. In order to develop its functions, we will consider
various examples. The relation husband is asymmetrical, and so
is the relation wife; i.e. if a is husband of b, b cannot be husband
of a, and similarly in the case of wife. On the other hand, the
relation “spouse” is symmetrical: if a is spouse of b, then b is
spouse of a. Suppose now we are given the relation spouse, and
we wish to derive the relation husband. Husband is the same
as male spouse or spouse of a female; thus the relation husband


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can | be derived from spouse either by limiting the domain to
males or by limiting the converse domain to females. We see
from this instance that, when a symmetrical relation is given, it
is sometimes possible, without the help of any further relation,
to separate it into two asymmetrical relations. But the cases
where this is possible are rare and exceptional: they are cases
where there are two mutually exclusive classes, say α and β,
such that whenever the relation holds between two terms, one
of the terms is a member of α and the other is a member of
β—as, in the case of spouse, one term of the relation belongs to
the class of males and one to the class of females. In such a case,
the relation with its domain confined to α will be asymmetrical,
and so will the relation with its domain confined to β. But such
cases are not of the sort that occur when we are dealing with
series of more than two terms; for in a series, all terms, except
the first and last (if these exist), belong both to the domain and
to the converse domain of the generating relation, so that a
relation like husband, where the domain and converse domain
do not overlap, is excluded.

The question how to construct relations having some useful
property by means of operations upon relations which only
have rudiments of the property is one of considerable impor-
tance. Transitiveness and connexity are easily constructed in
many cases where the originally given relation does not possess
them: for example, if R is any relation whatever, the ancestral
relation derived from R by generalised induction is transitive;
and if R is a many-one relation, the ancestral relation will be
connected if confined to the posterity of a given term. But
asymmetry is a much more difficult property to secure by con-
struction. The method by which we derived husband from
spouse is, as we have seen, not available in the most important
cases, such as greater, before, to the right of, where domain and
converse domain overlap. In all these cases, we can of course
obtain a symmetrical relation by adding together the given
relation and its converse, but we cannot pass back from this
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symmetrical relation to the original asymmetrical relation ex-
cept by the help of some asymmetrical | relation. Take, for
example, the relation greater: the relation greater or less—i.e.
unequal—is symmetrical, but there is nothing in this relation
to show that it is the sum of two asymmetrical relations. Take
such a relation as “differing in shape.” This is not the sum of
an asymmetrical relation and its converse, since shapes do not
form a single series; but there is nothing to show that it dif-
fers from “differing in magnitude” if we did not already know
that magnitudes have relations of greater and less. This illus-
trates the fundamental character of asymmetry as a property
of relations.

From the point of view of the classification of relations, be-
ing asymmetrical is a much more important characteristic than
implying diversity. Asymmetrical relations imply diversity, but
the converse is not the case. “Unequal,” for example, implies
diversity, but is symmetrical. Broadly speaking, we may say
that, if we wished as far as possible to dispense with relational
propositions and replace them by such as ascribed predicates
to subjects, we could succeed in this so long as we confined
ourselves to symmetrical relations: those that do not imply di-
versity, if they are transitive, may be regarded as asserting a
common predicate, while those that do imply diversity may be
regarded as asserting incompatible predicates. For example,
consider the relation of similarity between classes, by means
of which we defined numbers. This relation is symmetrical
and transitive and does not imply diversity. It would be pos-
sible, though less simple than the procedure we adopted, to
regard the number of a collection as a predicate of the collec-
tion: then two similar classes will be two that have the same
numerical predicate, while two that are not similar will be two
that have different numerical predicates. Such a method of
replacing relations by predicates is formally possible (though
often very inconvenient) so long as the relations concerned are
symmetrical; but it is formally impossible when the relations
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are asymmetrical, because both sameness and difference of
predicates are symmetrical. Asymmetrical relations are, we
may | say, the most characteristically relational of relations, and
the most important to the philosopher who wishes to study the
ultimate logical nature of relations.

Another class of relations that is of the greatest use is the
class of one-many relations, i.e. relations which at most one
term can have to a given term. Such are father, mother, hus-
band (except in Tibet), square of, sine of, and so on. But parent,
square root, and so on, are not one-many. It is possible, for-
mally, to replace all relations by one-many relations by means
of a device. Take (say) the relation less among the inductive
numbers. Given any number n greater than , there will not be
only one number having the relation less to n, but we can form
the whole class of numbers that are less than n. This is one
class, and its relation to n is not shared by any other class. We
may call the class of numbers that are less than n the “proper
ancestry” of n, in the sense in which we spoke of ancestry and
posterity in connection with mathematical induction. Then
“proper ancestry” is a one-many relation (one-many will always
be used so as to include one-one), since each number determines
a single class of numbers as constituting its proper ancestry.
Thus the relation less than can be replaced by being a member
of the proper ancestry of. In this way a one-many relation in
which the one is a class, together with membership of this class,
can always formally replace a relation which is not one-many.
Peano, who for some reason always instinctively conceives of a
relation as one-many, deals in this way with those that are nat-
urally not so. Reduction to one-many relations by this method,
however, though possible as a matter of form, does not rep-
resent a technical simplification, and there is every reason to
think that it does not represent a philosophical analysis, if only
because classes must be regarded as “logical fictions.” We shall
therefore continue to regard one-many relations as a special
kind of relations.
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One-many relations are involved in all phrases of the form
“the so-and-so of such-and-such.” “The King of England,” |

 “the wife of Socrates,” “the father of John Stuart Mill,” and so
on, all describe some person by means of a one-many relation
to a given term. A person cannot have more than one father,
therefore “the father of John Stuart Mill” described some one
person, even if we did not know whom. There is much to say
on the subject of descriptions, but for the present it is relations
that we are concerned with, and descriptions are only relevant
as exemplifying the uses of one-many relations. It should be
observed that all mathematical functions result from one-many
relations: the logarithm of x, the cosine of x, etc., are, like the
father of x, terms described by means of a one-many relation
(logarithm, cosine, etc.) to a given term (x). The notion of
function need not be confined to numbers, or to the uses to
which mathematicians have accustomed us; it can be extended
to all cases of one-many relations, and “the father of x” is just
as legitimately a function of which x is the argument as is “the
logarithm of x.” Functions in this sense are descriptive functions.
As we shall see later, there are functions of a still more general
and more fundamental sort, namely, propositional functions;
but for the present we shall confine our attention to descriptive
functions, i.e. “the term having the relation R to x,” or, for short,
“the R of x,” where R is any one-many relation.

It will be observed that if “the R of x” is to describe a defi-
nite term, x must be a term to which something has the relation
R, and there must not be more than one term having the rela-
tion R to x, since “the,” correctly used, must imply uniqueness.
Thus we may speak of “the father of x” if x is any human being
except Adam and Eve; but we cannot speak of “the father of x”
if x is a table or a chair or anything else that does not have a
father. We shall say that the R of x “exists” when there is just
one term, and no more, having the relation R to x. Thus if R is
a one-many relation, the R of x exists whenever x belongs to
the converse domain of R, and not otherwise. Regarding “the
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R of x” as a function in the mathematical | sense, we say that
x is the “argument” of the function, and if y is the term which
has the relation R to x, i.e. if y is the R of x, then y is the “value”
of the function for the argument x. If R is a one-many relation,
the range of possible arguments to the function is the converse
domain of R, and the range of values is the domain. Thus the
range of possible arguments to the function “the father of x” is
all who have fathers, i.e. the converse domain of the relation
father, while the range of possible values for the function is all
fathers, i.e. the domain of the relation.

Many of the most important notions in the logic of relations
are descriptive functions, for example: converse, domain, con-
verse domain, field. Other examples will occur as we proceed.

Among one-many relations, one-one relations are a specially
important class. We have already had occasion to speak of
one-one relations in connection with the definition of number,
but it is necessary to be familiar with them, and not merely
to know their formal definition. Their formal definition may
be derived from that of one-many relations: they may be de-
fined as one-many relations which are also the converses of
one-many relations, i.e. as relations which are both one-many
and many-one. One-many relations may be defined as relations
such that, if x has the relation in question to y, there is no other
term x′ which also has the relation to y. Or, again, they may
be defined as follows: Given two terms x and x′, the terms
to which x has the given relation and those to which x′ has it
have no member in common. Or, again, they may be defined
as relations such that the relative product of one of them and
its converse implies identity, where the “relative product” of
two relations R and S is that relation which holds between x
and z when there is an intermediate term y, such that x has the
relation R to y and y has the relation S to z. Thus, for example,
if R is the relation of father to son, the relative product of R
and its converse will be the relation which holds between x
and a man z when there is a person y, such that x is the father
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of y and y is the son of z. It is obvious that x and z must be |
 the same person. If, on the other hand, we take the relation

of parent and child, which is not one-many, we can no longer
argue that, if x is a parent of y and y is a child of z, x and z must
be the same person, because one may be the father of y and
the other the mother. This illustrates that it is characteristic of
one-many relations when the relative product of a relation and
its converse implies identity. In the case of one-one relations
this happens, and also the relative product of the converse and
the relation implies identity. Given a relation R, it is convenient,
if x has the relation R to y, to think of y as being reached from
x by an “R-step” or an “R-vector.” In the same case x will be
reached from y by a “backward R-step.” Thus we may state the
characteristic of one-many relations with which we have been
dealing by saying that an R-step followed by a backward R-step
must bring us back to our starting-point. With other relations,
this is by no means the case; for example, if R is the relation
of child to parent, the relative product of R and its converse is
the relation “self or brother or sister,” and if R is the relation
of grandchild to grandparent, the relative product of R and
its converse is “self or brother or sister or first cousin.” It will
be observed that the relative product of two relations is not in
general commutative, i.e. the relative product of R and S is not
in general the same relation as the relative product of S and R.
E.g. the relative product of parent and brother is uncle, but the
relative product of brother and parent is parent.

One-one relations give a correlation of two classes, term for
term, so that each term in either class has its correlate in the
other. Such correlations are simplest to grasp when the two
classes have no members in common, like the class of husbands
and the class of wives; for in that case we know at once whether
a term is to be considered as one from which the correlating
relation R goes, or as one to which it goes. It is convenient to
use the word referent for the term from which the relation goes,
and the term relatum for the term to which it goes. Thus if x

Chap. V. Kinds of Relations 

and y are husband and wife, then, with respect to the relation
| “husband,” x is referent and y relatum, but with respect to
the relation “wife,” y is referent and x relatum. We say that
a relation and its converse have opposite “senses”; thus the
“sense” of a relation that goes from x to y is the opposite of
that of the corresponding relation from y to x. The fact that a
relation has a “sense” is fundamental, and is part of the reason
why order can be generated by suitable relations. It will be ob-
served that the class of all possible referents to a given relation
is its domain, and the class of all possible relata is its converse
domain.

But it very often happens that the domain and converse
domain of a one-one relation overlap. Take, for example, the
first ten integers (excluding ), and add  to each; thus instead
of the first ten integers we now have the integers

, , , , , , , , , .

These are the same as those we had before, except that  has
been cut off at the beginning and  has been joined on at
the end. There are still ten integers: they are correlated with
the previous ten by the relation of n to n+ , which is a one-
one relation. Or, again, instead of adding  to each of our
original ten integers, we could have doubled each of them, thus
obtaining the integers

, , , , , , , , , .

Here we still have five of our previous set of integers, namely,
, , , , . The correlating relation in this case is the relation
of a number to its double, which is again a one-one relation.
Or we might have replaced each number by its square, thus
obtaining the set

, , , , , , , , , .

On this occasion only three of our original set are left, namely,
, , . Such processes of correlation may be varied endlessly.
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The most interesting case of the above kind is the case
where our one-one relation has a converse domain which is
part, but | not the whole, of the domain. If, instead of confining
the domain to the first ten integers, we had considered the
whole of the inductive numbers, the above instances would
have illustrated this case. We may place the numbers concerned
in two rows, putting the correlate directly under the number
whose correlate it is. Thus when the correlator is the relation
of n to n+ , we have the two rows:

, , , , , . . . n . . .
, , , , , . . . n+  . . .

When the correlator is the relation of a number to its double,
we have the two rows:

, , , , , . . . n . . .
, , , , , . . . n . . .

When the correlator is the relation of a number to its square,
the rows are:

, , , , , . . . n . . .
, , , , , . . . n . . .

In all these cases, all inductive numbers occur in the top row,
and only some in the bottom row.

Cases of this sort, where the converse domain is a “proper
part” of the domain (i.e. a part not the whole), will occupy us
again when we come to deal with infinity. For the present, we
wish only to note that they exist and demand consideration.

Another class of correlations which are often important is
the class called “permutations,” where the domain and con-
verse domain are identical. Consider, for example, the six
possible arrangements of three letters:
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a, b, c
a, c, b
b, c, a
b, a, c
c, a, b
c, b, a |

Each of these can be obtained from any one of the others by
means of a correlation. Take, for example, the first and last,
(a, b, c) and (c, b, a). Here a is correlated with c, b with itself, and
c with a. It is obvious that the combination of two permutations
is again a permutation, i.e. the permutations of a given class
form what is called a “group.”

These various kinds of correlations have importance in vari-
ous connections, some for one purpose, some for another. The
general notion of one-one correlations has boundless impor-
tance in the philosophy of mathematics, as we have partly seen
already, but shall see much more fully as we proceed. One of
its uses will occupy us in our next chapter.



CHAPTER VI

SIMILARITY OF RELATIONS

 We saw in Chapter II. that two classes have the same number
of terms when they are “similar,” i.e. when there is a one-one
relation whose domain is the one class and whose converse
domain is the other. In such a case we say that there is a “one-
one correlation” between the two classes.

In the present chapter we have to define a relation between
relations, which will play the same part for them that similarity
of classes plays for classes. We will call this relation “similarity
of relations,” or “likeness” when it seems desirable to use a
different word from that which we use for classes. How is
likeness to be defined?

We shall employ still the notion of correlation: we shall
assume that the domain of the one relation can be correlated
with the domain of the other, and the converse domain with
the converse domain; but that is not enough for the sort of
resemblance which we desire to have between our two relations.
What we desire is that, whenever either relation holds between
two terms, the other relation shall hold between the correlates
of these two terms. The easiest example of the sort of thing
we desire is a map. When one place is north of another, the
place on the map corresponding to the one is above the place
on the map corresponding to the other; when one place is west
of another, the place on the map corresponding to the one is to
the left of the place on the map corresponding to the other; and
so on. The structure of the map corresponds with that of | the


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country of which it is a map. The space-relations in the map
have “likeness” to the space-relations in the country mapped.
It is this kind of connection between relations that we wish to
define.

We may, in the first place, profitably introduce a certain
restriction. We will confine ourselves, in defining likeness, to
such relations as have “fields,” i.e. to such as permit of the
formation of a single class out of the domain and the converse
domain. This is not always the case. Take, for example, the rela-
tion “domain,” i.e. the relation which the domain of a relation
has to the relation. This relation has all classes for its domain,
since every class is the domain of some relation; and it has all
relations for its converse domain, since every relation has a
domain. But classes and relations cannot be added together to
form a new single class, because they are of different logical
“types.” We do not need to enter upon the difficult doctrine of
types, but it is well to know when we are abstaining from en-
tering upon it. We may say, without entering upon the grounds
for the assertion, that a relation only has a “field” when it is
what we call “homogeneous,” i.e. when its domain and converse
domain are of the same logical type; and as a rough-and-ready
indication of what we mean by a “type,” we may say that indi-
viduals, classes of individuals, relations between individuals,
relations between classes, relations of classes to individuals,
and so on, are different types. Now the notion of likeness is not
very useful as applied to relations that are not homogeneous;
we shall, therefore, in defining likeness, simplify our problem
by speaking of the “field” of one of the relations concerned.
This somewhat limits the generality of our definition, but the
limitation is not of any practical importance. And having been
stated, it need no longer be remembered.

We may define two relations P and Q as “similar,” or as hav-
ing “likeness,” when there is a one-one relation S whose domain
is the field of P and whose converse domain is the field of Q, and
which is such that, if one term has the relation P | to another,
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the correlate of the one has the relation Q to the correlate of the
other, and vice versa. A figure will make this clearer. Let x and y

z w

x y

Q

P

S S

be two terms having the relation
P. Then there are to be two terms
z, w, such that x has the relation S
to z, y has the relation S to w, and
z has the relation Q to w. If this
happens with every pair of terms
such as x and y, and if the con-
verse happens with every pair of
terms such as z and w, it is clear
that for every instance in which

the relation P holds there is a corresponding instance in which
the relation Q holds, and vice versa; and this is what we desire to
secure by our definition. We can eliminate some redundancies
in the above sketch of a definition, by observing that, when the
above conditions are realised, the relation P is the same as the
relative product of S and Q and the converse of S, i.e. the P-step
from x to y may be replaced by the succession of the S-step
from x to z, the Q-step from z to w, and the backward S-step
from w to y. Thus we may set up the following definitions:—

A relation S is said to be a “correlator” or an “ordinal cor-
relator” of two relations P and Q if S is one-one, has the field
of Q for its converse domain, and is such that P is the relative
product of S and Q and the converse of S.

Two relations P and Q are said to be “similar,” or to have
“likeness,” when there is at least one correlator of P and Q.

These definitions will be found to yield what we above
decided to be necessary.

It will be found that, when two relations are similar, they
share all properties which do not depend upon the actual terms
in their fields. For instance, if one implies diversity, so does the
other; if one is transitive, so is the other; if one is connected,
so is the other. Hence if one is serial, so is the other. Again, if
one is one-many or one-one, the other is one-many | or one-one;
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and so on, through all the general properties of relations. Even
statements involving the actual terms of the field of a relation,
though they may not be true as they stand when applied to
a similar relation, will always be capable of translation into
statements that are analogous. We are led by such considera-
tions to a problem which has, in mathematical philosophy, an
importance by no means adequately recognised hitherto. Our
problem may be stated as follows:—

Given some statement in a language of which we know the
grammar and the syntax, but not the vocabulary, what are
the possible meanings of such a statement, and what are the
meanings of the unknown words that would make it true?

The reason that this question is important is that it repre-
sents, much more nearly than might be supposed, the state
of our knowledge of nature. We know that certain scientific
propositions—which, in the most advanced sciences, are ex-
pressed in mathematical symbols—are more or less true of the
world, but we are very much at sea as to the interpretation
to be put upon the terms which occur in these propositions.
We know much more (to use, for a moment, an old-fashioned
pair of terms) about the form of nature than about the matter.
Accordingly, what we really know when we enunciate a law of
nature is only that there is probably some interpretation of our
terms which will make the law approximately true. Thus great
importance attaches to the question: What are the possible
meanings of a law expressed in terms of which we do not know
the substantive meaning, but only the grammar and syntax?
And this question is the one suggested above.

For the present we will ignore the general question, which
will occupy us again at a later stage; the subject of likeness
itself must first be further investigated.

Owing to the fact that, when two relations are similar, their
properties are the same except when they depend upon the
fields being composed of just the terms of which they are com-
posed, it is desirable to have a nomenclature which collects |
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 together all the relations that are similar to a given relation.
Just as we called the set of those classes that are similar to a
given class the “number” of that class, so we may call the set of
all those relations that are similar to a given relation the “num-
ber” of that relation. But in order to avoid confusion with the
numbers appropriate to classes, we will speak, in this case, of a
“relation-number.” Thus we have the following definitions:—

The “relation-number” of a given relation is the class of all
those relations that are similar to the given relation.

“Relation-numbers” are the set of all those classes of rela-
tions that are relation-numbers of various relations; or, what
comes to the same thing, a relation-number is a class of rela-
tions consisting of all those relations that are similar to one
member of the class.

When it is necessary to speak of the numbers of classes in a
way which makes it impossible to confuse them with relation-
numbers, we shall call them “cardinal numbers.” Thus cardinal
numbers are the numbers appropriate to classes. These include
the ordinary integers of daily life, and also certain infinite
numbers, of which we shall speak later. When we speak of
“numbers” without qualification, we are to be understood as
meaning cardinal numbers. The definition of a cardinal number,
it will be remembered, is as follows:—

The “cardinal number” of a given class is the set of all those
classes that are similar to the given class.

The most obvious application of relation-numbers is to se-
ries. Two series may be regarded as equally long when they
have the same relation-number. Two finite series will have the
same relation-number when their fields have the same cardinal
number of terms, and only then—i.e. a series of (say)  terms
will have the same relation-number as any other series of fifteen
terms, but will not have the same relation-number as a series
of  or  terms, nor, of course, the same relation-number
as a relation which is not serial. Thus, in the quite special
case of finite series, there is parallelism between cardinal and
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relation-numbers. The relation-numbers applicable to series
may be | called “serial numbers” (what are commonly called
“ordinal numbers” are a sub-class of these); thus a finite serial
number is determinate when we know the cardinal number
of terms in the field of a series having the serial number in
question. If n is a finite cardinal number, the relation-number
of a series which has n terms is called the “ordinal” number n.
(There are also infinite ordinal numbers, but of them we shall
speak in a later chapter.) When the cardinal number of terms
in the field of a series is infinite, the relation-number of the
series is not determined merely by the cardinal number, indeed
an infinite number of relation-numbers exist for one infinite
cardinal number, as we shall see when we come to consider
infinite series. When a series is infinite, what we may call its
“length,” i.e. its relation-number, may vary without change in
the cardinal number; but when a series is finite, this cannot
happen.

We can define addition and multiplication for relation-num-
bers as well as for cardinal numbers, and a whole arithmetic
of relation-numbers can be developed. The manner in which
this is to be done is easily seen by considering the case of series.
Suppose, for example, that we wish to define the sum of two
non-overlapping series in such a way that the relation-number
of the sum shall be capable of being defined as the sum of the
relation-numbers of the two series. In the first place, it is clear
that there is an order involved as between the two series: one
of them must be placed before the other. Thus if P and Q are
the generating relations of the two series, in the series which
is their sum with P put before Q, every member of the field of
P will precede every member of the field of Q. Thus the serial
relation which is to be defined as the sum of P and Q is not
“P or Q” simply, but “P or Q or the relation of any member
of the field of P to any member of the field of Q.” Assuming
that P and Q do not overlap, this relation is serial, but “P or
Q” is not serial, being not connected, since it does not hold
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between a member of the field of P and a member of the field of
Q. Thus the sum of P and Q, as above defined, is what we need
in order | to define the sum of two relation-numbers. Similar
modifications are needed for products and powers. The result-
ing arithmetic does not obey the commutative law: the sum
or product of two relation-numbers generally depends upon
the order in which they are taken. But it obeys the associative
law, one form of the distributive law, and two of the formal
laws for powers, not only as applied to serial numbers, but
as applied to relation-numbers generally. Relation-arithmetic,
in fact, though recent, is a thoroughly respectable branch of
mathematics.

It must not be supposed, merely because series afford the
most obvious application of the idea of likeness, that there
are no other applications that are important. We have already
mentioned maps, and we might extend our thoughts from this
illustration to geometry generally. If the system of relations
by which a geometry is applied to a certain set of terms can be
brought fully into relations of likeness with a system applying
to another set of terms, then the geometry of the two sets is
indistinguishable from the mathematical point of view, i.e. all
the propositions are the same, except for the fact that they
are applied in one case to one set of terms and in the other to
another. We may illustrate this by the relations of the sort that
may be called “between,” which we considered in Chapter IV.
We there saw that, provided a three-term relation has certain
formal logical properties, it will give rise to series, and may be
called a “between-relation.” Given any two points, we can use
the between-relation to define the straight line determined by
those two points; it consists of a and b together with all points x,
such that the between-relation holds between the three points
a, b, x in some order or other. It has been shown by O. Veblen
that we may regard our whole space as the field of a three-term
between-relation, and define our geometry by the properties
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we assign to our between-relation. Now likeness is just as
easily | definable between three-term relations as between two-
term relations. If B and B′ are two between-relations, so that
“xB(y, z)” means “x is between y and z with respect to B,” we
shall call S a correlator of B and B′ if it has the field of B′ for its
converse domain, and is such that the relation B holds between
three terms when B′ holds between their S-correlates, and only
then. And we shall say that B is like B′ when there is at least
one correlator of B with B′. The reader can easily convince him-
self that, if B is like B′ in this sense, there can be no difference
between the geometry generated by B and that generated by B′.

It follows from this that the mathematician need not con-
cern himself with the particular being or intrinsic nature of
his points, lines, and planes, even when he is speculating as
an applied mathematician. We may say that there is empirical
evidence of the approximate truth of such parts of geometry as
are not matters of definition. But there is no empirical evidence
as to what a “point” is to be. It has to be something that as
nearly as possible satisfies our axioms, but it does not have
to be “very small” or “without parts.” Whether or not it is
those things is a matter of indifference, so long as it satisfies the
axioms. If we can, out of empirical material, construct a logical
structure, no matter how complicated, which will satisfy our
geometrical axioms, that structure may legitimately be called a
“point.” We must not say that there is nothing else that could
legitimately be called a “point”; we must only say: “This object
we have constructed is sufficient for the geometer; it may be
one of many objects, any of which would be sufficient, but that
is no concern of ours, since this object is enough to vindicate
the empirical truth of geometry, in so far as geometry is not a
matter of definition.” This is only an illustration of the general
principle that what matters in mathematics, and to a very great
This does not apply to elliptic space, but only to spaces in which the

straight line is an open series. Modern Mathematics, edited by J. W. A. Young,
pp. – (monograph by O. Veblen on “The Foundations of Geometry”).
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extent in physical science, is not the intrinsic nature of our
terms, but the logical nature of their interrelations.

We may say, of two similar relations, that they have the
same | “structure.” For mathematical purposes (though not for
those of pure philosophy) the only thing of importance about
a relation is the cases in which it holds, not its intrinsic na-
ture. Just as a class may be defined by various different but
co-extensive concepts—e.g. “man” and “featherless biped”—so
two relations which are conceptually different may hold in the
same set of instances. An “instance” in which a relation holds
is to be conceived as a couple of terms, with an order, so that
one of the terms comes first and the other second; the couple
is to be, of course, such that its first term has the relation in
question to its second. Take (say) the relation “father”: we can
define what we may call the “extension” of this relation as the
class of all ordered couples (x, y) which are such that x is the
father of y. From the mathematical point of view, the only thing
of importance about the relation “father” is that it defines this
set of ordered couples. Speaking generally, we say:

The “extension” of a relation is the class of those ordered
couples (x, y) which are such that x has the relation in question
to y.

We can now go a step further in the process of abstraction,
and consider what we mean by “structure.” Given any relation,

d c

a b

e

we can, if it is a sufficiently simple one,
construct a map of it. For the sake of
definiteness, let us take a relation of
which the extension is the following
couples: ab, ac, ad, bc, ce, dc, de, where a,
b, c, d, e are five terms, no matter what.
We may make a “map” of this relation
by taking five points on a plane and
connecting them by arrows, as in the ac-
companying figure. What is revealed by
the map is what we call the “structure”
of the relation.
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It is clear that the “structure” of the relation does not de-
pend upon the particular terms that make up the field of the
relation. The field may be changed without changing the struc-
ture, and the structure may be changed without changing the
field—for | example, if we were to add the couple ae in the 
above illustration we should alter the structure but not the
field. Two relations have the same “structure,” we shall say,
when the same map will do for both—or, what comes to the
same thing, when either can be a map for the other (since every
relation can be its own map). And that, as a moment’s reflection
shows, is the very same thing as what we have called “likeness.”
That is to say, two relations have the same structure when they
have likeness, i.e. when they have the same relation-number.
Thus what we defined as the “relation-number” is the very
same thing as is obscurely intended by the word “structure”—a
word which, important as it is, is never (so far as we know)
defined in precise terms by those who use it.

There has been a great deal of speculation in traditional
philosophy which might have been avoided if the importance
of structure, and the difficulty of getting behind it, had been
realised. For example, it is often said that space and time are
subjective, but they have objective counterparts; or that phe-
nomena are subjective, but are caused by things in themselves,
which must have differences inter se corresponding with the
differences in the phenomena to which they give rise. Where
such hypotheses are made, it is generally supposed that we
can know very little about the objective counterparts. In ac-
tual fact, however, if the hypotheses as stated were correct, the
objective counterparts would form a world having the same
structure as the phenomenal world, and allowing us to infer
from phenomena the truth of all propositions that can be stated
in abstract terms and are known to be true of phenomena. If
the phenomenal world has three dimensions, so must the world
behind phenomena; if the phenomenal world is Euclidean, so
must the other be; and so on. In short, every proposition having
a communicable significance must be true of both worlds or
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of neither: the only difference must lie in just that essence of
individuality which always eludes words and baffles descrip-
tion, but which, for that very reason, is irrelevant to science.
Now the only purpose that philosophers | have in view in con-
demning phenomena is in order to persuade themselves and
others that the real world is very different from the world of
appearance. We can all sympathise with their wish to prove
such a very desirable proposition, but we cannot congratulate
them on their success. It is true that many of them do not assert
objective counterparts to phenomena, and these escape from
the above argument. Those who do assert counterparts are, as
a rule, very reticent on the subject, probably because they feel
instinctively that, if pursued, it will bring about too much of a
rapprochement between the real and the phenomenal world. If
they were to pursue the topic, they could hardly avoid the con-
clusions which we have been suggesting. In such ways, as well
as in many others, the notion of structure or relation-number
is important.

CHAPTER VII

RATIONAL, REAL, AND COMPLEX
NUMBERS

We have now seen how to define cardinal numbers, and also
relation-numbers, of which what are commonly called ordi-
nal numbers are a particular species. It will be found that
each of these kinds of number may be infinite just as well as
finite. But neither is capable, as it stands, of the more familiar
extensions of the idea of number, namely, the extensions to
negative, fractional, irrational, and complex numbers. In the
present chapter we shall briefly supply logical definitions of
these various extensions.

One of the mistakes that have delayed the discovery of cor-
rect definitions in this region is the common idea that each
extension of number included the previous sorts as special
cases. It was thought that, in dealing with positive and nega-
tive integers, the positive integers might be identified with the
original signless integers. Again it was thought that a fraction
whose denominator is  may be identified with the natural
number which is its numerator. And the irrational numbers,
such as the square root of , were supposed to find their place
among rational fractions, as being greater than some of them
and less than the others, so that rational and irrational num-
bers could be taken together as one class, called “real numbers.”
And when the idea of number was further extended so as to
include “complex” numbers, i.e. numbers involving the square
root of −, it was thought that real numbers could be regarded
as those among complex numbers in which the imaginary part


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(i.e. the part | which was a multiple of the square root of −)
was zero. All these suppositions were erroneous, and must be
discarded, as we shall find, if correct definitions are to be given.

Let us begin with positive and negative integers. It is obvi-
ous on a moment’s consideration that + and − must both
be relations, and in fact must be each other’s converses. The
obvious and sufficient definition is that + is the relation of
n+  to n, and − is the relation of n to n+ . Generally, if m is
any inductive number, +m will be the relation of n+m to n (for
any n), and −m will be the relation of n to n+m. According to
this definition, +m is a relation which is one-one so long as n
is a cardinal number (finite or infinite) and m is an inductive
cardinal number. But +m is under no circumstances capable of
being identified with m, which is not a relation, but a class of
classes. Indeed, +m is every bit as distinct from m as −m is.

Fractions are more interesting than positive or negative inte-
gers. We need fractions for many purposes, but perhaps most
obviously for purposes of measurement. My friend and collab-
orator Dr A. N. Whitehead has developed a theory of fractions
specially adapted for their application to measurement, which
is set forth in Principia Mathematica. But if all that is needed
is to define objects having the required purely mathematical
properties, this purpose can be achieved by a simpler method,
which we shall here adopt. We shall define the fraction m/n as
being that relation which holds between two inductive num-
bers x, y when xn = ym. This definition enables us to prove
that m/n is a one-one relation, provided neither m nor n is zero.
And of course n/m is the converse relation to m/n.

From the above definition it is clear that the fraction m/
is that relation between two integers x and y which consists in
the fact that x =my. This relation, like the relation +m, is by no
means capable of being identified with the inductive cardinal
number m, because a relation and a class of classes are objects

Vol. iii. ∗ff., especially .
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| of utterly different kinds. It will be seen that /n is always
the same relation, whatever inductive number n may be; it is,
in short, the relation of  to any other inductive cardinal. We
may call this the zero of rational numbers; it is not, of course,
identical with the cardinal number . Conversely, the relation
m/ is always the same, whatever inductive number m may be.
There is not any inductive cardinal to correspond to m/. We
may call it “the infinity of rationals.” It is an instance of the
sort of infinite that is traditional in mathematics, and that is
represented by “∞.” This is a totally different sort from the true
Cantorian infinite, which we shall consider in our next chapter.
The infinity of rationals does not demand, for its definition
or use, any infinite classes or infinite integers. It is not, in
actual fact, a very important notion, and we could dispense
with it altogether if there were any object in doing so. The
Cantorian infinite, on the other hand, is of the greatest and
most fundamental importance; the understanding of it opens
the way to whole new realms of mathematics and philosophy.

It will be observed that zero and infinity, alone among ratios,
are not one-one. Zero is one-many, and infinity is many-one.

There is not any difficulty in defining greater and less among
ratios (or fractions). Given two ratios m/n and p/q, we shall
say that m/n is less than p/q if mq is less than pn. There is no
difficulty in proving that the relation “less than,” so defined, is
serial, so that the ratios form a series in order of magnitude. In
this series, zero is the smallest term and infinity is the largest.
If we omit zero and infinity from our series, there is no longer
any smallest or largest ratio; it is obvious that if m/n is any
ratio other than zero and infinity, m/n is smaller and m/n is
larger, though neither is zero or infinity, so that m/n is neither
the smallest | nor the largest ratio, and therefore (when zero

Of course in practice we shall continue to speak of a fraction as (say)
greater or less than , meaning greater or less than the ratio /. So long as
it is understood that the ratio / and the cardinal number  are different,
it is not necessary to be always pedantic in emphasising the difference.
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and infinity are omitted) there is no smallest or largest, since
m/n was chosen arbitrarily. In like manner we can prove that
however nearly equal two fractions may be, there are always
other fractions between them. For, let m/n and p/q be two
fractions, of which p/q is the greater. Then it is easy to see (or
to prove) that (m+ p)/(n+ q) will be greater than m/n and less
than p/q. Thus the series of ratios is one in which no two terms
are consecutive, but there are always other terms between any
two. Since there are other terms between these others, and so
on ad infinitum, it is obvious that there are an infinite number
of ratios between any two, however nearly equal these two
may be. A series having the property that there are always
other terms between any two, so that no two are consecutive, is
called “compact.” Thus the ratios in order of magnitude form a
“compact” series. Such series have many important properties,
and it is important to observe that ratios afford an instance of a
compact series generated purely logically, without any appeal
to space or time or any other empirical datum.

Positive and negative ratios can be defined in a way analo-
gous to that in which we defined positive and negative integers.
Having first defined the sum of two ratios m/n and p/q as
(mq+pn)/nq, we define +p/q as the relation of m/n+p/q to m/n,
where m/n is any ratio; and −p/q is of course the converse of
+p/q. This is not the only possible way of defining positive and
negative ratios, but it is a way which, for our purpose, has the
merit of being an obvious adaptation of the way we adopted in
the case of integers.

We come now to a more interesting extension of the idea of
number, i.e. the extension to what are called “real” numbers,
which are the kind that embrace irrationals. In Chapter I.
we had occasion to mention “incommensurables” and their |

 discovery by Pythagoras. It was through them, i.e. through

Strictly speaking, this statement, as well as those following to the end
of the paragraph, involves what is called the “axiom of infinity,” which will
be discussed in a later chapter.

Chap. VII. Rational, Real, and Complex Numbers 

geometry, that irrational numbers were first thought of. A
square of which the side is one inch long will have a diagonal
of which the length is the square root of  inches. But, as the
ancients discovered, there is no fraction of which the square
is . This proposition is proved in the tenth book of Euclid,
which is one of those books that schoolboys supposed to be
fortunately lost in the days when Euclid was still used as a
text-book. The proof is extraordinarily simple. If possible, let
m/n be the square root of , so that m/n = , i.e. m = n.
Thus m is an even number, and therefore m must be an even
number, because the square of an odd number is odd. Now if m
is even, m must divide by , for ifm = p, thenm = p. Thus
we shall have p = n, where p is half of m. Hence p = n,
and therefore n/p will also be the square root of . But then we
can repeat the argument: if n = q, p/q will also be the square
root of , and so on, through an unending series of numbers
that are each half of its predecessor. But this is impossible; if
we divide a number by , and then halve the half, and so on, we
must reach an odd number after a finite number of steps. Or
we may put the argument even more simply by assuming that
the m/n we start with is in its lowest terms; in that case, m and
n cannot both be even; yet we have seen that, if m/n = , they
must be. Thus there cannot be any fraction m/n whose square
is .

Thus no fraction will express exactly the length of the diag-
onal of a square whose side is one inch long. This seems like
a challenge thrown out by nature to arithmetic. However the
arithmetician may boast (as Pythagoras did) about the power of
numbers, nature seems able to baffle him by exhibiting lengths
which no numbers can estimate in terms of the unit. But the
problem did not remain in this geometrical form. As soon as
algebra was invented, the same problem arose as regards the
solution of equations, though here it took on a wider form,
since it also involved complex numbers.

It is clear that fractions can be found which approach nearer
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| and nearer to having their square equal to . We can form
an ascending series of fractions all of which have their squares
less than , but differing from  in their later members by less
than any assigned amount. That is to say, suppose I assign
some small amount in advance, say one-billionth, it will be
found that all the terms of our series after a certain one, say
the tenth, have squares that differ from  by less than this
amount. And if I had assigned a still smaller amount, it might
have been necessary to go further along the series, but we
should have reached sooner or later a term in the series, say
the twentieth, after which all terms would have had squares
differing from  by less than this still smaller amount. If we set
to work to extract the square root of  by the usual arithmetical
rule, we shall obtain an unending decimal which, taken to so-
and-so many places, exactly fulfils the above conditions. We
can equally well form a descending series of fractions whose
squares are all greater than , but greater by continually smaller
amounts as we come to later terms of the series, and differing,
sooner or later, by less than any assigned amount. In this way
we seem to be drawing a cordon round the square root of , and
it may seem difficult to believe that it can permanently escape
us. Nevertheless, it is not by this method that we shall actually
reach the square root of .

If we divide all ratios into two classes, according as their
squares are less than  or not, we find that, among those whose
squares are not less than , all have their squares greater than .
There is no maximum to the ratios whose square is less than ,
and no minimum to those whose square is greater than . There
is no lower limit short of zero to the difference between the
numbers whose square is a little less than  and the numbers
whose square is a little greater than . We can, in short, divide
all ratios into two classes such that all the terms in one class
are less than all in the other, there is no maximum to the one
class, and there is no minimum to the other. Between these
two classes, where

√
 ought to be, there is nothing. Thus our |
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cordon, though we have drawn it as tight as possible, has been
drawn in the wrong place, and has not caught

√
.

The above method of dividing all the terms of a series into
two classes, of which the one wholly precedes the other, was
brought into prominence by Dedekind, and is therefore called
a “Dedekind cut.” With respect to what happens at the point
of section, there are four possibilities: () there may be a maxi-
mum to the lower section and a minimum to the upper section,
() there may be a maximum to the one and no minimum to the
other, () there may be no maximum to the one, but a minimum
to the other, () there may be neither a maximum to the one
nor a minimum to the other. Of these four cases, the first is
illustrated by any series in which there are consecutive terms:
in the series of integers, for instance, a lower section must end
with some number n and the upper section must then begin
with n + . The second case will be illustrated in the series
of ratios if we take as our lower section all ratios up to and
including , and in our upper section all ratios greater than .
The third case is illustrated if we take for our lower section all
ratios less than , and for our upper section all ratios from 
upward (including  itself). The fourth case, as we have seen, is
illustrated if we put in our lower section all ratios whose square
is less than , and in our upper section all ratios whose square
is greater than .

We may neglect the first of our four cases, since it only arises
in series where there are consecutive terms. In the second of
our four cases, we say that the maximum of the lower section
is the lower limit of the upper section, or of any set of terms
chosen out of the upper section in such a way that no term
of the upper section is before all of them. In the third of our
four cases, we say that the minimum of the upper section is the
upper limit of the lower section, or of any set of terms chosen
out of the lower section in such a way that no term of the lower

Stetigkeit und irrationale Zahlen, nd edition, Brunswick, .
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section is after all of them. In the fourth case, we say that |
 there is a “gap”: neither the upper section nor the lower has a

limit or a last term. In this case, we may also say that we have
an “irrational section,” since sections of the series of ratios have
“gaps” when they correspond to irrationals.

What delayed the true theory of irrationals was a mistaken
belief that there must be “limits” of series of ratios. The notion
of “limit” is of the utmost importance, and before proceeding
further it will be well to define it.

A term x is said to be an “upper limit” of a class α with
respect to a relation P if () α has no maximum in P, () every
member of α which belongs to the field of P precedes x, ()
every member of the field of P which precedes x precedes some
member of α. (By “precedes” we mean “has the relation P to.”)

This presupposes the following definition of a “maxi-
mum”:—

A term x is said to be a “maximum” of a class α with respect
to a relation P if x is a member of α and of the field of P and
does not have the relation P to any other member of α.

These definitions do not demand that the terms to which
they are applied should be quantitative. For example, given a
series of moments of time arranged by earlier and later, their
“maximum” (if any) will be the last of the moments; but if they
are arranged by later and earlier, their “maximum” (if any) will
be the first of the moments.

The “minimum” of a class with respect to P is its maximum
with respect to the converse of P; and the “lower limit” with
respect to P is the upper limit with respect to the converse of P.

The notions of limit and maximum do not essentially de-
mand that the relation in respect to which they are defined
should be serial, but they have few important applications
except to cases when the relation is serial or quasi-serial. A
notion which is often important is the notion “upper limit or
maximum,” to which we may give the name “upper boundary.”
Thus the “upper boundary” of a set of terms chosen out of a
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series is their last member if they have one, but, if not, it is the
first term after all of them, if there is such a term. If there is
neither | a maximum nor a limit, there is no upper boundary.
The “lower boundary” is the lower limit or minimum.

Reverting to the four kinds of Dedekind section, we see that
in the case of the first three kinds each section has a boundary
(upper or lower as the case may be), while in the fourth kind
neither has a boundary. It is also clear that, whenever the lower
section has an upper boundary, the upper section has a lower
boundary. In the second and third cases, the two boundaries
are identical; in the first, they are consecutive terms of the
series.

A series is called “Dedekindian” when every section has a
boundary, upper or lower as the case may be.

We have seen that the series of ratios in order of magnitude
is not Dedekindian.

From the habit of being influenced by spatial imagination,
people have supposed that series must have limits in cases
where it seems odd if they do not. Thus, perceiving that there
was no rational limit to the ratios whose square is less than
, they allowed themselves to “postulate” an irrational limit,
which was to fill the Dedekind gap. Dedekind, in the above-
mentioned work, set up the axiom that the gap must always
be filled, i.e. that every section must have a boundary. It is for
this reason that series where his axiom is verified are called
“Dedekindian.” But there are an infinite number of series for
which it is not verified.

The method of “postulating” what we want has many ad-
vantages; they are the same as the advantages of theft over
honest toil. Let us leave them to others and proceed with our
honest toil.

It is clear that an irrational Dedekind cut in some way “rep-
resents” an irrational. In order to make use of this, which to
begin with is no more than a vague feeling, we must find some
way of eliciting from it a precise definition; and in order to do
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this, we must disabuse our minds of the notion that an irra-
tional must be the limit of a set of ratios. Just as ratios whose
denominator is  are not identical with integers, so those ratio-
nal | numbers which can be greater or less than irrationals, or
can have irrationals as their limits, must not be identified with
ratios. We have to define a new kind of numbers called “real
numbers,” of which some will be rational and some irrational.
Those that are rational “correspond” to ratios, in the same kind
of way in which the ratio n/ corresponds to the integer n; but
they are not the same as ratios. In order to decide what they
are to be, let us observe that an irrational is represented by an
irrational cut, and a cut is represented by its lower section. Let
us confine ourselves to cuts in which the lower section has no
maximum; in this case we will call the lower section a “seg-
ment.” Then those segments that correspond to ratios are those
that consist of all ratios less than the ratio they correspond to,
which is their boundary; while those that represent irrationals
are those that have no boundary. Segments, both those that
have boundaries and those that do not, are such that, of any
two pertaining to one series, one must be part of the other;
hence they can all be arranged in a series by the relation of
whole and part. A series in which there are Dedekind gaps, i.e.
in which there are segments that have no boundary, will give
rise to more segments than it has terms, since each term will
define a segment having that term for boundary, and then the
segments without boundaries will be extra.

We are now in a position to define a real number and an
irrational number.

A “real number” is a segment of the series of ratios in order
of magnitude.

An “irrational number” is a segment of the series of ratios
which has no boundary.

A “rational real number” is a segment of the series of ratios
which has a boundary.

Thus a rational real number consists of all ratios less than a
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certain ratio, and it is the rational real number corresponding
to that ratio. The real number , for instance, is the class of
proper fractions. |

In the cases in which we naturally supposed that an irra-
tional must be the limit of a set of ratios, the truth is that it is
the limit of the corresponding set of rational real numbers in
the series of segments ordered by whole and part. For example,√
 is the upper limit of all those segments of the series of ratios

that correspond to ratios whose square is less than . More sim-
ply still,

√
 is the segment consisting of all those ratios whose

square is less than .
It is easy to prove that the series of segments of any series is

Dedekindian. For, given any set of segments, their boundary
will be their logical sum, i.e. the class of all those terms that
belong to at least one segment of the set.

The above definition of real numbers is an example of “con-
struction” as against “postulation,” of which we had another
example in the definition of cardinal numbers. The great advan-
tage of this method is that it requires no new assumptions, but
enables us to proceed deductively from the original apparatus
of logic.

There is no difficulty in defining addition and multiplica-
tion for real numbers as above defined. Given two real numbers
µ and ν, each being a class of ratios, take any member of µ and
any member of ν and add them together according to the rule
for the addition of ratios. Form the class of all such sums ob-
tainable by varying the selected members of µ and ν. This gives
a new class of ratios, and it is easy to prove that this new class
is a segment of the series of ratios. We define it as the sum of µ
and ν. We may state the definition more shortly as follows:—

The arithmetical sum of two real numbers is the class of the

For a fuller treatment of the subject of segments and Dedekindian
relations, see Principia Mathematica, vol. ii. ∗–. For a fuller treatment
of real numbers, see ibid., vol. iii. ∗ff., and Principles of Mathematics,
chaps. xxxiii. and xxxiv.
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arithmetical sums of a member of the one and a member of the
other chosen in all possible ways. |

We can define the arithmetical product of two real numbers
in exactly the same way, by multiplying a member of the one
by a member of the other in all possible ways. The class of
ratios thus generated is defined as the product of the two real
numbers. (In all such definitions, the series of ratios is to be
defined as excluding  and infinity.)

There is no difficulty in extending our definitions to positive
and negative real numbers and their addition and multiplica-
tion.

It remains to give the definition of complex numbers.
Complex numbers, though capable of a geometrical inter-

pretation, are not demanded by geometry in the same imper-
ative way in which irrationals are demanded. A “complex”
number means a number involving the square root of a neg-
ative number, whether integral, fractional, or real. Since the
square of a negative number is positive, a number whose square
is to be negative has to be a new sort of number. Using the
letter i for the square root of −, any number involving the
square root of a negative number can be expressed in the form
x+ yi, where x and y are real. The part yi is called the “imagi-
nary” part of this number, x being the “real” part. (The reason
for the phrase “real numbers” is that they are contrasted with
such as are “imaginary.”) Complex numbers have been for a
long time habitually used by mathematicians, in spite of the
absence of any precise definition. It has been simply assumed
that they would obey the usual arithmetical rules, and on this
assumption their employment has been found profitable. They
are required less for geometry than for algebra and analysis.
We desire, for example, to be able to say that every quadratic
equation has two roots, and every cubic equation has three, and
so on. But if we are confined to real numbers, such an equation
as x+ =  has no roots, and such an equation as x− =  has
only one. Every generalisation of number has first presented
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itself as needed for some simple problem: negative numbers
were needed in order that subtraction might be always possible,
since otherwise a− b would be meaningless if a were less than
b; fractions were needed | in order that division might be al-
ways possible; and complex numbers are needed in order that
extraction of roots and solution of equations may be always
possible. But extensions of number are not created by the mere
need for them: they are created by the definition, and it is to
the definition of complex numbers that we must now turn our
attention.

A complex number may be regarded and defined as simply
an ordered couple of real numbers. Here, as elsewhere, many
definitions are possible. All that is necessary is that the defi-
nitions adopted shall lead to certain properties. In the case of
complex numbers, if they are defined as ordered couples of real
numbers, we secure at once some of the properties required,
namely, that two real numbers are required to determine a com-
plex number, and that among these we can distinguish a first
and a second, and that two complex numbers are only identi-
cal when the first real number involved in the one is equal to
the first involved in the other, and the second to the second.
What is needed further can be secured by defining the rules of
addition and multiplication. We are to have

(x+ yi) + (x′ + y′i) = (x+ x′) + (y + y′)i
(x+ yi)(x′ + y′i) = (xx′ − yy′) + (xy′ + x′y)i.

Thus we shall define that, given two ordered couples of real
numbers, (x,y) and (x′, y′), their sum is to be the couple (x+x′, y+
y′), and their product is to be the couple (xx′ − yy′, xy′ + x′y).
By these definitions we shall secure that our ordered couples
shall have the properties we desire. For example, take the
product of the two couples (, y) and (, y′). This will, by the
above rule, be the couple (−yy′,). Thus the square of the
couple (,) will be the couple (−,). Now those couples in
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which the second term is  are those which, according to the
usual nomenclature, have their imaginary part zero; in the
notation x + yi, they are x + i, which it is natural to write
simply x. Just as it is natural (but erroneous) | to identify ratios
whose denominator is unity with integers, so it is natural (but
erroneous) to identify complex numbers whose imaginary part
is zero with real numbers. Although this is an error in theory,
it is a convenience in practice; “x + i” may be replaced simply
by “x” and “ + yi” by “yi,” provided we remember that the
“x” is not really a real number, but a special case of a complex
number. And when y is , “yi” may of course be replaced by
“i.” Thus the couple (,) is represented by i, and the couple
(−,) is represented by −. Now our rules of multiplication
make the square of (,) equal to (−,), i.e. the square of i is
−. This is what we desired to secure. Thus our definitions
serve all necessary purposes.

It is easy to give a geometrical interpretation of complex
numbers in the geometry of the plane. This subject was agree-
ably expounded by W. K. Clifford in his Common Sense of the
Exact Sciences, a book of great merit, but written before the
importance of purely logical definitions had been realised.

Complex numbers of a higher order, though much less use-
ful and important than those what we have been defining, have
certain uses that are not without importance in geometry, as
may be seen, for example, in Dr Whitehead’s Universal Alge-
bra. The definition of complex numbers of order n is obtained
by an obvious extension of the definition we have given. We
define a complex number of order n as a one-many relation
whose domain consists of certain real numbers and whose con-
verse domain consists of the integers from  to n. This is what
would ordinarily be indicated by the notation (x, x, x, . . . xn),
where the suffixes denote correlation with the integers used as
suffixes, and the correlation is one-many, not necessarily one-

Cf. Principles of Mathematics, §, p. .
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one, because xr and xs may be equal when r and s are not equal.
The above definition, with a suitable rule of multiplication, will
serve all purposes for which complex numbers of higher orders
are needed.

We have now completed our review of those extensions
of number which do not involve infinity. The application of
number to infinite collections must be our next topic.



CHAPTER VIII

INFINITE CARDINAL NUMBERS

 The definition of cardinal numbers which we gave in Chapter
II. was applied in Chapter III. to finite numbers, i.e. to the ordi-
nary natural numbers. To these we gave the name “inductive
numbers,” because we found that they are to be defined as
numbers which obey mathematical induction starting from .
But we have not yet considered collections which do not have
an inductive number of terms, nor have we inquired whether
such collections can be said to have a number at all. This is an
ancient problem, which has been solved in our own day, chiefly
by Georg Cantor. In the present chapter we shall attempt to
explain the theory of transfinite or infinite cardinal numbers
as it results from a combination of his discoveries with those of
Frege on the logical theory of numbers.

It cannot be said to be certain that there are in fact any in-
finite collections in the world. The assumption that there are
is what we call the “axiom of infinity.” Although various ways
suggest themselves by which we might hope to prove this ax-
iom, there is reason to fear that they are all fallacious, and that
there is no conclusive logical reason for believing it to be true.
At the same time, there is certainly no logical reason against
infinite collections, and we are therefore justified, in logic, in
investigating the hypothesis that there are such collections. The
practical form of this hypothesis, for our present purposes, is
the assumption that, if n is any inductive number, n is not equal
to n+ . Various subtleties arise in identifying this form of our
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assumption with | the form that asserts the existence of infinite
collections; but we will leave these out of account until, in a
later chapter, we come to consider the axiom of infinity on its
own account. For the present we shall merely assume that, if n
is an inductive number, n is not equal to n+ . This is involved
in Peano’s assumption that no two inductive numbers have the
same successor; for, if n = n+ , then n−  and n have the same
successor, namely n. Thus we are assuming nothing that was
not involved in Peano’s primitive propositions.

Let us now consider the collection of the inductive numbers
themselves. This is a perfectly well-defined class. In the first
place, a cardinal number is a set of classes which are all simi-
lar to each other and are not similar to anything except each
other. We then define as the “inductive numbers” those among
cardinals which belong to the posterity of  with respect to the
relation of n to n+ , i.e. those which possess every property
possessed by  and by the successors of possessors, meaning by
the “successor” of n the number n+. Thus the class of “induc-
tive numbers” is perfectly definite. By our general definition of
cardinal numbers, the number of terms in the class of inductive
numbers is to be defined as “all those classes that are similar
to the class of inductive numbers”—i.e. this set of classes is the
number of the inductive numbers according to our definitions.

Now it is easy to see that this number is not one of the
inductive numbers. If n is any inductive number, the number
of numbers from  to n (both included) is n+ ; therefore the
total number of inductive numbers is greater than n, no matter
which of the inductive numbers n may be. If we arrange the
inductive numbers in a series in order of magnitude, this series
has no last term; but if n is an inductive number, every series
whose field has n terms has a last term, as it is easy to prove.
Such differences might be multiplied ad lib. Thus the number
of inductive numbers is a new number, different from all of
them, not possessing all inductive properties. It may happen
that  has a certain | property, and that if n has it so has n+,
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and yet that this new number does not have it. The difficulties
that so long delayed the theory of infinite numbers were largely
due to the fact that some, at least, of the inductive properties
were wrongly judged to be such as must belong to all numbers;
indeed it was thought that they could not be denied without
contradiction. The first step in understanding infinite numbers
consists in realising the mistakenness of this view.

The most noteworthy and astonishing difference between
an inductive number and this new number is that this new
number is unchanged by adding  or subtracting  or doubling
or halving or any of a number of other operations which we
think of as necessarily making a number larger or smaller.
The fact of being not altered by the addition of  is used by
Cantor for the definition of what he calls “transfinite” cardinal
numbers; but for various reasons, some of which will appear as
we proceed, it is better to define an infinite cardinal number as
one which does not possess all inductive properties, i.e. simply
as one which is not an inductive number. Nevertheless, the
property of being unchanged by the addition of  is a very
important one, and we must dwell on it for a time.

To say that a class has a number which is not altered by the
addition of  is the same thing as to say that, if we take a term
x which does not belong to the class, we can find a one-one
relation whose domain is the class and whose converse domain
is obtained by adding x to the class. For in that case, the class is
similar to the sum of itself and the term x, i.e. to a class having
one extra term; so that it has the same number as a class with
one extra term, so that if n is this number, n = n+. In this case,
we shall also have n = n− , i.e. there will be one-one relations
whose domains consist of the whole class and whose converse
domains consist of just one term short of the whole class. It
can be shown that the cases in which this happens are the same
as the apparently more general cases in which some part (short
of the whole) can be put into one-one relation with the whole.
When this can be done, | the correlator by which it is done may
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be said to “reflect” the whole class into a part of itself; for this
reason, such classes will be called “reflexive.” Thus:

A “reflexive” class is one which is similar to a proper part
of itself. (A “proper part” is a part short of the whole.)

A “reflexive” cardinal number is the cardinal number of a
reflexive class.

We have now to consider this property of reflexiveness.
One of the most striking instances of a “reflexion” is Royce’s

illustration of the map: he imagines it decided to make a map
of England upon a part of the surface of England. A map, if
it is accurate, has a perfect one-one correspondence with its
original; thus our map, which is part, is in one-one relation with
the whole, and must contain the same number of points as the
whole, which must therefore be a reflexive number. Royce is
interested in the fact that the map, if it is correct, must contain
a map of the map, which must in turn contain a map of the map
of the map, and so on ad infinitum. This point is interesting,
but need not occupy us at this moment. In fact, we shall do
well to pass from picturesque illustrations to such as are more
completely definite, and for this purpose we cannot do better
than consider the number-series itself.

The relation of n to n+ , confined to inductive numbers,
is one-one, has the whole of the inductive numbers for its do-
main, and all except  for its converse domain. Thus the whole
class of inductive numbers is similar to what the same class
becomes when we omit . Consequently it is a “reflexive” class
according to the definition, and the number of its terms is a
“reflexive” number. Again, the relation of n to n, confined to
inductive numbers, is one-one, has the whole of the inductive
numbers for its domain, and the even inductive numbers alone
for its converse domain. Hence the total number of inductive
numbers is the same as the number of even inductive num-
bers. This property was used by Leibniz (and many others) as a
proof that infinite numbers are impossible; it was thought self-
contradictory that | “the part should be equal to the whole.” But
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this is one of those phrases that depend for their plausibility
upon an unperceived vagueness: the word “equal” has many
meanings, but if it is taken to mean what we have called “simi-
lar,” there is no contradiction, since an infinite collection can
perfectly well have parts similar to itself. Those who regard
this as impossible have, unconsciously as a rule, attributed
to numbers in general properties which can only be proved
by mathematical induction, and which only their familiarity
makes us regard, mistakenly, as true beyond the region of the
finite.

Whenever we can “reflect” a class into a part of itself, the
same relation will necessarily reflect that part into a smaller
part, and so on ad infinitum. For example, we can reflect, as we
have just seen, all the inductive numbers into the even numbers;
we can, by the same relation (that of n to n) reflect the even
numbers into the multiples of , these into the multiples of ,
and so on. This is an abstract analogue to Royce’s problem of
the map. The even numbers are a “map” of all the inductive
numbers; the multiples of  are a map of the map; the multiples
of  are a map of the map of the map; and so on. If we had
applied the same process to the relation of n to n+, our “map”
would have consisted of all the inductive numbers except ;
the map of the map would have consisted of all from  onward,
the map of the map of the map of all from  onward; and so
on. The chief use of such illustrations is in order to become
familiar with the idea of reflexive classes, so that apparently
paradoxical arithmetical propositions can be readily translated
into the language of reflexions and classes, in which the air of
paradox is much less.

It will be useful to give a definition of the number which is
that of the inductive cardinals. For this purpose we will first
define the kind of series exemplified by the inductive cardinals
in order of magnitude. The kind of series which is called a
“progression” has already been considered in Chapter I. It is a
series which can be generated by a relation of consecutiveness:
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| every member of the series is to have a successor, but there
is to be just one which has no predecessor, and every member
of the series is to be in the posterity of this term with respect
to the relation “immediate predecessor.” These characteristics
may be summed up in the following definition:—

A “progression” is a one-one relation such that there is
just one term belonging to the domain but not to the converse
domain, and the domain is identical with the posterity of this
one term.

It is easy to see that a progression, so defined, satisfies
Peano’s five axioms. The term belonging to the domain but not
to the converse domain will be what he calls “”; the term to
which a term has the one-one relation will be the “successor” of
the term; and the domain of the one-one relation will be what
he calls “number.” Taking his five axioms in turn, we have the
following translations:—

() “ is a number” becomes: “The member of the domain
which is not a member of the converse domain is a member
of the domain.” This is equivalent to the existence of such a
member, which is given in our definition. We will call this
member “the first term.”

() “The successor of any number is a number” becomes:
“The term to which a given member of the domain has the
relation in question is again a member of the domain.” This
is proved as follows: By the definition, every member of the
domain is a member of the posterity of the first term; hence
the successor of a member of the domain must be a member of
the posterity of the first term (because the posterity of a term
always contains its own successors, by the general definition of
posterity), and therefore a member of the domain, because by
the definition the posterity of the first term is the same as the
domain.

() “No two numbers have the same successor.” This is only

Cf. Principia Mathematica, vol. ii. ∗.
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to say that the relation is one-many, which it is by definition
(being one-one). |

() “ is not the successor of any number” becomes: “The
first term is not a member of the converse domain,” which is
again an immediate result of the definition.

() This is mathematical induction, and becomes: “Every
member of the domain belongs to the posterity of the first
term,” which was part of our definition.

Thus progressions as we have defined them have the five
formal properties from which Peano deduces arithmetic. It is
easy to show that two progressions are “similar” in the sense
defined for similarity of relations in Chapter VI. We can, of
course, derive a relation which is serial from the one-one rela-
tion by which we define a progression: the method used is that
explained in Chapter IV., and the relation is that of a term to
a member of its proper posterity with respect to the original
one-one relation.

Two transitive asymmetrical relations which generate pro-
gressions are similar, for the same reasons for which the corre-
sponding one-one relations are similar. The class of all such
transitive generators of progressions is a “serial number” in the
sense of Chapter VI.; it is in fact the smallest of infinite serial
numbers, the number to which Cantor has given the name ω,
by which he has made it famous.

But we are concerned, for the moment, with cardinal num-
bers. Since two progressions are similar relations, it follows
that their domains (or their fields, which are the same as their
domains) are similar classes. The domains of progressions form
a cardinal number, since every class which is similar to the do-
main of a progression is easily shown to be itself the domain
of a progression. This cardinal number is the smallest of the
infinite cardinal numbers; it is the one to which Cantor has ap-
propriated the Hebrew Aleph with the suffix , to distinguish it
from larger infinite cardinals, which have other suffixes. Thus
the name of the smallest of infinite cardinals is ℵ.
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To say that a class has ℵ terms is the same thing as to say
that it is a member of ℵ, and this is the same thing as to say |

that the members of the class can be arranged in a progression.
It is obvious that any progression remains a progression if we
omit a finite number of terms from it, or every other term, or
all except every tenth term or every hundredth term. These
methods of thinning out a progression do not make it cease to
be a progression, and therefore do not diminish the number
of its terms, which remains ℵ. In fact, any selection from a
progression is a progression if it has no last term, however
sparsely it may be distributed. Take (say) inductive numbers of
the form nn, or nn

n
. Such numbers grow very rare in the higher

parts of the number series, and yet there are just as many of
them as there are inductive numbers altogether, namely, ℵ.

Conversely, we can add terms to the inductive numbers
without increasing their number. Take, for example, ratios. One
might be inclined to think that there must be many more ratios
than integers, since ratios whose denominator is  correspond
to the integers, and seem to be only an infinitesimal proportion
of ratios. But in actual fact the number of ratios (or fractions) is
exactly the same as the number of inductive numbers, namely,
ℵ. This is easily seen by arranging ratios in a series on the
following plan: If the sum of numerator and denominator in
one is less than in the other, put the one before the other; if
the sum is equal in the two, put first the one with the smaller
numerator. This gives us the series

,  , ,

 , ,


 ,

 ,

 , ,


 , . . .

This series is a progression, and all ratios occur in it sooner
or later. Hence we can arrange all ratios in a progression, and
their number is therefore ℵ.

It is not the case, however, that all infinite collections have
ℵ terms. The number of real numbers, for example, is greater
than ℵ; it is, in fact, ℵ , and it is not hard to prove that n

is greater than n even when n is infinite. The easiest way of
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proving this is to prove, first, that if a class has n members, it
contains n sub-classes—in other words, that there are n ways
| of selecting some of its members (including the extreme cases
where we select all or none); and secondly, that the number
of sub-classes contained in a class is always greater than the
number of members of the class. Of these two propositions, the
first is familiar in the case of finite numbers, and is not hard
to extend to infinite numbers. The proof of the second is so
simple and so instructive that we shall give it:

In the first place, it is clear that the number of sub-classes
of a given class (say α) is at least as great as the number of
members, since each member constitutes a sub-class, and we
thus have a correlation of all the members with some of the
sub-classes. Hence it follows that, if the number of sub-classes
is not equal to the number of members, it must be greater. Now
it is easy to prove that the number is not equal, by showing
that, given any one-one relation whose domain is the members
and whose converse domain is contained among the set of sub-
classes, there must be at least one sub-class not belonging to
the converse domain. The proof is as follows: When a one-one
correlation R is established between all the members of α and
some of the sub-classes, it may happen that a given member
x is correlated with a sub-class of which it is a member; or,
again, it may happen that x is correlated with a sub-class of
which it is not a member. Let us form the whole class, β say,
of those members x which are correlated with sub-classes of
which they are not members. This is a sub-class of α, and
it is not correlated with any member of α. For, taking first
the members of β, each of them is (by the definition of β)
correlated with some sub-class of which it is not a member,
and is therefore not correlated with β. Taking next the terms
which are not members of β, each of them (by the definition of

This proof is taken from Cantor, with some simplifications: see
Jahresbericht der Deutschen Mathematiker-Vereinigung, i. (), p. .

Chap. VIII. Infinite Cardinal Numbers 

β) is correlated with some sub-class of which it is a member,
and therefore again is not correlated with β. Thus no member
of α is correlated with β. Since R was any one-one correlation
of all members | with some sub-classes, it follows that there is
no correlation of all members with all sub-classes. It does not
matter to the proof if β has no members: all that happens in that
case is that the sub-class which is shown to be omitted is the
null-class. Hence in any case the number of sub-classes is not
equal to the number of members, and therefore, by what was
said earlier, it is greater. Combining this with the proposition
that, if n is the number of members, n is the number of sub-
classes, we have the theorem that n is always greater than n,
even when n is infinite.

It follows from this proposition that there is no maximum
to the infinite cardinal numbers. However great an infinite
number n may be, n will be still greater. The arithmetic of
infinite numbers is somewhat surprising until one becomes
accustomed to it. We have, for example,

ℵ +  = ℵ,
ℵ +n = ℵ, where n is any inductive number,
ℵ = ℵ.

(This follows from the case of the ratios, for, since a ratio is
determined by a pair of inductive numbers, it is easy to see that
the number of ratios is the square of the number of inductive
numbers, i.e. it is ℵ; but we saw that it is also ℵ.)

ℵn = ℵ, where n is any inductive number.
(This follows from ℵ = ℵ by induction; for if ℵn = ℵ,
then ℵn+ = ℵ = ℵ.)
But ℵ > ℵ.
In fact, as we shall see later, ℵ is a very important number,
namely, the number of terms in a series which has “continuity”
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in the sense in which this word is used by Cantor. Assuming
space and time to be continuous in this sense (as we commonly
do in analytical geometry and kinematics), this will be the
number of points in space or of instants in time; it will also be
the number of points in any finite portion of space, whether |

 line, area, or volume. After ℵ, ℵ is the most important and
interesting of infinite cardinal numbers.

Although addition and multiplication are always possible
with infinite cardinals, subtraction and division no longer give
definite results, and cannot therefore be employed as they are
employed in elementary arithmetic. Take subtraction to begin
with: so long as the number subtracted is finite, all goes well;
if the other number is reflexive, it remains unchanged. Thus
ℵ − n = ℵ, if n is finite; so far, subtraction gives a perfectly
definite result. But it is otherwise when we subtract ℵ from
itself; we may then get any result, from  up to ℵ. This is easily
seen by examples. From the inductive numbers, take away the
following collections of ℵ terms:—

() All the inductive numbers—remainder, zero.
() All the inductive numbers from n onwards—remainder,

the numbers from  to n−, numbering n terms in all.
() All the odd numbers—remainder, all the even numbers,

numbering ℵ terms.
All these are different ways of subtracting ℵ from ℵ, and

all give different results.
As regards division, very similar results follow from the fact

that ℵ is unchanged when multiplied by  or  or any finite
number n or by ℵ. It follows that ℵ divided by ℵ may have
any value from  up to ℵ.

From the ambiguity of subtraction and division it results
that negative numbers and ratios cannot be extended to in-
finite numbers. Addition, multiplication, and exponentia-
tion proceed quite satisfactorily, but the inverse operations—
subtraction, division, and extraction of roots—are ambiguous,
and the notions that depend upon them fail when infinite num-
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bers are concerned.
The characteristic by which we defined finitude was math-

ematical induction, i.e. we defined a number as finite when it
obeys mathematical induction starting from , and a class as
finite when its number is finite. This definition yields the sort
of result that a definition ought to yield, namely, that the finite
| numbers are those that occur in the ordinary number-series
, , , , . . . But in the present chapter, the infinite num-
bers we have discussed have not merely been non-inductive:
they have also been reflexive. Cantor used reflexiveness as the
definition of the infinite, and believes that it is equivalent to
non-inductiveness; that is to say, he believes that every class
and every cardinal is either inductive or reflexive. This may be
true, and may very possibly be capable of proof; but the proofs
hitherto offered by Cantor and others (including the present
author in former days) are fallacious, for reasons which will
be explained when we come to consider the “multiplicative
axiom.” At present, it is not known whether there are classes
and cardinals which are neither reflexive nor inductive. If n
were such a cardinal, we should not have n = n+, but n would
not be one of the “natural numbers,” and would be lacking in
some of the inductive properties. All known infinite classes and
cardinals are reflexive; but for the present it is well to preserve
an open mind as to whether there are instances, hitherto un-
known, of classes and cardinals which are neither reflexive nor
inductive. Meanwhile, we adopt the following definitions:—

A finite class or cardinal is one which is inductive.
An infinite class or cardinal is one which is not inductive.

All reflexive classes and cardinals are infinite; but it is not
known at present whether all infinite classes and cardinals are
reflexive. We shall return to this subject in Chapter XII.



CHAPTER IX

INFINITE SERIES AND ORDINALS

 An “infinite series” may be defined as a series of which the field
is an infinite class. We have already had occasion to consider
one kind of infinite series, namely, progressions. In this chapter
we shall consider the subject more generally.

The most noteworthy characteristic of an infinite series is
that its serial number can be altered by merely re-arranging its
terms. In this respect there is a certain oppositeness between
cardinal and serial numbers. It is possible to keep the cardinal
number of a reflexive class unchanged in spite of adding terms
to it; on the other hand, it is possible to change the serial
number of a series without adding or taking away any terms,
by mere re-arrangement. At the same time, in the case of any
infinite series it is also possible, as with cardinals, to add terms
without altering the serial number: everything depends upon
the way in which they are added.

In order to make matters clear, it will be best to begin with
examples. Let us first consider various different kinds of series
which can be made out of the inductive numbers arranged on
various plans. We start with the series

, , , , . . . n, . . .,

which, as we have already seen, represents the smallest of
infinite serial numbers, the sort that Cantor calls ω. Let us
proceed to thin out this series by repeatedly performing the |

 operation of removing to the end the first even number that


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occurs. We thus obtain in succession the various series:

, , , , . . . n, . . . ,
, , , , . . . n+ , . . . , ,
, , , , . . . n+ , . . . , , ,

and so on. If we imagine this process carried on as long as
possible, we finally reach the series

, , , , . . . n+ , . . . , , , , . . . n, . . .,

in which we have first all the odd numbers and then all the
even numbers.

The serial numbers of these various series are ω + , ω +
, ω + , . . . ω. Each of these numbers is “greater” than any of
its predecessors, in the following sense:—

One serial number is said to be “greater” than another if any
series having the first number contains a part having the second
number, but no series having the second number contains a
part having the first number.

If we compare the two series

, , , , . . . n, . . .
, , , , . . . n+ , . . . ,

we see that the first is similar to the part of the second which
omits the last term, namely, the number , but the second is
not similar to any part of the first. (This is obvious, but is
easily demonstrated.) Thus the second series has a greater
serial number than the first, according to the definition—i.e.
ω+  is greater than ω. But if we add a term at the beginning
of a progression instead of the end, we still have a progression.
Thus  + ω = ω. Thus  + ω is not equal to ω + . This is
characteristic of relation-arithmetic generally: if µ and ν are
two relation-numbers, the general rule is that µ+ν is not equal
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to ν +µ. The case of finite ordinals, in which there is equality,
is quite exceptional.

The series we finally reached just now consisted of first all
the odd numbers and then all the even numbers, and its serial |

 number is ω. This number is greater than ω or ω +n, where n
is finite. It is to be observed that, in accordance with the general
definition of order, each of these arrangements of integers is to
be regarded as resulting from some definite relation. E.g. the
one which merely removes  to the end will be defined by the
following relation: “x and y are finite integers, and either y is
 and x is not , or neither is  and x is less than y.” The one
which puts first all the odd numbers and then all the even ones
will be defined by: “x and y are finite integers, and either x is
odd and y is even or x is less than y and both are odd or both
are even.” We shall not trouble, as a rule, to give these formulæ
in future; but the fact that they could be given is essential.

The number which we have called ω, namely, the number
of a series consisting of two progressions, is sometimes called
ω . . Multiplication, like addition, depends upon the order of
the factors: a progression of couples gives a series such as

x, y, x, y, x, y, . . . xn, yn, . . . ,

which is itself a progression; but a couple of progressions gives
a series which is twice as long as a progression. It is therefore
necessary to distinguish between ω andω.. Usage is variable;
we shall use ω for a couple of progressions and ω .  for a
progression of couples, and this decision of course governs our
general interpretation of “α . β” when α and β are relation-
numbers: “α . β” will have to stand for a suitably constructed
sum of α relations each having β terms.

We can proceed indefinitely with the process of thinning
out the inductive numbers. For example, we can place first the
odd numbers, then their doubles, then the doubles of these,

Chap. IX. Infinite Series and Ordinals 

and so on. We thus obtain the series

, , , , . . .; , , , , . . .; , , , , . . .;
, , , , . . .,

of which the number is ω, since it is a progression of progres-
sions. Any one of the progressions in this new series can of
course be | thinned out as we thinned out our original progres-
sion. We can proceed to ω, ω, . . . ωω, and so on; however far
we have gone, we can always go further.

The series of all the ordinals that can be obtained in this way,
i.e. all that can be obtained by thinning out a progression, is it-
self longer than any series that can be obtained by re-arranging
the terms of a progression. (This is not difficult to prove.) The
cardinal number of the class of such ordinals can be shown to
be greater than ℵ; it is the number which Cantor calls ℵ. The
ordinal number of the series of all ordinals that can be made
out of an ℵ, taken in order of magnitude, is called ω. Thus a
series whose ordinal number is ω has a field whose cardinal
number is ℵ.

We can proceed from ω and ℵ to ω and ℵ by a process
exactly analogous to that by which we advanced from ω and
ℵ to ω and ℵ. And there is nothing to prevent us from
advancing indefinitely in this way to new cardinals and new
ordinals. It is not known whether ℵ is equal to any of the
cardinals in the series of Alephs. It is not even known whether
it is comparable with them in magnitude; for aught we know,
it may be neither equal to nor greater nor less than any one of
the Alephs. This question is connected with the multiplicative
axiom, of which we shall treat later.

All the series we have been considering so far in this chapter
have been what is called “well-ordered.” A well-ordered series
is one which has a beginning, and has consecutive terms, and
has a term next after any selection of its terms, provided there
are any terms after the selection. This excludes, on the one
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hand, compact series, in which there are terms between any
two, and on the other hand series which have no beginning, or
in which there are subordinate parts having no beginning. The
series of negative integers in order of magnitude, having no
beginning, but ending with −, is not well-ordered; but taken
in the reverse order, beginning with −, it is well-ordered, being
in fact a progression. The definition is: |

A “well-ordered” series is one in which every sub-class
(except, of course, the null-class) has a first term.

An “ordinal” number means the relation-number of a well-
ordered series. It is thus a species of serial number.

Among well-ordered series, a generalised form of mathe-
matical induction applies. A property may be said to be “trans-
finitely hereditary” if, when it belongs to a certain selection of
the terms in a series, it belongs to their immediate successor
provided they have one. In a well-ordered series, a transfinitely
hereditary property belonging to the first term of the series
belongs to the whole series. This makes it possible to prove
many propositions concerning well-ordered series which are
not true of all series.

It is easy to arrange the inductive numbers in series which
are not well-ordered, and even to arrange them in compact
series. For example, we can adopt the following plan: consider
the decimals from · (inclusive) to  (exclusive), arranged in
order of magnitude. These form a compact series; between
any two there are always an infinite number of others. Now
omit the dot at the beginning of each, and we have a compact
series consisting of all finite integers except such as divide
by . If we wish to include those that divide by , there is
no difficulty; instead of starting with ·, we will include all
decimals less than , but when we remove the dot, we will
transfer to the right any ’s that occur at the beginning of our
decimal. Omitting these, and returning to the ones that have no
’s at the beginning, we can state the rule for the arrangement
of our integers as follows: Of two integers that do not begin
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with the same digit, the one that begins with the smaller digit
comes first. Of two that do begin with the same digit, but differ
at the second digit, the one with the smaller second digit comes
first, but first of all the one with no second digit; and so on.
Generally, if two integers agree as regards the first n digits, but
not as regards the (n+)th, that one comes first which has either
no (n+ )th digit or a smaller one than the other. This rule of
arrangement, | as the reader can easily convince himself, gives
rise to a compact series containing all the integers not divisible
by ; and, as we saw, there is no difficulty about including
those that are divisible by . It follows from this example that
it is possible to construct compact series having ℵ terms. In
fact, we have already seen that there are ℵ ratios, and ratios
in order of magnitude form a compact series; thus we have
here another example. We shall resume this topic in the next
chapter.

Of the usual formal laws of addition, multiplication, and
exponentiation, all are obeyed by transfinite cardinals, but only
some are obeyed by transfinite ordinals, and those that are
obeyed by them are obeyed by all relation-numbers. By the
“usual formal laws” we mean the following:—

I. The commutative law:
α + β = β +α and α × β = β ×α.

II. The associative law:
(α + β) +γ = α + (β +γ) and (α × β)×γ = α × (β ×γ).

III. The distributive law:
α(β +γ) = αβ +αγ .

When the commutative law does not hold, the above form
of the distributive law must be distinguished from

(β +γ)α = βα +γα.

As we shall see immediately, one form may be true and the
other false.
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IV. The laws of exponentiation:
αβ . αγ = αβ+γ , αγ . βγ = (αβ)γ , (αβ)γ = αβγ .

All these laws hold for cardinals, whether finite or infinite,
and for finite ordinals. But when we come to infinite ordinals,
or indeed to relation-numbers in general, some hold and some
do not. The commutative law does not hold; the associative
law does hold; the distributive law (adopting the convention |

 we have adopted above as regards the order of the factors in a
product) holds in the form

(β +γ)α = βα +γα,

but not in the form

α(β +γ) = αβ +αγ ;

the exponential laws

αβ . αγ = αβ+γ and (αβ)γ = αβγ

still hold, but not the law

αγ . βγ = (αβ)γ ,

which is obviously connected with the commutative law for
multiplication.

The definitions of multiplication and exponentiation that
are assumed in the above propositions are somewhat compli-
cated. The reader who wishes to know what they are and how
the above laws are proved must consult the second volume of
Principia Mathematica, ∗–.

Ordinal transfinite arithmetic was developed by Cantor at
an earlier stage than cardinal transfinite arithmetic, because it
has various technical mathematical uses which led him to it.
But from the point of view of the philosophy of mathematics
it is less important and less fundamental than the theory of
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transfinite cardinals. Cardinals are essentially simpler than
ordinals, and it is a curious historical accident that they first
appeared as an abstraction from the latter, and only gradually
came to be studied on their own account. This does not ap-
ply to Frege’s work, in which cardinals, finite and transfinite,
were treated in complete independence of ordinals; but it was
Cantor’s work that made the world aware of the subject, while
Frege’s remained almost unknown, probably in the main on ac-
count of the difficulty of his symbolism. And mathematicians,
like other people, have more difficulty in understanding and
using notions which are comparatively “simple” in the logical
sense than in manipulating more complex notions which are
| more akin to their ordinary practice. For these reasons, it
was only gradually that the true importance of cardinals in
mathematical philosophy was recognised. The importance of
ordinals, though by no means small, is distinctly less than that
of cardinals, and is very largely merged in that of the more
general conception of relation-numbers.



CHAPTER X

LIMITS AND CONTINUITY

 The conception of a “limit” is one of which the importance in
mathematics has been found continually greater than had been
thought. The whole of the differential and integral calculus,
indeed practically everything in higher mathematics, depends
upon limits. Formerly, it was supposed that infinitesimals
were involved in the foundations of these subjects, but Weier-
strass showed that this is an error: wherever infinitesimals were
thought to occur, what really occurs is a set of finite quanti-
ties having zero for their lower limit. It used to be thought
that “limit” was an essentially quantitative notion, namely, the
notion of a quantity to which others approached nearer and
nearer, so that among those others there would be some differ-
ing by less than any assigned quantity. But in fact the notion
of “limit” is a purely ordinal notion, not involving quantity at
all (except by accident when the series concerned happens to
be quantitative). A given point on a line may be the limit of a
set of points on the line, without its being necessary to bring
in co-ordinates or measurement or anything quantitative. The
cardinal number ℵ is the limit (in the order of magnitude) of
the cardinal numbers , , , . . . n, . . . , although the numerical
difference between ℵ and a finite cardinal is constant and infi-
nite: from a quantitative point of view, finite numbers get no
nearer to ℵ as they grow larger. What makes ℵ the limit of
the finite numbers is the fact that, in the series, it comes imme-
diately after them, which is an ordinal fact, not a quantitative
fact. |


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There are various forms of the notion of “limit,” of increas-
ing complexity. The simplest and most fundamental form, from
which the rest are derived, has been already defined, but we
will here repeat the definitions which lead to it, in a general
form in which they do not demand that the relation concerned
shall be serial. The definitions are as follows:—

The “minima” of a class α with respect to a relation P are
those members of α and the field of P (if any) to which no
member of α has the relation P.

The “maxima” with respect to P are the minima with respect
to the converse of P.

The “sequents” of a class α with respect to a relation P are
the minima of the “successors” of α, and the “successors” of α
are those members of the field of P to which every member of
the common part of α and the field of P has the relation P.

The “precedents” with respect to P are the sequents with
respect to the converse of P.

The “upper limits” of α with respect to P are the sequents
provided α has no maximum; but if α has a maximum, it has
no upper limits.

The “lower limits” with respect to P are the upper limits
with respect to the converse of P.

Whenever P has connexity, a class can have at most one
maximum, one minimum, one sequent, etc. Thus, in the cases
we are concerned with in practice, we can speak of “the limit”
(if any).

When P is a serial relation, we can greatly simplify the
above definition of a limit. We can, in that case, define first
the “boundary” of a class α, i.e. its limit or maximum, and then
proceed to distinguish the case where the boundary is the limit
from the case where it is a maximum. For this purpose it is best
to use the notion of “segment.”

We will speak of the “segment of P defined by a class α” as
all those terms that have the relation P to some one or more of
the members of α. This will be a segment in the sense defined
| in Chapter VII.; indeed, every segment in the sense there
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defined is the segment defined by some class α. If P is serial,
the segment defined by α consists of all the terms that precede
some term or other of α. If α has a maximum, the segment
will be all the predecessors of the maximum. But if α has no
maximum, every member of α precedes some other member
of α, and the whole of α is therefore included in the segment
defined by α. Take, for example, the class consisting of the
fractions


 ,

 ,

 ,

 , . . .,

i.e. of all fractions of the form − /n for different finite val-
ues of n. This series of fractions has no maximum, and it is
clear that the segment which it defines (in the whole series
of fractions in order of magnitude) is the class of all proper
fractions. Or, again, consider the prime numbers, considered
as a selection from the cardinals (finite and infinite) in order
of magnitude. In this case the segment defined consists of all
finite integers.

Assuming that P is serial, the “boundary” of a class α will
be the term x (if it exists) whose predecessors are the segment
defined by α.

A “maximum” of α is a boundary which is a member of α.
An “upper limit” of α is a boundary which is not a member

of α.
If a class has no boundary, it has neither maximum nor limit.

This is the case of an “irrational” Dedekind cut, or of what is
called a “gap.”

Thus the “upper limit” of a set of terms α with respect to
a series P is that term x (if it exists) which comes after all the
α’s, but is such that every earlier term comes before some of
the α’s.

We may define all the “upper limiting-points” of a set of
terms β as all those that are the upper limits of sets of terms
chosen out of β. We shall, of course, have to distinguish upper
limiting-points from lower limiting-points. If we consider, for
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example, the series of ordinal numbers:

, , , . . . ω, ω+ , . . . ω, ω+ , . . . ω, . . . ω, . . . ω, . . . , |

the upper limiting-points of the field of this series are those
that have no immediate predecessors, i.e.

, ω, ω, ω, . . . ω, ω +ω, . . . ω, . . . ω . . .

The upper limiting-points of the field of this new series will be

, ω, ω, . . . ω, ω +ω . . .

On the other hand, the series of ordinals—and indeed every
well-ordered series—has no lower limiting-points, because
there are no terms except the last that have no immediate
successors. But if we consider such a series as the series of
ratios, every member of this series is both an upper and a lower
limiting-point for suitably chosen sets. If we consider the series
of real numbers, and select out of it the rational real numbers,
this set (the rationals) will have all the real numbers as up-
per and lower limiting-points. The limiting-points of a set are
called its “first derivative,” and the limiting-points of the first
derivative are called the second derivative, and so on.

With regard to limits, we may distinguish various grades of
what may be called “continuity” in a series. The word “continu-
ity” had been used for a long time, but had remained without
any precise definition until the time of Dedekind and Can-
tor. Each of these two men gave a precise significance to the
term, but Cantor’s definition is narrower than Dedekind’s: a
series which has Cantorian continuity must have Dedekindian
continuity, but the converse does not hold.

The first definition that would naturally occur to a man
seeking a precise meaning for the continuity of series would be
to define it as consisting in what we have called “compactness,”
i.e. in the fact that between any two terms of the series there are
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others. But this would be an inadequate definition, because of
the existence of “gaps” in series such as the series of ratios. We
saw in Chapter VII. that there are innumerable ways in which
the series of ratios can be divided into two parts, of which one
wholly precedes the other, and of which the first has no last
term, | while the second has no first term. Such a state of affairs
seems contrary to the vague feeling we have as to what should
characterise “continuity,” and, what is more, it shows that the
series of ratios is not the sort of series that is needed for many
mathematical purposes. Take geometry, for example: we wish
to be able to say that when two straight lines cross each other
they have a point in common, but if the series of points on a line
were similar to the series of ratios, the two lines might cross in
a “gap” and have no point in common. This is a crude example,
but many others might be given to show that compactness is
inadequate as a mathematical definition of continuity.

It was the needs of geometry, as much as anything, that
led to the definition of “Dedekindian” continuity. It will be
remembered that we defined a series as Dedekindian when
every sub-class of the field has a boundary. (It is sufficient to
assume that there is always an upper boundary, or that there is
always a lower boundary. If one of these is assumed, the other
can be deduced.) That is to say, a series is Dedekindian when
there are no gaps. The absence of gaps may arise either through
terms having successors, or through the existence of limits in
the absence of maxima. Thus a finite series or a well-ordered
series is Dedekindian, and so is the series of real numbers. The
former sort of Dedekindian series is excluded by assuming
that our series is compact; in that case our series must have
a property which may, for many purposes, be fittingly called
continuity. Thus we are led to the definition:

A series has “Dedekindian continuity” when it is Dedekin-
dian and compact.

But this definition is still too wide for many purposes. Sup-
pose, for example, that we desire to be able to assign such
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properties to geometrical space as shall make it certain that
every point can be specified by means of co-ordinates which are
real numbers: this is not insured by Dedekindian continuity
alone. We want to be sure that every point which cannot be
specified by rational co-ordinates can be specified as the limit
of a progression of points | whose co-ordinates are rational, and
this is a further property which our definition does not enable
us to deduce.

We are thus led to a closer investigation of series with re-
spect to limits. This investigation was made by Cantor and
formed the basis of his definition of continuity, although, in its
simplest form, this definition somewhat conceals the considera-
tions which have given rise to it. We shall, therefore, first travel
through some of Cantor’s conceptions in this subject before
giving his definition of continuity.

Cantor defines a series as “perfect” when all its points are
limiting-points and all its limiting-points belong to it. But this
definition does not express quite accurately what he means.
There is no correction required so far as concerns the property
that all its points are to be limiting-points; this is a property
belonging to compact series, and to no others if all points are
to be upper limiting- or all lower limiting-points. But if it is
only assumed that they are limiting-points one way, without
specifying which, there will be other series that will have the
property in question—for example, the series of decimals in
which a decimal ending in a recurring  is distinguished from
the corresponding terminating decimal and placed immedi-
ately before it. Such a series is very nearly compact, but has
exceptional terms which are consecutive, and of which the first
has no immediate predecessor, while the second has no imme-
diate successor. Apart from such series, the series in which
every point is a limiting-point are compact series; and this
holds without qualification if it is specified that every point
is to be an upper limiting-point (or that every point is to be a
lower limiting-point).
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Although Cantor does not explicitly consider the matter, we
must distinguish different kinds of limiting-points according
to the nature of the smallest sub-series by which they can
be defined. Cantor assumes that they are to be defined by
progressions, or by regressions (which are the converses of
progressions). When every member of our series is the limit of
a progression or regression, Cantor calls our series “condensed
in itself” (insichdicht). |

We come now to the second property by which perfection
was to be defined, namely, the property which Cantor calls
that of being “closed” (abgeschlossen). This, as we saw, was first
defined as consisting in the fact that all the limiting-points of a
series belong to it. But this only has any effective significance if
our series is given as contained in some other larger series (as is
the case, e.g., with a selection of real numbers), and limiting-
points are taken in relation to the larger series. Otherwise, if a
series is considered simply on its own account, it cannot fail to
contain its limiting-points. What Cantor means is not exactly
what he says; indeed, on other occasions he says something
rather different, which is what he means. What he really means
is that every subordinate series which is of the sort that might
be expected to have a limit does have a limit within the given
series; i.e. every subordinate series which has no maximum
has a limit, i.e. every subordinate series has a boundary. But
Cantor does not state this for every subordinate series, but only
for progressions and regressions. (It is not clear how far he
recognises that this is a limitation.) Thus, finally, we find that
the definition we want is the following:—

A series is said to be “closed” (abgeschlossen) when every
progression or regression contained in the series has a limit in
the series.

We then have the further definition:—
A series is “perfect” when it is condensed in itself and closed,

i.e. when every term is the limit of a progression or regression,
and every progression or regression contained in the series has
a limit in the series.
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In seeking a definition of continuity, what Cantor has in
mind is the search for a definition which shall apply to the
series of real numbers and to any series similar to that, but to
no others. For this purpose we have to add a further property.
Among the real numbers some are rational, some are irrational;
although the number of irrationals is greater than the num-
ber of rationals, yet there are rationals between any two real
numbers, however | little the two may differ. The number of
rationals, as we saw, is ℵ. This gives a further property which
suffices to characterise continuity completely, namely, the prop-
erty of containing a class of ℵ members in such a way that
some of this class occur between any two terms of our series,
however near together. This property, added to perfection, suf-
fices to define a class of series which are all similar and are
in fact a serial number. This class Cantor defines as that of
continuous series.

We may slightly simplify his definition. To begin with, we
say:

A “median class” of a series is a sub-class of the field such
that members of it are to be found between any two terms of
the series.

Thus the rationals are a median class in the series of real
numbers. It is obvious that there cannot be median classes
except in compact series.

We then find that Cantor’s definition is equivalent to the
following:—

A series is “continuous” when () it is Dedekindian, () it
contains a median class having ℵ terms.

To avoid confusion, we shall speak of this kind as “Canto-
rian continuity.” It will be seen that it implies Dedekindian
continuity, but the converse is not the case. All series hav-
ing Cantorian continuity are similar, but not all series having
Dedekindian continuity.

The notions of limit and continuity which we have been
defining must not be confounded with the notions of the limit
of a function for approaches to a given argument, or the conti-
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nuity of a function in the neighbourhood of a given argument.
These are different notions, very important, but derivative from
the above and more complicated. The continuity of motion
(if motion is continuous) is an instance of the continuity of a
function; on the other hand, the continuity of space and time
(if they are continuous) is an instance of the continuity of series,
or (to speak more cautiously) of a kind of continuity which can,
by sufficient mathematical | manipulation, be reduced to the
continuity of series. In view of the fundamental importance
of motion in applied mathematics, as well as for other reasons,
it will be well to deal briefly with the notions of limits and
continuity as applied to functions; but this subject will be best
reserved for a separate chapter.

The definitions of continuity which we have been consider-
ing, namely, those of Dedekind and Cantor, do not correspond
very closely to the vague idea which is associated with the
word in the mind of the man in the street or the philosopher.
They conceive continuity rather as absence of separateness, the
sort of general obliteration of distinctions which characterises
a thick fog. A fog gives an impression of vastness without
definite multiplicity or division. It is this sort of thing that a
metaphysician means by “continuity,” declaring it, very truly,
to be characteristic of his mental life and of that of children
and animals.

The general idea vaguely indicated by the word “continuity”
when so employed, or by the word “flux,” is one which is cer-
tainly quite different from that which we have been defining.
Take, for example, the series of real numbers. Each is what it is,
quite definitely and uncompromisingly; it does not pass over by
imperceptible degrees into another; it is a hard, separate unit,
and its distance from every other unit is finite, though it can
be made less than any given finite amount assigned in advance.
The question of the relation between the kind of continuity
existing among the real numbers and the kind exhibited, e.g. by
what we see at a given time, is a difficult and intricate one. It is
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not to be maintained that the two kinds are simply identical,
but it may, I think, be very well maintained that the mathe-
matical conception which we have been considering in this
chapter gives the abstract logical scheme to which it must be
possible to bring empirical material by suitable manipulation,
if that material is to be called “continuous” in any precisely
definable sense. It would be quite impossible | to justify this
thesis within the limits of the present volume. The reader who
is interested may read an attempt to justify it as regards time in
particular by the present author in the Monist for −, as
well as in parts of Our Knowledge of the External World. With
these indications, we must leave this problem, interesting as
it is, in order to return to topics more closely connected with
mathematics.



CHAPTER XI

LIMITS AND CONTINUITY OF
FUNCTIONS

 In this chapter we shall be concerned with the definition of
the limit of a function (if any) as the argument approaches a
given value, and also with the definition of what is meant by
a “continuous function.” Both of these ideas are somewhat
technical, and would hardly demand treatment in a mere in-
troduction to mathematical philosophy but for the fact that,
especially through the so-called infinitesimal calculus, wrong
views upon our present topics have become so firmly embed-
ded in the minds of professional philosophers that a prolonged
and considerable effort is required for their uprooting. It has
been thought ever since the time of Leibniz that the differential
and integral calculus required infinitesimal quantities. Mathe-
maticians (especially Weierstrass) proved that this is an error;
but errors incorporated, e.g. in what Hegel has to say about
mathematics, die hard, and philosophers have tended to ignore
the work of such men as Weierstrass.

Limits and continuity of functions, in works on ordinary
mathematics, are defined in terms involving number. This is
not essential, as Dr Whitehead has shown. We will, however,
begin with the definitions in the text-books, and proceed after-
wards to show how these definitions can be generalised so as to
apply to series in general, and not only to such as are numerical
or numerically measurable.

See Principia Mathematica, vol. ii. ∗–.


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Let us consider any ordinary mathematical function fx,
where | x and fx are both real numbers, and fx is one-valued—
i.e. when x is given, there is only one value that fx can have. We
call x the “argument,” and fx the “value for the argument x.”
When a function is what we call “continuous,” the rough idea
for which we are seeking a precise definition is that small differ-
ences in x shall correspond to small differences in fx, and if we
make the differences in x small enough, we can make the differ-
ences in fx fall below any assigned amount. We do not want,
if a function is to be continuous, that there shall be sudden
jumps, so that, for some value of x, any change, however small,
will make a change in fx which exceeds some assigned finite
amount. The ordinary simple functions of mathematics have
this property: it belongs, for example, to x, x, . . . logx, sinx,
and so on. But it is not at all difficult to define discontinuous
functions. Take, as a non-mathematical example, “the place of
birth of the youngest person living at time t.” This is a function
of t; its value is constant from the time of one person’s birth to
the time of the next birth, and then the value changes suddenly
from one birthplace to the other. An analogous mathematical
example would be “the integer next below x,” where x is a real
number. This function remains constant from one integer to
the next, and then gives a sudden jump. The actual fact is that,
though continuous functions are more familiar, they are the
exceptions: there are infinitely more discontinuous functions
than continuous ones.

Many functions are discontinuous for one or several values
of the variable, but continuous for all other values. Take as an
example sin/x. The function sin θ passes through all values
from − to  every time that θ passes from −π/ to π/, or from
π/ to π/, or generally from (n−)π/ to (n+)π/, where
n is any integer. Now if we consider /x when x is very small,
we see that as x diminishes /x grows faster and faster, so that
it passes more and more quickly through the cycle of values
from one multiple of π/ to another as x becomes smaller and
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smaller. Consequently sin/x passes more and more quickly
from − | to  and back again, as x grows smaller. In fact, if we
take any interval containing , say the interval from −ε to +ε
where ε is some very small number, sin/x will go through an
infinite number of oscillations in this interval, and we cannot
diminish the oscillations by making the interval smaller. Thus
round about the argument  the function is discontinuous. It
is easy to manufacture functions which are discontinuous in
several places, or in ℵ places, or everywhere. Examples will be
found in any book on the theory of functions of a real variable.

Proceeding now to seek a precise definition of what is meant
by saying that a function is continuous for a given argument,
when argument and value are both real numbers, let us first
define a “neighbourhood” of a number x as all the numbers
from x−ε to x+ε, where ε is some number which, in important
cases, will be very small. It is clear that continuity at a given
point has to do with what happens in any neighbourhood of
that point, however small.

What we desire is this: If a is the argument for which we
wish our function to be continuous, let us first define a neigh-
bourhood (α say) containing the value fa which the function
has for the argument a; we desire that, if we take a sufficiently
small neighbourhood containing a, all values for arguments
throughout this neighbourhood shall be contained in the neigh-
bourhood α, no matter how small we may have made α. That
is to say, if we decree that our function is not to differ from
fa by more than some very tiny amount, we can always find
a stretch of real numbers, having a in the middle of it, such
that throughout this stretch fx will not differ from fa by more
than the prescribed tiny amount. And this is to remain true
whatever tiny amount we may select. Hence we are led to the
following definition:—

The function f (x) is said to be “continuous” for the argu-
ment a if, for every positive number σ , different from , but as
small as we please, there exists a positive number ε, different
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from , such that, for all values of δ which are numerically |
less than ε, the difference f (a + δ) − f (a) is numerically less

than σ .
In this definition, σ first defines a neighbourhood of f (a),

namely, the neighbourhood from f (a) − σ to f (a) + σ . The
definition then proceeds to say that we can (by means of ε)
define a neighbourhood, namely, that from a− ε to a+ ε, such
that, for all arguments within this neighbourhood, the value
of the function lies within the neighbourhood from f (a)− σ to
f (a) + σ . If this can be done, however σ may be chosen, the
function is “continuous” for the argument a.

So far we have not defined the “limit” of a function for a
given argument. If we had done so, we could have defined the
continuity of a function differently: a function is continuous at
a point where its value is the same as the limit of its values for
approaches either from above or from below. But it is only the
exceptionally “tame” function that has a definite limit as the
argument approaches a given point. The general rule is that
a function oscillates, and that, given any neighbourhood of a
given argument, however small, a whole stretch of values will
occur for arguments within this neighbourhood. As this is the
general rule, let us consider it first.

Let us consider what may happen as the argument ap-
proaches some value a from below. That is to say, we wish
to consider what happens for arguments contained in the inter-
val from a−ε to a, where ε is some number which, in important
cases, will be very small.

The values of the function for arguments from a − ε to a
(a excluded) will be a set of real numbers which will define a
certain section of the set of real numbers, namely, the section
consisting of those numbers that are not greater than all the
values for arguments from a− ε to a. Given any number in this

A number is said to be “numerically less” than ε when it lies between
−ε and +ε.
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section, there are values at least as great as this number for
arguments between a− ε and a, i.e. for arguments that fall very
little short | of a (if ε is very small). Let us take all possible
ε’s and all possible corresponding sections. The common part
of all these sections we will call the “ultimate section” as the
argument approaches a. To say that a number z belongs to the
ultimate section is to say that, however small we may make ε,
there are arguments between a− ε and a for which the value of
the function is not less than z.

We may apply exactly the same process to upper sections,
i.e. to sections that go from some point up to the top, instead of
from the bottom up to some point. Here we take those numbers
that are not less than all the values for arguments from a − ε
to a; this defines an upper section which will vary as ε varies.
Taking the common part of all such sections for all possible ε’s,
we obtain the “ultimate upper section.” To say that a number
z belongs to the ultimate upper section is to say that, however
small we make ε, there are arguments between a− ε and a for
which the value of the function is not greater than z.

If a term z belongs both to the ultimate section and to the
ultimate upper section, we shall say that it belongs to the “ulti-
mate oscillation.” We may illustrate the matter by considering
once more the function sin/x as x approaches the value . We
shall assume, in order to fit in with the above definitions, that
this value is approached from below.

Let us begin with the “ultimate section.” Between −ε and
, whatever ε may be, the function will assume the value  for
certain arguments, but will never assume any greater value.
Hence the ultimate section consists of all real numbers, posi-
tive and negative, up to and including ; i.e. it consists of all
negative numbers together with , together with the positive
numbers up to and including .

Similarly the “ultimate upper section” consists of all posi-
tive numbers together with , together with the negative num-
bers down to and including −.
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Thus the “ultimate oscillation” consists of all real numbers
from − to , both included. |

We may say generally that the “ultimate oscillation” of a
function as the argument approaches a from below consists of
all those numbers x which are such that, however near we come
to a, we shall still find values as great as x and values as small
as x.

The ultimate oscillation may contain no terms, or one term,
or many terms. In the first two cases the function has a definite
limit for approaches from below. If the ultimate oscillation has
one term, this is fairly obvious. It is equally true if it has none;
for it is not difficult to prove that, if the ultimate oscillation is
null, the boundary of the ultimate section is the same as that
of the ultimate upper section, and may be defined as the limit
of the function for approaches from below. But if the ultimate
oscillation has many terms, there is no definite limit to the
function for approaches from below. In this case we can take
the lower and upper boundaries of the ultimate oscillation (i.e.
the lower boundary of the ultimate upper section and the upper
boundary of the ultimate section) as the lower and upper limits
of its “ultimate” values for approaches from below. Similarly
we obtain lower and upper limits of the “ultimate” values for
approaches from above. Thus we have, in the general case, four
limits to a function for approaches to a given argument. The
limit for a given argument a only exists when all these four are
equal, and is then their common value. If it is also the value for
the argument a, the function is continuous for this argument.
This may be taken as defining continuity: it is equivalent to our
former definition.

We can define the limit of a function for a given argument (if
it exists) without passing through the ultimate oscillation and
the four limits of the general case. The definition proceeds, in
that case, just as the earlier definition of continuity proceeded.
Let us define the limit for approaches from below. If there
is to be a definite limit for approaches to a from below, it is
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necessary and sufficient that, given any small number σ , two
values for arguments sufficiently near to a (but both less than a)
will differ | by less than σ ; i.e. if ε is sufficiently small, and our
arguments both lie between a− ε and a (a excluded), then the
difference between the values for these arguments will be less
than σ . This is to hold for any σ , however small; in that case the
function has a limit for approaches from below. Similarly we
define the case when there is a limit for approaches from above.
These two limits, even when both exist, need not be identical;
and if they are identical, they still need not be identical with
the value for the argument a. It is only in this last case that we
call the function continuous for the argument a.

A function is called “continuous” (without qualification)
when it is continuous for every argument.

Another slightly different method of reaching the definition
of continuity is the following:—

Let us say that a function “ultimately converges into a class
α” if there is some real number such that, for this argument
and all arguments greater than this, the value of the function is
a member of the class α. Similarly we shall say that a function
“converges into α as the argument approaches x from below”
if there is some argument y less than x such that throughout
the interval from y (included) to x (excluded) the function
has values which are members of α. We may now say that a
function is continuous for the argument a, for which it has the
value fa, if it satisfies four conditions, namely:—

() Given any real number less than fa, the function con-
verges into the successors of this number as the argument ap-
proaches a from below;

() Given any real number greater than fa, the function
converges into the predecessors of this number as the argument
approaches a from below;

() and () Similar conditions for approaches to a from
above.

The advantage of this form of definition is that it analyses
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the conditions of continuity into four, derived from considering
arguments and values respectively greater or less than the
argument and value for which continuity is to be defined. |

We may now generalise our definitions so as to apply to
series which are not numerical or known to be numerically
measurable. The case of motion is a convenient one to bear in
mind. There is a story by H. G. Wells which will illustrate, from
the case of motion, the difference between the limit of a func-
tion for a given argument and its value for the same argument.
The hero of the story, who possessed, without his knowledge,
the power of realising his wishes, was being attacked by a
policeman, but on ejaculating “Go to——” he found that the
policeman disappeared. If f (t) was the policeman’s position at
time t, and t the moment of the ejaculation, the limit of the
policeman’s positions as t approached to t from below would
be in contact with the hero, whereas the value for the argument
t was —. But such occurrences are supposed to be rare in the
real world, and it is assumed, though without adequate evi-
dence, that all motions are continuous, i.e. that, given any body,
if f (t) is its position at time t, f (t) is a continuous function of t.
It is the meaning of “continuity” involved in such statements
which we now wish to define as simply as possible.

The definitions given for the case of functions where argu-
ment and value are real numbers can readily be adapted for
more general use.

Let P and Q be two relations, which it is well to imagine
serial, though it is not necessary to our definitions that they
should be so. Let R be a one-many relation whose domain
is contained in the field of P, while its converse domain is
contained in the field of Q. Then R is (in a generalised sense)
a function, whose arguments belong to the field of Q, while
its values belong to the field of P. Suppose, for example, that
we are dealing with a particle moving on a line: let Q be the
time-series, P the series of points on our line from left to right,
R the relation of the position of our particle on the line at time
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a to the time a, so that “the R of a” is its position at time a. This
illustration may be borne in mind throughout our definitions.

We shall say that the function R is continuous for the ar-
gument | a if, given any interval α on the P-series containing
the value of the function for the argument a, there is an inter-
val on the Q-series containing a not as an end-point and such
that, throughout this interval, the function has values which
are members of α. (We mean by an “interval” all the terms
between any two; i.e. if x and y are two members of the field of
P, and x has the relation P to y, we shall mean by the “P-interval
x to y” all terms z such that x has the relation P to z and z
has the relation P to y—together, when so stated, with x or y
themselves.)

We can easily define the “ultimate section” and the “ul-
timate oscillation.” To define the “ultimate section” for ap-
proaches to the argument a from below, take any argument y
which precedes a (i.e. has the relation Q to a), take the values of
the function for all arguments up to and including y, and form
the section of P defined by these values, i.e. those members of
the P-series which are earlier than or identical with some of
these values. Form all such sections for all y’s that precede a,
and take their common part; this will be the ultimate section.
The ultimate upper section and the ultimate oscillation are
then defined exactly as in the previous case.

The adaptation of the definition of convergence and the
resulting alternative definition of continuity offers no difficulty
of any kind.

We say that a function R is “ultimately Q-convergent into α”
if there is a member y of the converse domain of R and the field
of Q such that the value of the function for the argument y and
for any argument to which y has the relation Q is a member of α.
We say that R “Q-converges into α as the argument approaches
a given argument a” if there is a term y having the relation Q
to a and belonging to the converse domain of R and such that
the value of the function for any argument in the Q-interval
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from y (inclusive) to a (exclusive) belongs to α.
Of the four conditions that a function must fulfil in order

to be continuous for the argument a, the first is, putting b for
the value for the argument a: |

Given any term having the relation P to b, R Q-converges
into the successors of b (with respect to P) as the argument
approaches a from below.

The second condition is obtained by replacing P by its con-
verse; the third and fourth are obtained from the first and
second by replacing Q by its converse.

There is thus nothing, in the notions of the limit of a func-
tion or the continuity of a function, that essentially involves
number. Both can be defined generally, and many propositions
about them can be proved for any two series (one being the
argument-series and the other the value-series). It will be seen
that the definitions do not involve infinitesimals. They involve
infinite classes of intervals, growing smaller without any limit
short of zero, but they do not involve any intervals that are not
finite. This is analogous to the fact that if a line an inch long
be halved, then halved again, and so on indefinitely, we never
reach infinitesimals in this way: after n bisections, the length
of our bit is /n of an inch; and this is finite whatever finite
number n may be. The process of successive bisection does not
lead to divisions whose ordinal number is infinite, since it is
essentially a one-by-one process. Thus infinitesimals are not
to be reached in this way. Confusions on such topics have had
much to do with the difficulties which have been found in the
discussion of infinity and continuity.



CHAPTER XII

SELECTIONS AND THE
MULTIPLICATIVE AXIOM

 In this chapter we have to consider an axiom which can be
enunciated, but not proved, in terms of logic, and which is
convenient, though not indispensable, in certain portions of
mathematics. It is convenient, in the sense that many inter-
esting propositions, which it seems natural to suppose true,
cannot be proved without its help; but it is not indispensable,
because even without those propositions the subjects in which
they occur still exist, though in a somewhat mutilated form.

Before enunciating the multiplicative axiom, we must first
explain the theory of selections, and the definition of multipli-
cation when the number of factors may be infinite.

In defining the arithmetical operations, the only correct
procedure is to construct an actual class (or relation, in the
case of relation-numbers) having the required number of terms.
This sometimes demands a certain amount of ingenuity, but
it is essential in order to prove the existence of the number
defined. Take, as the simplest example, the case of addition.
Suppose we are given a cardinal number µ, and a class α which
has µ terms. How shall we define µ + µ? For this purpose
we must have two classes having µ terms, and they must not
overlap. We can construct such classes from α in various ways,
of which the following is perhaps the simplest: Form first all
the ordered couples whose first term is a class consisting of a
single member of α, and whose second term is the null-class;
then, secondly, form all the ordered couples whose first term


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is | the null-class and whose second term is a class consisting
of a single member of α. These two classes of couples have no
member in common, and the logical sum of the two classes will
have µ+µ terms. Exactly analogously we can define µ+ν, given
that µ is the number of some class α and ν is the number of
some class β.

Such definitions, as a rule, are merely a question of a suit-
able technical device. But in the case of multiplication, where
the number of factors may be infinite, important problems arise
out of the definition.

Multiplication when the number of factors is finite offers
no difficulty. Given two classes α and β, of which the first has
µ terms and the second ν terms, we can define µ × ν as the
number of ordered couples that can be formed by choosing
the first term out of α and the second out of β. It will be seen
that this definition does not require that α and β should not
overlap; it even remains adequate when α and β are identical.
For example, let α be the class whose members are x, x, x.
Then the class which is used to define the product µ×µ is the
class of couples:

(x,x), (x,x), (x,x); (x,x), (x,x), (x,x); (x,x),
(x,x), (x,x).

This definition remains applicable when µ or ν or both are
infinite, and it can be extended step by step to three or four
or any finite number of factors. No difficulty arises as regards
this definition, except that it cannot be extended to an infinite
number of factors.

The problem of multiplication when the number of factors
may be infinite arises in this way: Suppose we have a class κ
consisting of classes; suppose the number of terms in each of
these classes is given. How shall we define the product of all
these numbers? If we can frame our definition generally, it will
be applicable whether κ is finite or infinite. It is to be observed
that the problem is to be able to deal with the case when κ is
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infinite, not with the case when its members are. If | κ is not
infinite, the method defined above is just as applicable when
its members are infinite as when they are finite. It is the case
when κ is infinite, even though its members may be finite, that
we have to find a way of dealing with.

The following method of defining multiplication generally
is due to Dr Whitehead. It is explained and treated at length in
Principia Mathematica, vol. i. ∗ff., and vol. ii. ∗.

Let us suppose to begin with that κ is a class of classes
no two of which overlap—say the constituencies in a country
where there is no plural voting, each constituency being con-
sidered as a class of voters. Let us now set to work to choose
one term out of each class to be its representative, as constituen-
cies do when they elect members of Parliament, assuming that
by law each constituency has to elect a man who is a voter in
that constituency. We thus arrive at a class of representatives,
who make up our Parliament, one being selected out of each
constituency. How many different possible ways of choosing a
Parliament are there? Each constituency can select any one of
its voters, and therefore if there are µ voters in a constituency, it
can make µ choices. The choices of the different constituencies
are independent; thus it is obvious that, when the total number
of constituencies is finite, the number of possible Parliaments
is obtained by multiplying together the numbers of voters in
the various constituencies. When we do not know whether the
number of constituencies is finite or infinite, we may take the
number of possible Parliaments as defining the product of the
numbers of the separate constituencies. This is the method by
which infinite products are defined. We must now drop our
illustration, and proceed to exact statements.

Let κ be a class of classes, and let us assume to begin with
that no two members of κ overlap, i.e. that if α and β are two
different members of κ, then no member of the one is a member
of the other. We shall call a class a “selection” from κ when
it consists of just one term from each member of κ; i.e. µ is
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a “selection” from κ if every member of µ belongs to some
member | of κ, and if α be any member of κ, µ and α have
exactly one term in common. The class of all “selections” from
κ we shall call the “multiplicative class” of κ. The number of
terms in the multiplicative class of κ, i.e. the number of possible
selections from κ, is defined as the product of the numbers of
the members of κ. This definition is equally applicable whether
κ is finite or infinite.

Before we can be wholly satisfied with these definitions,
we must remove the restriction that no two members of κ are
to overlap. For this purpose, instead of defining first a class
called a “selection,” we will define first a relation which we
will call a “selector.” A relation R will be called a “selector”
from κ if, from every member of κ, it picks out one term as the
representative of that member, i.e. if, given any member α of
κ, there is just one term x which is a member of α and has the
relation R to α; and this is to be all that R does. The formal
definition is:

A “selector” from a class of classes κ is a one-many relation,
having κ for its converse domain, and such that, if x has the
relation to α, then x is a member of α.

If R is a selector from κ, and α is a member of κ, and x is the
term which has the relation R to α, we call x the “representative”
of α in respect of the relation R.

A “selection” from κ will now be defined as the domain of
a selector; and the multiplicative class, as before, will be the
class of selections.

But when the members of κ overlap, there may be more
selectors than selections, since a term x which belongs to two
classes α and β may be selected once to represent α and once
to represent β, giving rise to different selectors in the two
cases, but to the same selection. For purposes of defining
multiplication, it is the selectors we require rather than the
selections. Thus we define:

“The product of the numbers of the members of a class of
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classes κ” is the number of selectors from κ.
We can define exponentiation by an adaptation of the above

| plan. We might, of course, define µν as the number of se-
lectors from ν classes, each of which has µ terms. But there
are objections to this definition, derived from the fact that
the multiplicative axiom (of which we shall speak shortly) is
unnecessarily involved if it is adopted. We adopt instead the
following construction:—

Let α be a class having µ terms, and β a class having ν
terms. Let y be a member of β, and form the class of all ordered
couples that have y for their second term and a member of α
for their first term. There will be µ such couples for a given y,
since any member of α may be chosen for the first term, and α
has µ members. If we now form all the classes of this sort that
result from varying y, we obtain altogether ν classes, since y
may be any member of β, and β has ν members. These ν classes
are each of them a class of couples, namely, all the couples that
can be formed of a variable member of α and a fixed member
of β. We define µν as the number of selectors from the class
consisting of these ν classes. Or we may equally well define
µν as the number of selections, for, since our classes of couples
are mutually exclusive, the number of selectors is the same as
the number of selections. A selection from our class of classes
will be a set of ordered couples, of which there will be exactly
one having any given member of β for its second term, and the
first term may be any member of α. Thus µν is defined by the
selectors from a certain set of ν classes each having µ terms, but
the set is one having a certain structure and a more manageable
composition than is the case in general. The relevance of this
to the multiplicative axiom will appear shortly.

What applies to exponentiation applies also to the product
of two cardinals. We might define “µ × ν” as the sum of the
numbers of ν classes each having µ terms, but we prefer to
define it as the number of ordered couples to be formed consist-
ing of a member of α followed by a member of β, where α has
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µ terms and β has ν terms. This definition, also, is designed to
evade the necessity of assuming the multiplicative axiom. |

With our definitions, we can prove the usual formal laws
of multiplication and exponentiation. But there is one thing
we cannot prove: we cannot prove that a product is only zero
when one of its factors is zero. We can prove this when the
number of factors is finite, but not when it is infinite. In other
words, we cannot prove that, given a class of classes none
of which is null, there must be selectors from them; or that,
given a class of mutually exclusive classes, there must be at
least one class consisting of one term out of each of the given
classes. These things cannot be proved; and although, at first
sight, they seem obviously true, yet reflection brings gradually
increasing doubt, until at last we become content to register
the assumption and its consequences, as we register the axiom
of parallels, without assuming that we can know whether it is
true or false. The assumption, loosely worded, is that selectors
and selections exist when we should expect them. There are
many equivalent ways of stating it precisely. We may begin
with the following:—

“Given any class of mutually exclusive classes, of which
none is null, there is at least one class which has exactly one
term in common with each of the given classes.”

This proposition we will call the “multiplicative axiom.”

We will first give various equivalent forms of the proposition,
and then consider certain ways in which its truth or falsehood
is of interest to mathematics.

The multiplicative axiom is equivalent to the proposition
that a product is only zero when at least one of its factors is
zero; i.e. that, if any number of cardinal numbers be multiplied
together, the result cannot be  unless one of the numbers
concerned is .

The multiplicative axiom is equivalent to the proposition

See Principia Mathematica, vol. i. ∗. Also vol. iii. ∗–.



 Introduction to Mathematical Philosophy

that, if R be any relation, and κ any class contained in the
converse domain of R, then there is at least one one-many
relation implying R and having κ for its converse domain.

The multiplicative axiom is equivalent to the assumption
that if α be any class, and κ all the sub-classes of α with the
exception | of the null-class, then there is at least one selector
from κ. This is the form in which the axiom was first brought to
the notice of the learned world by Zermelo, in his “Beweis, dass
jede Menge wohlgeordnet werden kann.” Zermelo regards the
axiom as an unquestionable truth. It must be confessed that,
until he made it explicit, mathematicians had used it without a
qualm; but it would seem that they had done so unconsciously.
And the credit due to Zermelo for having made it explicit is
entirely independent of the question whether it is true or false.

The multiplicative axiom has been shown by Zermelo, in the
above-mentioned proof, to be equivalent to the proposition that
every class can be well-ordered, i.e. can be arranged in a series
in which every sub-class has a first term (except, of course, the
null-class). The full proof of this proposition is difficult, but it is
not difficult to see the general principle upon which it proceeds.
It uses the form which we call “Zermelo’s axiom,” i.e. it assumes
that, given any class α, there is at least one one-many relation
R whose converse domain consists of all existent sub-classes of
α and which is such that, if x has the relation R to ξ, then x is a
member of ξ. Such a relation picks out a “representative” from
each sub-class; of course, it will often happen that two sub-
classes have the same representative. What Zermelo does, in
effect, is to count off the members of α, one by one, by means of
R and transfinite induction. We put first the representative of
α; call it x. Then take the representative of the class consisting
of all of α except x; call it x. It must be different from x,
because every representative is a member of its class, and x

Mathematische Annalen, vol. lix. pp. –. In this form we shall speak
of it as Zermelo’s axiom.
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is shut out from this class. Proceed similarly to take away x,
and let x be the representative of what is left. In this way we
first obtain a progression x, x, . . . xn, . . ., assuming that α is
not finite. We then take away the whole progression; let xω be
the representative of what is left of α. In this way we can go on
until nothing is left. The successive representatives will form
a | well-ordered series containing all the members of α. (The
above is, of course, only a hint of the general lines of the proof.)
This proposition is called “Zermelo’s theorem.”

The multiplicative axiom is also equivalent to the assump-
tion that of any two cardinals which are not equal, one must be
the greater. If the axiom is false, there will be cardinals µ and
ν such that µ is neither less than, equal to, nor greater than ν.
We have seen that ℵ and ℵ possibly form an instance of such
a pair.

Many other forms of the axiom might be given, but the
above are the most important of the forms known at present.
As to the truth or falsehood of the axiom in any of its forms,
nothing is known at present.

The propositions that depend upon the axiom, without be-
ing known to be equivalent to it, are numerous and important.
Take first the connection of addition and multiplication. We
naturally think that the sum of ν mutually exclusive classes,
each having µ terms, must have µ× ν terms. When ν is finite,
this can be proved. But when ν is infinite, it cannot be proved
without the multiplicative axiom, except where, owing to some
special circumstance, the existence of certain selectors can be
proved. The way the multiplicative axiom enters in is as fol-
lows: Suppose we have two sets of ν mutually exclusive classes,
each having µ terms, and we wish to prove that the sum of
one set has as many terms as the sum of the other. In order to
prove this, we must establish a one-one relation. Now, since
there are in each case ν classes, there is some one-one relation
between the two sets of classes; but what we want is a one-one
relation between their terms. Let us consider some one-one
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relation S between the classes. Then if κ and λ are the two sets
of classes, and α is some member of κ, there will be a member
β of λ which will be the correlate of α with respect to S. Now α
and β each have µ terms, and are therefore similar. There are,
accordingly, one-one correlations of α and β. The trouble is
that there are so many. In order to obtain a one-one correlation
of the sum of κ with the sum of λ, we have to pick out one
correlator of α with β, and similarly for every other pair. This
requires a selection from a set of classes | of correlators, one
class of the set being all the one-one correlators of α with β.
If κ and λ are infinite, we cannot in general know that such
a selection exists, unless we can know that the multiplicative
axiom is true. Hence we cannot establish the usual kind of
connection between addition and multiplication.

This fact has various curious consequences. To begin with,
we know that ℵ = ℵ × ℵ = ℵ. It is commonly inferred
from this that the sum of ℵ classes each having ℵ members
must itself have ℵ members, but this inference is fallacious,
since we do not know that the number of terms in such a sum
is ℵ × ℵ, nor consequently that it is ℵ. This has a bearing
upon the theory of transfinite ordinals. It is easy to prove that
an ordinal which has ℵ predecessors must be one of what
Cantor calls the “second class,” i.e. such that a series having
this ordinal number will have ℵ terms in its field. It is also
easy to see that, if we take any progression of ordinals of the
second class, the predecessors of their limit form at most the
sum of ℵ classes each having ℵ terms. It is inferred thence—
fallaciously, unless the multiplicative axiom is true—that the
predecessors of the limit are ℵ in number, and therefore that
the limit is a number of the “second class.” That is to say, it is
supposed to be proved that any progression of ordinals of the
second class has a limit which is again an ordinal of the second
class. This proposition, with the corollary that ω (the smallest
ordinal of the third class) is not the limit of any progression,
is involved in most of the recognised theory of ordinals of the
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second class. In view of the way in which the multiplicative
axiom is involved, the proposition and its corollary cannot be
regarded as proved. They may be true, or they may not. All
that can be said at present is that we do not know. Thus the
greater part of the theory of ordinals of the second class must
be regarded as unproved.

Another illustration may help to make the point clearer.
We know that ×ℵ = ℵ. Hence we might suppose that the
sum of ℵ pairs must have ℵ terms. But this, though we
can prove that it is sometimes the case, cannot be proved to
happen always | unless we assume the multiplicative axiom.
This is illustrated by the millionaire who bought a pair of socks
whenever he bought a pair of boots, and never at any other
time, and who had such a passion for buying both that at last
he had ℵ pairs of boots and ℵ pairs of socks. The problem
is: How many boots had he, and how many socks? One would
naturally suppose that he had twice as many boots and twice as
many socks as he had pairs of each, and that therefore he had
ℵ of each, since that number is not increased by doubling. But
this is an instance of the difficulty, already noted, of connecting
the sum of ν classes each having µ terms with µ×ν. Sometimes
this can be done, sometimes it cannot. In our case it can be
done with the boots, but not with the socks, except by some
very artificial device. The reason for the difference is this:
Among boots we can distinguish right and left, and therefore
we can make a selection of one out of each pair, namely, we can
choose all the right boots or all the left boots; but with socks
no such principle of selection suggests itself, and we cannot
be sure, unless we assume the multiplicative axiom, that there
is any class consisting of one sock out of each pair. Hence the
problem.

We may put the matter in another way. To prove that a class
has ℵ terms, it is necessary and sufficient to find some way of
arranging its terms in a progression. There is no difficulty in
doing this with the boots. The pairs are given as forming an ℵ,
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and therefore as the field of a progression. Within each pair,
take the left boot first and the right second, keeping the order
of the pair unchanged; in this way we obtain a progression
of all the boots. But with the socks we shall have to choose
arbitrarily, with each pair, which to put first; and an infinite
number of arbitrary choices is an impossibility. Unless we can
find a rule for selecting, i.e. a relation which is a selector, we
do not know that a selection is even theoretically possible. Of
course, in the case of objects in space, like socks, we always
can find some principle of selection. For example, take the
centres of mass of the socks: there will be points p in space
such that, with any | pair, the centres of mass of the two socks
are not both at exactly the same distance from p; thus we can
choose, from each pair, that sock which has its centre of mass
nearer to p. But there is no theoretical reason why a method of
selection such as this should always be possible, and the case of
the socks, with a little goodwill on the part of the reader, may
serve to show how a selection might be impossible.

It is to be observed that, if it were impossible to select one
out of each pair of socks, it would follow that the socks could
not be arranged in a progression, and therefore that there were
not ℵ of them. This case illustrates that, if µ is an infinite
number, one set of µ pairs may not contain the same number
of terms as another set of µ pairs; for, given ℵ pairs of boots,
there are certainly ℵ boots, but we cannot be sure of this in the
case of the socks unless we assume the multiplicative axiom or
fall back upon some fortuitous geometrical method of selection
such as the above.

Another important problem involving the multiplicative
axiom is the relation of reflexiveness to non-inductiveness. It
will be remembered that in Chapter VIII. we pointed out that a
reflexive number must be non-inductive, but that the converse
(so far as is known at present) can only be proved if we assume
the multiplicative axiom. The way in which this comes about is
as follows:—
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It is easy to prove that a reflexive class is one which contains
sub-classes having ℵ terms. (The class may, of course, itself
have ℵ terms.) Thus we have to prove, if we can, that, given
any non-inductive class, it is possible to choose a progression
out of its terms. Now there is no difficulty in showing that
a non-inductive class must contain more terms than any in-
ductive class, or, what comes to the same thing, that if α is a
non-inductive class and ν is any inductive number, there are
sub-classes of α that have ν terms. Thus we can form sets of
finite sub-classes of α: First one class having no terms, then
classes having  term (as many as there are members of α), then
classes having |  terms, and so on. We thus get a progression
of sets of sub-classes, each set consisting of all those that have
a certain given finite number of terms. So far we have not used
the multiplicative axiom, but we have only proved that the
number of collections of sub-classes of α is a reflexive number,
i.e. that, if µ is the number of members of α, so that µ is the
number of sub-classes of α and 

µ
is the number of collections

of sub-classes, then, provided µ is not inductive, 
µ

must be
reflexive. But this is a long way from what we set out to prove.

In order to advance beyond this point, we must employ the
multiplicative axiom. From each set of sub-classes let us choose
out one, omitting the sub-class consisting of the null-class
alone. That is to say, we select one sub-class containing one
term, α, say; one containing two terms, α, say; one containing
three, α, say; and so on. (We can do this if the multiplicative
axiom is assumed; otherwise, we do not know whether we can
always do it or not.) We have now a progression α, α, α, . . .
of sub-classes of α, instead of a progression of collections of
sub-classes; thus we are one step nearer to our goal. We now
know that, assuming the multiplicative axiom, if µ is a non-
inductive number, µ must be a reflexive number.

The next step is to notice that, although we cannot be sure
that new members of α come in at any one specified stage in the
progression α, α, α, . . . we can be sure that new members
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keep on coming in from time to time. Let us illustrate. The
class α, which consists of one term, is a new beginning; let
the one term be x. The class α, consisting of two terms, may
or may not contain x; if it does, it introduces one new term;
and if it does not, it must introduce two new terms, say x, x.
In this case it is possible that α consists of x, x, x, and so
introduces no new terms, but in that case α must introduce a
new term. The first ν classes α, α, α, . . . αν contain, at the
very most,  +  +  + . . . + ν terms, i.e. ν(ν + )/ terms; thus
it would be possible, if there were no repetitions in the first ν
classes, to go on with only repetitions from the (ν + )th | class
to the ν(ν + )/th class. But by that time the old terms would
no longer be sufficiently numerous to form a next class with
the right number of members, i.e. ν(ν + )/+ , therefore new
terms must come in at this point if not sooner. It follows that,
if we omit from our progression α, α, α, . . . all those classes
that are composed entirely of members that have occurred in
previous classes, we shall still have a progression. Let our new
progression be called β, β, β . . . (We shall have α = β and
α = β, because α and α must introduce new terms. We may
or may not have α = β, but, speaking generally, βµ will be αν ,
where ν is some number greater than µ; i.e. the β’s are some
of the α’s.) Now these β’s are such that any one of them, say
βµ, contains members which have not occurred in any of the
previous β’s. Let γµ be the part of βµ which consists of new
members. Thus we get a new progression γ, γ, γ, . . . (Again
γ will be identical with β and with α; if α does not contain
the one member of α, we shall have γ = β = α, but if α does
contain this one member, γ will consist of the other member of
α.) This new progression of γ ’s consists of mutually exclusive
classes. Hence a selection from them will be a progression;
i.e. if x is the member of γ, x is a member of γ, x is a
member of γ, and so on; then x, x, x, . . . is a progression,
and is a sub-class of α. Assuming the multiplicative axiom,
such a selection can be made. Thus by twice using this axiom
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we can prove that, if the axiom is true, every non-inductive
cardinal must be reflexive. This could also be deduced from
Zermelo’s theorem, that, if the axiom is true, every class can be
well-ordered; for a well-ordered series must have either a finite
or a reflexive number of terms in its field.

There is one advantage in the above direct argument, as
against deduction from Zermelo’s theorem, that the above argu-
ment does not demand the universal truth of the multiplicative
axiom, but only its truth as applied to a set of ℵ classes. It
may happen that the axiom holds for ℵ classes, though not
for larger numbers of classes. For this reason it is better, when
| it is possible, to content ourselves with the more restricted
assumption. The assumption made in the above direct argu-
ment is that a product of ℵ factors is never zero unless one of
the factors is zero. We may state this assumption in the form:
“ℵ is a multipliable number,” where a number ν is defined as
“multipliable” when a product of ν factors is never zero unless
one of the factors is zero. We can prove that a finite number
is always multipliable, but we cannot prove that any infinite
number is so. The multiplicative axiom is equivalent to the
assumption that all cardinal numbers are multipliable. But
in order to identify the reflexive with the non-inductive, or to
deal with the problem of the boots and socks, or to show that
any progression of numbers of the second class is of the second
class, we only need the very much smaller assumption that ℵ
is multipliable.

It is not improbable that there is much to be discovered in
regard to the topics discussed in the present chapter. Cases
may be found where propositions which seem to involve the
multiplicative axiom can be proved without it. It is conceivable
that the multiplicative axiom in its general form may be shown
to be false. From this point of view, Zermelo’s theorem offers the
best hope: the continuum or some still more dense series might
be proved to be incapable of having its terms well-ordered,
which would prove the multiplicative axiom false, in virtue of
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Zermelo’s theorem. But so far, no method of obtaining such
results has been discovered, and the subject remains wrapped
in obscurity.

CHAPTER XIII

THE AXIOM OF INFINITY AND
LOGICAL TYPES

The axiom of infinity is an assumption which may be enunci-
ated as follows:—

“If n be any inductive cardinal number, there is at least one
class of individuals having n terms.”

If this is true, it follows, of course, that there are many
classes of individuals having n terms, and that the total number
of individuals in the world is not an inductive number. For, by
the axiom, there is at least one class having n+  terms, from
which it follows that there are many classes of n terms and that
n is not the number of individuals in the world. Since n is any
inductive number, it follows that the number of individuals
in the world must (if our axiom be true) exceed any inductive
number. In view of what we found in the preceding chapter,
about the possibility of cardinals which are neither inductive
nor reflexive, we cannot infer from our axiom that there are
at least ℵ individuals, unless we assume the multiplicative
axiom. But we do know that there are at least ℵ classes of
classes, since the inductive cardinals are classes of classes, and
form a progression if our axiom is true.

The way in which the need for this axiom arises may be
explained as follows. One of Peano’s assumptions is that no two
inductive cardinals have the same successor, i.e. that we shall
not have m+  = n+  unless m = n, if m and n are inductive
cardinals. In Chapter VIII. we had occasion to use what is
virtually the same as the above assumption of Peano’s, namely,





 Introduction to Mathematical Philosophy

that, if n is an inductive cardinal, | n is not equal to n + . It
might be thought that this could be proved. We can prove that,
if α is an inductive class, and n is the number of members of α,
then n is not equal to n+ . This proposition is easily proved
by induction, and might be thought to imply the other. But in
fact it does not, since there might be no such class as α. What it
does imply is this: If n is an inductive cardinal such that there
is at least one class having n members, then n is not equal to
n+. The axiom of infinity assures us (whether truly or falsely)
that there are classes having n members, and thus enables us
to assert that n is not equal to n+ . But without this axiom we
should be left with the possibility that n and n+ might both
be the null-class.

Let us illustrate this possibility by an example: Suppose
there were exactly nine individuals in the world. (As to what
is meant by the word “individual,” I must ask the reader to be
patient.) Then the inductive cardinals from  up to  would
be such as we expect, but  (defined as  + ) would be the
null-class. It will be remembered that n+ may be defined as
follows: n+  is the collection of all those classes which have a
term x such that, when x is taken away, there remains a class of
n terms. Now applying this definition, we see that, in the case
supposed, +  is a class consisting of no classes, i.e. it is the
null-class. The same will be true of + , or generally of +n,
unless n is zero. Thus  and all subsequent inductive cardinals
will all be identical, since they will all be the null-class. In such
a case the inductive cardinals will not form a progression, nor
will it be true that no two have the same successor, for  and 
will both be succeeded by the null-class ( being itself the null-
class). It is in order to prevent such arithmetical catastrophes
that we require the axiom of infinity.

As a matter of fact, so long as we are content with the arith-
metic of finite integers, and do not introduce either infinite
integers or infinite classes or series of finite integers or ratios,
it is possible to obtain all desired results without the axiom
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of infinity. That is to say, we can deal with the addition, |
multiplication, and exponentiation of finite integers and of

ratios, but we cannot deal with infinite integers or with irra-
tionals. Thus the theory of the transfinite and the theory of real
numbers fails us. How these various results come about must
now be explained.

Assuming that the number of individuals in the world is
n, the number of classes of individuals will be n. This is in
virtue of the general proposition mentioned in Chapter VIII.
that the number of classes contained in a class which has n
members is n. Now n is always greater than n. Hence the
number of classes in the world is greater than the number of
individuals. If, now, we suppose the number of individuals
to be , as we did just now, the number of classes will be ,
i.e. . Thus if we take our numbers as being applied to the
counting of classes instead of to the counting of individuals,
our arithmetic will be normal until we reach : the first
number to be null will be . And if we advance to classes of
classes we shall do still better: the number of them will be ,
a number which is so large as to stagger imagination, since it
has about  digits. And if we advance to classes of classes
of classes, we shall obtain a number represented by  raised
to a power which has about  digits; the number of digits
in this number will be about three times . In a time of
paper shortage it is undesirable to write out this number, and
if we want larger ones we can obtain them by travelling further
along the logical hierarchy. In this way any assigned inductive
cardinal can be made to find its place among numbers which
are not null, merely by travelling along the hierarchy for a
sufficient distance.

As regards ratios, we have a very similar state of affairs.
If a ratio µ/ν is to have the expected properties, there must

On this subject see Principia Mathematica, vol. ii. ∗ff. On the corre-
sponding problems as regards ratio, see ibid., vol. iii. ∗ff.
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be enough objects of whatever sort is being counted to insure
that the null-class does not suddenly obtrude itself. But this
can be insured, for any given ratio µ/ν, without the axiom of
| infinity, by merely travelling up the hierarchy a sufficient
distance. If we cannot succeed by counting individuals, we can
try counting classes of individuals; if we still do not succeed,
we can try classes of classes, and so on. Ultimately, however few
individuals there may be in the world, we shall reach a stage
where there are many more than µ objects, whatever inductive
number µ may be. Even if there were no individuals at all, this
would still be true, for there would then be one class, namely,
the null-class,  classes of classes (namely, the null-class of
classes and the class whose only member is the null-class of
individuals),  classes of classes of classes,  at the next stage,
, at the next stage, and so on. Thus no such assumption
as the axiom of infinity is required in order to reach any given
ratio or any given inductive cardinal.

It is when we wish to deal with the whole class or series of
inductive cardinals or of ratios that the axiom is required. We
need the whole class of inductive cardinals in order to establish
the existence of ℵ, and the whole series in order to establish
the existence of progressions: for these results, it is necessary
that we should be able to make a single class or series in which
no inductive cardinal is null. We need the whole series of
ratios in order of magnitude in order to define real numbers as
segments: this definition will not give the desired result unless
the series of ratios is compact, which it cannot be if the total
number of ratios, at the stage concerned, is finite.

It would be natural to suppose—as I supposed myself in
former days—that, by means of constructions such as we have
been considering, the axiom of infinity could be proved. It may
be said: Let us assume that the number of individuals is n,
where n may be  without spoiling our argument; then if we
form the complete set of individuals, classes, classes of classes,
etc., all taken together, the number of terms in our whole set
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will be

n+ n + 
n
. . . ad inf.,

which is ℵ. Thus taking all kinds of objects together, and
not | confining ourselves to objects of any one type, we shall
certainly obtain an infinite class, and shall therefore not need
the axiom of infinity. So it might be said.

Now, before going into this argument, the first thing to ob-
serve is that there is an air of hocus-pocus about it: something
reminds one of the conjurer who brings things out of the hat.
The man who has lent his hat is quite sure there wasn’t a live
rabbit in it before, but he is at a loss to say how the rabbit got
there. So the reader, if he has a robust sense of reality, will feel
convinced that it is impossible to manufacture an infinite col-
lection out of a finite collection of individuals, though he may
be unable to say where the flaw is in the above construction.
It would be a mistake to lay too much stress on such feelings
of hocus-pocus; like other emotions, they may easily lead us
astray. But they afford a prima facie ground for scrutinising
very closely any argument which arouses them. And when the
above argument is scrutinised it will, in my opinion, be found
to be fallacious, though the fallacy is a subtle one and by no
means easy to avoid consistently.

The fallacy involved is the fallacy which may be called
“confusion of types.” To explain the subject of “types” fully
would require a whole volume; moreover, it is the purpose of
this book to avoid those parts of the subjects which are still
obscure and controversial, isolating, for the convenience of
beginners, those parts which can be accepted as embodying
mathematically ascertained truths. Now the theory of types
emphatically does not belong to the finished and certain part
of our subject: much of this theory is still inchoate, confused,
and obscure. But the need of some doctrine of types is less
doubtful than the precise form the doctrine should take; and
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in connection with the axiom of infinity it is particularly easy
to see the necessity of some such doctrine.

This necessity results, for example, from the “contradiction
of the greatest cardinal.” We saw in Chapter VIII. that the
number of classes contained in a given class is always greater
than the | number of members of the class, and we inferred
that there is no greatest cardinal number. But if we could,
as we suggested a moment ago, add together into one class
the individuals, classes of individuals, classes of classes of
individuals, etc., we should obtain a class of which its own sub-
classes would be members. The class consisting of all objects
that can be counted, of whatever sort, must, if there be such
a class, have a cardinal number which is the greatest possible.
Since all its sub-classes will be members of it, there cannot be
more of them than there are members. Hence we arrive at a
contradiction.

When I first came upon this contradiction, in the year ,
I attempted to discover some flaw in Cantor’s proof that there
is no greatest cardinal, which we gave in Chapter VIII. Apply-
ing this proof to the supposed class of all imaginable objects,
I was led to a new and simpler contradiction, namely, the
following:—

The comprehensive class we are considering, which is to
embrace everything, must embrace itself as one of its members.
In other words, if there is such a thing as “everything,” then
“everything” is something, and is a member of the class “every-
thing.” But normally a class is not a member of itself. Mankind,
for example, is not a man. Form now the assemblage of all
classes which are not members of themselves. This is a class:
is it a member of itself or not? If it is, it is one of those classes
that are not members of themselves, i.e. it is not a member
of itself. If it is not, it is not one of those classes that are not
members of themselves, i.e. it is a member of itself. Thus of
the two hypotheses—that it is, and that it is not, a member of
itself—each implies its contradictory. This is a contradiction.
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There is no difficulty in manufacturing similar contradic-
tions ad lib. The solution of such contradictions by the theory
of types is set forth fully in Principia Mathematica, and also,
more briefly, in articles by the present author in the American
Journal | of Mathematics and in the Revue de Métaphysique et
de Morale. For the present an outline of the solution must
suffice.

The fallacy consists in the formation of what we may call
“impure” classes, i.e. classes which are not pure as to “type.”
As we shall see in a later chapter, classes are logical fictions,
and a statement which appears to be about a class will only be
significant if it is capable of translation into a form in which no
mention is made of the class. This places a limitation upon the
ways in which what are nominally, though not really, names for
classes can occur significantly: a sentence or set of symbols in
which such pseudo-names occur in wrong ways is not false, but
strictly devoid of meaning. The supposition that a class is, or
that it is not, a member of itself is meaningless in just this way.
And more generally, to suppose that one class of individuals is
a member, or is not a member, of another class of individuals
will be to suppose nonsense; and to construct symbolically
any class whose members are not all of the same grade in the
logical hierarchy is to use symbols in a way which makes them
no longer symbolise anything.

Thus if there are n individuals in the world, and n classes
of individuals, we cannot form a new class, consisting of both
individuals and classes and having n+n members. In this way
the attempt to escape from the need for the axiom of infinity
breaks down. I do not pretend to have explained the doctrine of
types, or done more than indicate, in rough outline, why there
is need of such a doctrine. I have aimed only at saying just so

Vol. i., Introduction, chap. ii., ∗ and ∗; vol. ii., Prefatory Statement.
“Mathematical Logic as based on the Theory of Types,” vol. xxx., ,

pp. –.
“Les paradoxes de la logique,” , pp. –.
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much as was required in order to show that we cannot prove
the existence of infinite numbers and classes by such conjurer’s
methods as we have been examining. There remain, however,
certain other possible methods which must be considered.

Various arguments professing to prove the existence of infi-
nite classes are given in the Principles of Mathematics, § (p.
). | In so far as these arguments assume that, if n is an in-
ductive cardinal, n is not equal to n+ , they have been already
dealt with. There is an argument, suggested by a passage in
Plato’s Parmenides, to the effect that, if there is such a number
as , then  has being; but  is not identical with being, and
therefore  and being are two, and therefore there is such a
number as , and  together with  and being gives a class
of three terms, and so on. This argument is fallacious, partly
because “being” is not a term having any definite meaning, and
still more because, if a definite meaning were invented for it, it
would be found that numbers do not have being—they are, in
fact, what are called “logical fictions,” as we shall see when we
come to consider the definition of classes.

The argument that the number of numbers from  to n (both
inclusive) is n+  depends upon the assumption that up to and
including n no number is equal to its successor, which, as we
have seen, will not be always true if the axiom of infinity is
false. It must be understood that the equation n = n+ , which
might be true for a finite n if n exceeded the total number
of individuals in the world, is quite different from the same
equation as applied to a reflexive number. As applied to a
reflexive number, it means that, given a class of n terms, this
class is “similar” to that obtained by adding another term. But
as applied to a number which is too great for the actual world,
it merely means that there is no class of n individuals, and no
class of n+  individuals; it does not mean that, if we mount
the hierarchy of types sufficiently far to secure the existence
of a class of n terms, we shall then find this class “similar” to
one of n+  terms, for if n is inductive this will not be the case,
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quite independently of the truth or falsehood of the axiom of
infinity.

There is an argument employed by both Bolzano and Dede-
kind to prove the existence of reflexive classes. The argument,
in brief, is this: An object is not identical with the idea of the
| object, but there is (at least in the realm of being) an idea of
any object. The relation of an object to the idea of it is one-one,
and ideas are only some among objects. Hence the relation
“idea of” constitutes a reflexion of the whole class of objects
into a part of itself, namely, into that part which consists of
ideas. Accordingly, the class of objects and the class of ideas
are both infinite. This argument is interesting, not only on its
own account, but because the mistakes in it (or what I judge to
be mistakes) are of a kind which it is instructive to note. The
main error consists in assuming that there is an idea of every
object. It is, of course, exceedingly difficult to decide what is
meant by an “idea”; but let us assume that we know. We are
then to suppose that, starting (say) with Socrates, there is the
idea of Socrates, and then the idea of the idea of Socrates, and
so on ad inf. Now it is plain that this is not the case in the sense
that all these ideas have actual empirical existence in people’s
minds. Beyond the third or fourth stage they become mythical.
If the argument is to be upheld, the “ideas” intended must be
Platonic ideas laid up in heaven, for certainly they are not on
earth. But then it at once becomes doubtful whether there are
such ideas. If we are to know that there are, it must be on the
basis of some logical theory, proving that it is necessary to a
thing that there should be an idea of it. We certainly cannot
obtain this result empirically, or apply it, as Dedekind does, to
“meine Gedankenwelt”—the world of my thoughts.

If we were concerned to examine fully the relation of idea
and object, we should have to enter upon a number of psycho-

Bolzano, Paradoxien des Unendlichen, .
Dedekind, Was sind und was sollen die Zahlen? No. .



 Introduction to Mathematical Philosophy

logical and logical inquiries, which are not relevant to our main
purpose. But a few further points should be noted. If “idea” is
to be understood logically, it may be identical with the object,
or it may stand for a description (in the sense to be explained in
a subsequent chapter). In the former case the argument fails,
because it was essential to the proof of reflexiveness that object
and idea should be distinct. In the second case the argument
also fails, because the relation of object and description is not
| one-one: there are innumerable correct descriptions of any
given object. Socrates (e.g.) may be described as “the master
of Plato,” or as “the philosopher who drank the hemlock,” or
as “the husband of Xantippe.” If—to take up the remaining
hypothesis—“idea” is to be interpreted psychologically, it must
be maintained that there is not any one definite psychological
entity which could be called the idea of the object: there are in-
numerable beliefs and attitudes, each of which could be called
an idea of the object in the sense in which we might say “my
idea of Socrates is quite different from yours,” but there is not
any central entity (except Socrates himself) to bind together
various “ideas of Socrates,” and thus there is not any such one-
one relation of idea and object as the argument supposes. Nor,
of course, as we have already noted, is it true psychologically
that there are ideas (in however extended a sense) of more than
a tiny proportion of the things in the world. For all these rea-
sons, the above argument in favour of the logical existence of
reflexive classes must be rejected.

It might be thought that, whatever may be said of logical
arguments, the empirical arguments derivable from space and
time, the diversity of colours, etc., are quite sufficient to prove
the actual existence of an infinite number of particulars. I
do not believe this. We have no reason except prejudice for
believing in the infinite extent of space and time, at any rate
in the sense in which space and time are physical facts, not
mathematical fictions. We naturally regard space and time as
continuous, or, at least, as compact; but this again is mainly
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prejudice. The theory of “quanta” in physics, whether true or
false, illustrates the fact that physics can never afford proof
of continuity, though it might quite possibly afford disproof.
The senses are not sufficiently exact to distinguish between con-
tinuous motion and rapid discrete succession, as anyone may
discover in a cinema. A world in which all motion consisted
of a series of small finite jerks would be empirically indistin-
guishable from one in which motion was continuous. It would
take up too much space to | defend these theses adequately;
for the present I am merely suggesting them for the reader’s
consideration. If they are valid, it follows that there is no em-
pirical reason for believing the number of particulars in the
world to be infinite, and that there never can be; also that there
is at present no empirical reason to believe the number to be
finite, though it is theoretically conceivable that some day there
might be evidence pointing, though not conclusively, in that
direction.

From the fact that the infinite is not self-contradictory, but is
also not demonstrable logically, we must conclude that nothing
can be known a priori as to whether the number of things in the
world is finite or infinite. The conclusion is, therefore, to adopt
a Leibnizian phraseology, that some of the possible worlds are
finite, some infinite, and we have no means of knowing to
which of these two kinds our actual world belongs. The axiom
of infinity will be true in some possible worlds and false in
others; whether it is true or false in this world, we cannot tell.

Throughout this chapter the synonyms “individual” and
“particular” have been used without explanation. It would
be impossible to explain them adequately without a longer
disquisition on the theory of types than would be appropriate
to the present work, but a few words before we leave this
topic may do something to diminish the obscurity which would
otherwise envelop the meaning of these words.

In an ordinary statement we can distinguish a verb, ex-
pressing an attribute or relation, from the substantives which
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express the subject of the attribute or the terms of the relation.
“Cæsar lived” ascribes an attribute to Cæsar; “Brutus killed
Cæsar” expresses a relation between Brutus and Cæsar. Using
the word “subject” in a generalised sense, we may call both
Brutus and Cæsar subjects of this proposition: the fact that
Brutus is grammatically subject and Cæsar object is logically
irrelevant, since the same occurrence may be expressed in the
words “Cæsar was killed by Brutus,” where Cæsar is the gram-
matical subject. | Thus in the simpler sort of proposition we
shall have an attribute or relation holding of or between one,
two or more “subjects” in the extended sense. (A relation may
have more than two terms: e.g. “A gives B to C” is a relation of
three terms.) Now it often happens that, on a closer scrutiny,
the apparent subjects are found to be not really subjects, but to
be capable of analysis; the only result of this, however, is that
new subjects take their places. It also happens that the verb
may grammatically be made subject: e.g. we may say, “Killing
is a relation which holds between Brutus and Cæsar.” But in
such cases the grammar is misleading, and in a straightforward
statement, following the rules that should guide philosophical
grammar, Brutus and Cæsar will appear as the subjects and
killing as the verb.

We are thus led to the conception of terms which, when they
occur in propositions, can only occur as subjects, and never in
any other way. This is part of the old scholastic definition of
substance; but persistence through time, which belonged to
that notion, forms no part of the notion with which we are
concerned. We shall define “proper names” as those terms
which can only occur as subjects in propositions (using “subject”
in the extended sense just explained). We shall further define
“individuals” or “particulars” as the objects that can be named
by proper names. (It would be better to define them directly,
rather than by means of the kind of symbols by which they are
symbolised; but in order to do that we should have to plunge
deeper into metaphysics than is desirable here.) It is, of course,
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possible that there is an endless regress: that whatever appears
as a particular is really, on closer scrutiny, a class or some kind
of complex. If this be the case, the axiom of infinity must of
course be true. But if it be not the case, it must be theoretically
possible for analysis to reach ultimate subjects, and it is these
that give the meaning of “particulars” or “individuals.” It is
to the number of these that the axiom of infinity is assumed to
apply. If it is true of them, it is true | of classes of them, and
classes of classes of them, and so on; similarly if it is false of
them, it is false throughout this hierarchy. Hence it is natural to
enunciate the axiom concerning them rather than concerning
any other stage in the hierarchy. But whether the axiom is true
or false, there seems no known method of discovering.



CHAPTER XIV

INCOMPATIBILITY AND THE THEORY
OF DEDUCTION

 We have now explored, somewhat hastily it is true, that part of
the philosophy of mathematics which does not demand a criti-
cal examination of the idea of class. In the preceding chapter,
however, we found ourselves confronted by problems which
make such an examination imperative. Before we can under-
take it, we must consider certain other parts of the philosophy
of mathematics, which we have hitherto ignored. In a synthetic
treatment, the parts which we shall now be concerned with
come first: they are more fundamental than anything that we
have discussed hitherto. Three topics will concern us before we
reach the theory of classes, namely: () the theory of deduction,
() propositional functions, () descriptions. Of these, the third
is not logically presupposed in the theory of classes, but it is a
simpler example of the kind of theory that is needed in dealing
with classes. It is the first topic, the theory of deduction, that
will concern us in the present chapter.

Mathematics is a deductive science: starting from certain
premisses, it arrives, by a strict process of deduction, at the
various theorems which constitute it. It is true that, in the
past, mathematical deductions were often greatly lacking in
rigour; it is true also that perfect rigour is a scarcely attainable
ideal. Nevertheless, in so far as rigour is lacking in a mathe-
matical proof, the proof is defective; it is no defence to urge
that common sense shows the result to be correct, for if we
were to rely upon that, it would be better to dispense with


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argument altogether, | rather than bring fallacy to the rescue of
common sense. No appeal to common sense, or “intuition,” or
anything except strict deductive logic, ought to be needed in
mathematics after the premisses have been laid down.

Kant, having observed that the geometers of his day could
not prove their theorems by unaided argument, but required
an appeal to the figure, invented a theory of mathematical rea-
soning according to which the inference is never strictly logical,
but always requires the support of what is called “intuition.”
The whole trend of modern mathematics, with its increased
pursuit of rigour, has been against this Kantian theory. The
things in the mathematics of Kant’s day which cannot be proved,
cannot be known—for example, the axiom of parallels. What
can be known, in mathematics and by mathematical methods, is
what can be deduced from pure logic. What else is to belong to
human knowledge must be ascertained otherwise—empirically,
through the senses or through experience in some form, but
not a priori. The positive grounds for this thesis are to be found
in Principia Mathematica, passim; a controversial defence of it is
given in the Principles of Mathematics. We cannot here do more
than refer the reader to those works, since the subject is too
vast for hasty treatment. Meanwhile, we shall assume that all
mathematics is deductive, and proceed to inquire as to what is
involved in deduction.

In deduction, we have one or more propositions called pre-
misses, from which we infer a proposition called the conclusion.
For our purposes, it will be convenient, when there are orig-
inally several premisses, to amalgamate them into a single
proposition, so as to be able to speak of the premiss as well as
of the conclusion. Thus we may regard deduction as a process
by which we pass from knowledge of a certain proposition,
the premiss, to knowledge of a certain other proposition, the
conclusion. But we shall not regard such a process as logical
deduction unless it is correct, i.e. unless there is such a rela-
tion between premiss and conclusion that we have a right to
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believe the conclusion | if we know the premiss to be true. It is
this relation that is chiefly of interest in the logical theory of
deduction.

In order to be able validly to infer the truth of a proposition,
we must know that some other proposition is true, and that
there is between the two a relation of the sort called “implica-
tion,” i.e. that (as we say) the premiss “implies” the conclusion.
(We shall define this relation shortly.) Or we may know that a
certain other proposition is false, and that there is a relation
between the two of the sort called “disjunction,” expressed by
“p or q,” so that the knowledge that the one is false allows us
to infer that the other is true. Again, what we wish to infer may
be the falsehood of some proposition, not its truth. This may be
inferred from the truth of another proposition, provided we
know that the two are “incompatible,” i.e. that if one is true, the
other is false. It may also be inferred from the falsehood of an-
other proposition, in just the same circumstances in which the
truth of the other might have been inferred from the truth of
the one; i.e. from the falsehood of p we may infer the falsehood
of q, when q implies p. All these four are cases of inference.
When our minds are fixed upon inference, it seems natural to
take “implication” as the primitive fundamental relation, since
this is the relation which must hold between p and q if we are
to be able to infer the truth of q from the truth of p. But for
technical reasons this is not the best primitive idea to choose.
Before proceeding to primitive ideas and definitions, let us con-
sider further the various functions of propositions suggested
by the above-mentioned relations of propositions.

The simplest of such functions is the negative, “not-p.” This
is that function of p which is true when p is false, and false
when p is true. It is convenient to speak of the truth of a
proposition, or its falsehood, as its “truth-value”; i.e. truth is

We shall use the letters p, q, r, s, t to denote variable propositions.
This term is due to Frege.
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the “truth-value” of a true proposition, and falsehood of a false
one. Thus not-p has the opposite truth-value to p. |

We may take next disjunction, “p or q.” This is a function
whose truth-value is truth when p is true and also when q is
true, but is falsehood when both p and q are false.

Next we may take conjunction, “p and q.” This has truth
for its truth-value when p and q are both true; otherwise it has
falsehood for its truth-value.

Take next incompatibility, i.e. “p and q are not both true.”
This is the negation of conjunction; it is also the disjunction
of the negations of p and q, i.e. it is “not-p or not-q.” Its truth-
value is truth when p is false and likewise when q is false; its
truth-value is falsehood when p and q are both true.

Last take implication, i.e. “p implies q,” or “if p, then q.”
This is to be understood in the widest sense that will allow
us to infer the truth of q if we know the truth of p. Thus we
interpret it as meaning: “Unless p is false, q is true,” or “either
p is false or q is true.” (The fact that “implies” is capable of
other meanings does not concern us; this is the meaning which
is convenient for us.) That is to say, “p implies q” is to mean
“not-p or q”: its truth-value is to be truth if p is false, likewise if
q is true, and is to be falsehood if p is true and q is false.

We have thus five functions: negation, disjunction, conjunc-
tion, incompatibility, and implication. We might have added
others, for example, joint falsehood, “not-p and not-q,” but the
above five will suffice. Negation differs from the other four
in being a function of one proposition, whereas the others are
functions of two. But all five agree in this, that their truth-value
depends only upon that of the propositions which are their
arguments. Given the truth or falsehood of p, or of p and q (as
the case may be), we are given the truth or falsehood of the
negation, disjunction, conjunction, incompatibility, or impli-
cation. A function of propositions which has this property is
called a “truth-function.”

The whole meaning of a truth-function is exhausted by
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the statement of the circumstances under which it is true or
false. “Not-p,” for example, is simply that function of p which
is true when p is false, and false when p is true: there is no
further | meaning to be assigned to it. The same applies to “p
or q” and the rest. It follows that two truth-functions which
have the same truth-value for all values of the argument are
indistinguishable. For example, “p and q” is the negation of
“not-p or not-q” and vice versa; thus either of these may be
defined as the negation of the other. There is no further meaning
in a truth-function over and above the conditions under which
it is true or false.

It is clear that the above five truth-functions are not all inde-
pendent. We can define some of them in terms of others. There
is no great difficulty in reducing the number to two; the two
chosen in Principia Mathematica are negation and disjunction.
Implication is then defined as “not-p or q”; incompatibility as
“not-p or not-q”; conjunction as the negation of incompatibility.
But it has been shown by Sheffer that we can be content with
one primitive idea for all five, and by Nicod that this enables
us to reduce the primitive propositions required in the theory
of deduction to two non-formal principles and one formal one.
For this purpose, we may take as our one indefinable either
incompatibility or joint falsehood. We will choose the former.

Our primitive idea, now, is a certain truth-function called
“incompatibility,” which we will denote by p/q. Negation can
be at once defined as the incompatibility of a proposition with
itself, i.e. “not-p” is defined as “p/p.” Disjunction is the incom-
patibility of not-p and not-q, i.e. it is (p/p) | (q/q). Implication
is the incompatibility of p and not-q, i.e. p | (q/q). Conjunction
is the negation of incompatibility, i.e. it is (p/q) | (p/q). Thus
all our four other functions are defined in terms of incompati-
bility.

Trans. Am. Math. Soc., vol. xiv. pp. –.
Proc. Camb. Phil. Soc., vol. xix., i., January .
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It is obvious that there is no limit to the manufacture of
truth-functions, either by introducing more arguments or by
repeating arguments. What we are concerned with is the con-
nection of this subject with inference. |

If we know that p is true and that p implies q, we can proceed
to assert q. There is always unavoidably something psychologi-
cal about inference: inference is a method by which we arrive
at new knowledge, and what is not psychological about it is
the relation which allows us to infer correctly; but the actual
passage from the assertion of p to the assertion of q is a psycho-
logical process, and we must not seek to represent it in purely
logical terms.

In mathematical practice, when we infer, we have always
some expression containing variable propositions, say p and q,
which is known, in virtue of its form, to be true for all values
of p and q; we have also some other expression, part of the
former, which is also known to be true for all values of p and
q; and in virtue of the principles of inference, we are able to
drop this part of our original expression, and assert what is left.
This somewhat abstract account may be made clearer by a few
examples.

Let us assume that we know the five formal principles of
deduction enumerated in Principia Mathematica. (M. Nicod has
reduced these to one, but as it is a complicated proposition,
we will begin with the five.) These five propositions are as
follows:—

() “p or p” implies p—i.e. if either p is true or p is true, then
p is true.

() q implies “p or q”—i.e. the disjunction “p or q” is true
when one of its alternatives is true.

() “p or q” implies “q or p.” This would not be required
if we had a theoretically more perfect notation, since in the
conception of disjunction there is no order involved, so that “p
or q” and “q or p” should be identical. But since our symbols,
in any convenient form, inevitably introduce an order, we need
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suitable assumptions for showing that the order is irrelevant.
() If either p is true or “q or r” is true, then either q is true or

“p or r” is true. (The twist in this proposition serves to increase
its deductive power.) |

() If q implies r, then “p or q” implies “p or r.”
These are the formal principles of deduction employed in

Principia Mathematica. A formal principle of deduction has a
double use, and it is in order to make this clear that we have
cited the above five propositions. It has a use as the premiss of
an inference, and a use as establishing the fact that the premiss
implies the conclusion. In the schema of an inference we have
a proposition p, and a proposition “p implies q,” from which
we infer q. Now when we are concerned with the principles of
deduction, our apparatus of primitive propositions has to yield
both the p and the “p implies q” of our inferences. That is to say,
our rules of deduction are to be used, not only as rules, which is
their use for establishing “p implies q,” but also as substantive
premisses, i.e. as the p of our schema. Suppose, for example, we
wish to prove that if p implies q, then if q implies r it follows
that p implies r. We have here a relation of three propositions
which state implications. Put

p = p implies q, p = q implies r, p = p implies r.

Then we have to prove that p implies that p implies p. Now
take the fifth of our above principles, substitute not-p for p,
and remember that “not-p or q” is by definition the same as “p
implies q.” Thus our fifth principle yields:

“If q implies r, then ‘p implies q’ implies ‘p implies r,’” i.e.
“p implies that p implies p.” Call this proposition
A.

But the fourth of our principles, when we substitute not-p,
not-q, for p and q, and remember the definition of implication,
becomes:

Chap. XIV. Incompatibility and the Theory of Deduction 

“If p implies that q implies r, then q implies that p implies
r.”

Writing p in place of p, p in place of q, and p in place of r,
this becomes:

“If p implies that p implies p, then p implies that p
implies p.” Call this B. |

Now we proved by means of our fifth principle that

“p implies that p implies p,” which was what we called
A.

Thus we have here an instance of the schema of inference, since
A represents the p of our scheme, and B represents the “p
implies q.” Hence we arrive at q, namely,

“p implies that p implies p,”

which was the proposition to be proved. In this proof, the
adaptation of our fifth principle, which yields A, occurs as a
substantive premiss; while the adaptation of our fourth princi-
ple, which yields B, is used to give the form of the inference. The
formal and material employments of premisses in the theory of
deduction are closely intertwined, and it is not very important
to keep them separated, provided we realise that they are in
theory distinct.

The earliest method of arriving at new results from a pre-
miss is one which is illustrated in the above deduction, but
which itself can hardly be called deduction. The primitive
propositions, whatever they may be, are to be regarded as as-
serted for all possible values of the variable propositions p, q, r
which occur in them. We may therefore substitute for (say) p
any expression whose value is always a proposition, e.g. not-p,
“s implies t,” and so on. By means of such substitutions we re-
ally obtain sets of special cases of our original proposition, but
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from a practical point of view we obtain what are virtually new
propositions. The legitimacy of substitutions of this kind has to
be insured by means of a non-formal principle of inference.

We may now state the one formal principle of inference
to which M. Nicod has reduced the five given above. For this
purpose we will first show how certain truth-functions can be
defined in terms of incompatibility. We saw already that

p | (q/q) means “p implies q.” |
 We now observe that

p | (q/r) means “p implies both q and r.”

For this expression means “p is incompatible with the incom-
patibility of q and r,” i.e. “p implies that q and r are not in-
compatible,” i.e. “p implies that q and r are both true”—for,
as we saw, the conjunction of q and r is the negation of their
incompatibility.

Observe next that t | (t /t) means “t implies itself.” This is a
particular case of p | (q/q).

Let us write p for the negation of p; thus p/s will mean the
negation of p/s, i.e. it will mean the conjunction of p and s. It
follows that

(s/q) | p/s

expresses the incompatibility of s/q with the conjunction of p
and s; in other words, it states that if p and s are both true, s/q
is false, i.e. s and q are both true; in still simpler words, it states
that p and s jointly imply s and q jointly.

Now, put P = p | (q/r),
π = t | (t /t),

Q = (s/q) | p/s.

No such principle is enunciated in Principia Mathematica or in M.
Nicod’s article mentioned above. But this would seem to be an omission.

Chap. XIV. Incompatibility and the Theory of Deduction 

Then M. Nicod’s sole formal principle of deduction is

P | π/Q,

in other words, P implies both π and Q.
He employs in addition one non-formal principle belonging

to the theory of types (which need not concern us), and one
corresponding to the principle that, given p, and given that p
implies q, we can assert q. This principle is:

“If p | (r /q) is true, and p is true, then q is true.” From this
apparatus the whole theory of deduction follows, except in so
far as we are concerned with deduction from or to the existence
or the universal truth of “propositional functions,” which we
shall consider in the next chapter.

There is, if I am not mistaken, a certain confusion in the |
minds of some authors as to the relation, between propositions,

in virtue of which an inference is valid. In order that it may
be valid to infer q from p, it is only necessary that p should
be true and that the proposition “not-p or q” should be true.
Whenever this is the case, it is clear that q must be true. But
inference will only in fact take place when the proposition
“not-p or q” is known otherwise than through knowledge of
not-p or knowledge of q. Whenever p is false, “not-p or q” is
true, but is useless for inference, which requires that p should
be true. Whenever q is already known to be true, “not-p or
q” is of course also known to be true, but is again useless for
inference, since q is already known, and therefore does not
need to be inferred. In fact, inference only arises when “not-p
or q” can be known without our knowing already which of
the two alternatives it is that makes the disjunction true. Now,
the circumstances under which this occurs are those in which
certain relations of form exist between p and q. For example,
we know that if r implies the negation of s, then s implies the
negation of r. Between “r implies not-s” and “s implies not-r”
there is a formal relation which enables us to know that the
first implies the second, without having first to know that the
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first is false or to know that the second is true. It is under such
circumstances that the relation of implication is practically
useful for drawing inferences.

But this formal relation is only required in order that we
may be able to know that either the premiss is false or the con-
clusion is true. It is the truth of “not-p or q” that is required
for the validity of the inference; what is required further is only
required for the practical feasibility of the inference. Professor
C. I. Lewis has especially studied the narrower, formal rela-
tion which we may call “formal deducibility.” He urges that
the wider relation, that expressed by “not-p or q,” should not
be called “implication.” That is, however, a matter of words. |

 Provided our use of words is consistent, it matters little how
we define them. The essential point of difference between the
theory which I advocate and the theory advocated by Professor
Lewis is this: He maintains that, when one proposition q is
“formally deducible” from another p, the relation which we
perceive between them is one which he calls “strict implica-
tion,” which is not the relation expressed by “not-p or q” but a
narrower relation, holding only when there are certain formal
connections between p and q. I maintain that, whether or not
there be such a relation as he speaks of, it is in any case one
that mathematics does not need, and therefore one that, on
general grounds of economy, ought not to be admitted into our
apparatus of fundamental notions; that, whenever the relation
of “formal deducibility” holds between two propositions, it
is the case that we can see that either the first is false or the
second true, and that nothing beyond this fact is necessary to
be admitted into our premisses; and that, finally, the reasons of
detail which Professor Lewis adduces against the view which I
advocate can all be met in detail, and depend for their plausi-
bility upon a covert and unconscious assumption of the point

See Mind, vol. xxi., , pp. –; and vol. xxiii., , pp. –
.
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of view which I reject. I conclude, therefore, that there is no
need to admit as a fundamental notion any form of implication
not expressible as a truth-function.



CHAPTER XV

PROPOSITIONAL FUNCTIONS

 When, in the preceding chapter, we were discussing propo-
sitions, we did not attempt to give a definition of the word
“proposition.” But although the word cannot be formally de-
fined, it is necessary to say something as to its meaning, in
order to avoid the very common confusion with “propositional
functions,” which are to be the topic of the present chapter.

We mean by a “proposition” primarily a form of words
which expresses what is either true or false. I say “primarily,”
because I do not wish to exclude other than verbal symbols, or
even mere thoughts if they have a symbolic character. But I
think the word “proposition” should be limited to what may, in
some sense, be called “symbols,” and further to such symbols
as give expression to truth and falsehood. Thus “two and two
are four” and “two and two are five” will be propositions, and
so will “Socrates is a man” and “Socrates is not a man.” The
statement: “Whatever numbers a and b may be, (a + b) =
a + ab+ b” is a proposition; but the bare formula “(a+ b) =
a + ab + b” alone is not, since it asserts nothing definite
unless we are further told, or led to suppose, that a and b
are to have all possible values, or are to have such-and-such
values. The former of these is tacitly assumed, as a rule, in
the enunciation of mathematical formulæ, which thus become
propositions; but if no such assumption were made, they would
be “propositional functions.” A “propositional function,” in
fact, is an expression containing one or more undetermined


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constituents, | such that, when values are assigned to these
constituents, the expression becomes a proposition. In other
words, it is a function whose values are propositions. But
this latter definition must be used with caution. A descriptive
function, e.g. “the hardest proposition in A’s mathematical
treatise,” will not be a propositional function, although its
values are propositions. But in such a case the propositions are
only described: in a propositional function, the values must
actually enunciate propositions.

Examples of propositional functions are easy to give: “x
is human” is a propositional function; so long as x remains
undetermined, it is neither true nor false, but when a value
is assigned to x it becomes a true or false proposition. Any
mathematical equation is a propositional function. So long as
the variables have no definite value, the equation is merely an
expression awaiting determination in order to become a true or
false proposition. If it is an equation containing one variable, it
becomes true when the variable is made equal to a root of the
equation, otherwise it becomes false; but if it is an “identity”
it will be true when the variable is any number. The equation
to a curve in a plane or to a surface in space is a propositional
function, true for values of the co-ordinates belonging to points
on the curve or surface, false for other values. Expressions of
traditional logic such as “all A is B” are propositional functions:
A and B have to be determined as definite classes before such
expressions become true or false.

The notion of “cases” or “instances” depends upon propo-
sitional functions. Consider, for example, the kind of process
suggested by what is called “generalisation,” and let us take
some very primitive example, say, “lightning is followed by
thunder.” We have a number of “instances” of this, i.e. a num-
ber of propositions such as: “this is a flash of lightning and is
followed by thunder.” What are these occurrences “instances”
of? They are instances of the propositional function: “If x is
a flash of lightning, x is followed by thunder.” The process
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of generalisation (with whose validity we are | fortunately not
concerned) consists in passing from a number of such instances
to the universal truth of the propositional function: “If x is a
flash of lightning, x is followed by thunder.” It will be found
that, in an analogous way, propositional functions are always
involved whenever we talk of instances or cases or examples.

We do not need to ask, or attempt to answer, the question:
“What is a propositional function?” A propositional function
standing all alone may be taken to be a mere schema, a mere
shell, an empty receptacle for meaning, not something already
significant. We are concerned with propositional functions,
broadly speaking, in two ways: first, as involved in the notions
“true in all cases” and “true in some cases”; secondly, as in-
volved in the theory of classes and relations. The second of
these topics we will postpone to a later chapter; the first must
occupy us now.

When we say that something is “always true” or “true in
all cases,” it is clear that the “something” involved cannot be a
proposition. A proposition is just true or false, and there is an
end of the matter. There are no instances or cases of “Socrates
is a man” or “Napoleon died at St Helena.” These are proposi-
tions, and it would be meaningless to speak of their being true
“in all cases.” This phrase is only applicable to propositional
functions. Take, for example, the sort of thing that is often said
when causation is being discussed. (We are not concerned with
the truth or falsehood of what is said, but only with its logical
analysis.) We are told that A is, in every instance, followed by
B. Now if there are “instances” of A, A must be some general
concept of which it is significant to say “x is A,” “x is A,” “x
is A,” and so on, where x, x, x are particulars which are not
identical one with another. This applies, e.g., to our previous
case of lightning. We say that lightning (A) is followed by thun-
der (B). But the separate flashes are particulars, not identical,
but sharing the common property of being lightning. The only
way of expressing a | common property generally is to say that
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a common property of a number of objects is a propositional
function which becomes true when any one of these objects is
taken as the value of the variable. In this case all the objects
are “instances” of the truth of the propositional function—for
a propositional function, though it cannot itself be true or false,
is true in certain instances and false in certain others, unless
it is “always true” or “always false.” When, to return to our
example, we say that A is in every instance followed by B, we
mean that, whatever x may be, if x is an A, it is followed by a B;
that is, we are asserting that a certain propositional function is
“always true.”

Sentences involving such words as “all,” “every,” “a,” “the,”
“some” require propositional functions for their interpretation.
The way in which propositional functions occur can be ex-
plained by means of two of the above words, namely, “all” and
“some.”

There are, in the last analysis, only two things that can be
done with a propositional function: one is to assert that it is true
in all cases, the other to assert that it is true in at least one case,
or in some cases (as we shall say, assuming that there is to be no
necessary implication of a plurality of cases). All the other uses
of propositional functions can be reduced to these two. When
we say that a propositional function is true “in all cases,” or
“always” (as we shall also say, without any temporal suggestion),
we mean that all its values are true. If “φx” is the function, and
a is the right sort of object to be an argument to “φx,” then φa is
to be true, however a may have been chosen. For example, “if a
is human, a is mortal” is true whether a is human or not; in fact,
every proposition of this form is true. Thus the propositional
function “if x is human, x is mortal” is “always true,” or “true
in all cases.” Or, again, the statement “there are no unicorns”
is the same as the statement “the propositional function ‘x
is not a unicorn’ is true in all cases.” The assertions in the
preceding chapter about propositions, e.g. “‘p or q’ implies ‘q or
p,’” are really assertions | that certain propositional functions
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are true in all cases. We do not assert the above principle, for
example, as being true only of this or that particular p or q, but
as being true of any p or q concerning which it can be made
significantly. The condition that a function is to be significant
for a given argument is the same as the condition that it shall
have a value for that argument, either true or false. The study
of the conditions of significance belongs to the doctrine of
types, which we shall not pursue beyond the sketch given in
the preceding chapter.

Not only the principles of deduction, but all the primitive
propositions of logic, consist of assertions that certain proposi-
tional functions are always true. If this were not the case, they
would have to mention particular things or concepts—Socrates,
or redness, or east and west, or what not—and clearly it is not
the province of logic to make assertions which are true concern-
ing one such thing or concept but not concerning another. It is
part of the definition of logic (but not the whole of its defini-
tion) that all its propositions are completely general, i.e. they
all consist of the assertion that some propositional function
containing no constant terms is always true. We shall return in
our final chapter to the discussion of propositional functions
containing no constant terms. For the present we will proceed
to the other thing that is to be done with a propositional func-
tion, namely, the assertion that it is “sometimes true,” i.e. true
in at least one instance.

When we say “there are men,” that means that the propo-
sitional function “x is a man” is sometimes true. When we
say “some men are Greeks,” that means that the propositional
function “x is a man and a Greek” is sometimes true. When
we say “cannibals still exist in Africa,” that means that the
propositional function “x is a cannibal now in Africa” is some-
times true, i.e. is true for some values of x. To say “there are
at least n individuals in the world” is to say that the proposi-
tional function “α is a class of individuals and a member of
the cardinal number n” is sometimes true, or, as we may say, is
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true for certain | values of α. This form of expression is more
convenient when it is necessary to indicate which is the vari-
able constituent which we are taking as the argument to our
propositional function. For example, the above propositional
function, which we may shorten to “α is a class of n individu-
als,” contains two variables, α and n. The axiom of infinity, in
the language of propositional functions, is: “The propositional
function ‘if n is an inductive number, it is true for some values
of α that α is a class of n individuals’ is true for all possible
values of n.” Here there is a subordinate function, “α is a class
of n individuals,” which is said to be, in respect of α, sometimes
true; and the assertion that this happens if n is an inductive
number is said to be, in respect of n, always true.

The statement that a function φx is always true is the nega-
tion of the statement that not-φx is sometimes true, and the
statement that φx is sometimes true is the negation of the state-
ment that not-φx is always true. Thus the statement “all men
are mortals” is the negation of the statement that the function
“x is an immortal man” is sometimes true. And the statement
“there are unicorns” is the negation of the statement that the
function “x is not a unicorn” is always true. We say that φx
is “never true” or “always false” if not-φx is always true. We
can, if we choose, take one of the pair “always,” “sometimes”
as a primitive idea, and define the other by means of the one
and negation. Thus if we choose “sometimes” as our primitive
idea, we can define: “‘φx is always true’ is to mean ‘it is false
that not-φx is sometimes true.’” But for reasons connected with
the theory of types it seems more correct to take both “always”
and “sometimes” as primitive ideas, and define by their means
the negation of propositions in which they occur. That is to
say, assuming that we have already | defined (or adopted as
a primitive idea) the negation of propositions of the type to
For linguistic reasons, to avoid suggesting either the plural or the sin-

gular, it is often convenient to say “φx is not always false” rather than “φx
sometimes” or “φx is sometimes true.”
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which φx belongs, we define: “The negation of ‘φx always’ is
‘not-φx sometimes’; and the negation of ‘φx sometimes’ is ‘not-
φx always.’” In like manner we can re-define disjunction and
the other truth-functions, as applied to propositions containing
apparent variables, in terms of the definitions and primitive
ideas for propositions containing no apparent variables. Propo-
sitions containing no apparent variables are called “elementary
propositions.” From these we can mount up step by step, us-
ing such methods as have just been indicated, to the theory
of truth-functions as applied to propositions containing one,
two, three . . . variables, or any number up to n, where n is any
assigned finite number.

The forms which are taken as simplest in traditional formal
logic are really far from being so, and all involve the assertion
of all values or some values of a compound propositional func-
tion. Take, to begin with, “all S is P.” We will take it that S is
defined by a propositional function φx, and P by a proposi-
tional function ψx. E.g., if S is men, φx will be “x is human”; if
P is mortals, ψx will be “there is a time at which x dies.” Then
“all S is P” means: “‘φx implies ψx’ is always true.” It is to be
observed that “all S is P” does not apply only to those terms
that actually are S’s; it says something equally about terms
which are not S’s. Suppose we come across an x of which we do
not know whether it is an S or not; still, our statement “all S is
P” tells us something about x, namely, that if x is an S, then x
is a P. And this is every bit as true when x is not an S as when
x is an S. If it were not equally true in both cases, the reductio
ad absurdum would not be a valid method; for the essence of
this method consists in using implications in cases where (as it
afterwards turns out) the hypothesis is false. We may put the
matter another way. In order to understand “all S is P,” it is not
necessary to be able to enumerate what terms are S’s; provided
we know what is meant by being an S and what by being a P,

The method of deduction is given in Principia Mathematica, vol. i. ∗.
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we can understand completely what is actually affirmed | by
“all S is P,” however little we may know of actual instances of
either. This shows that it is not merely the actual terms that
are S’s that are relevant in the statement “all S is P,” but all
the terms concerning which the supposition that they are S’s
is significant, i.e. all the terms that are S’s, together with all
the terms that are not S’s—i.e. the whole of the appropriate
logical “type.” What applies to statements about all applies
also to statements about some. “There are men,” e.g., means
that “x is human” is true for some values of x. Here all values of
x (i.e. all values for which “x is human” is significant, whether
true or false) are relevant, and not only those that in fact are
human. (This becomes obvious if we consider how we could
prove such a statement to be false.) Every assertion about “all”
or “some” thus involves not only the arguments that make a
certain function true, but all that make it significant, i.e. all for
which it has a value at all, whether true or false.

We may now proceed with our interpretation of the tradi-
tional forms of the old-fashioned formal logic. We assume that
S is those terms x for which φx is true, and P is those for which
ψx is true. (As we shall see in a later chapter, all classes are
derived in this way from propositional functions.) Then:

“All S is P” means “‘φx implies ψx’ is always true.”
“Some S is P” means “‘φx and ψx’ is sometimes true.”
“No S is P” means “‘φx implies not-ψx’ is always true.”
“Some S is not P” means “‘φx and not-ψx’ is sometimes

true.”

It will be observed that the propositional functions which are
here asserted for all or some values are not φx and ψx them-
selves, but truth-functions of φx and ψx for the same argument
x. The easiest way to conceive of the sort of thing that is in-
tended is to start not from φx and ψx in general, but from φa
and ψa, where a is some constant. Suppose we are considering
“all men are mortal”: we will begin with



 Introduction to Mathematical Philosophy

“If Socrates is human, Socrates is mortal,” |

 and then we will regard “Socrates” as replaced by a variable
x wherever “Socrates” occurs. The object to be secured is that,
although x remains a variable, without any definite value, yet
it is to have the same value in “φx” as in “ψx” when we are
asserting that “φx implies ψx” is always true. This requires
that we shall start with a function whose values are such as “φa
implies ψa,” rather than with two separate functions φx and
ψx; for if we start with two separate functions we can never
secure that the x, while remaining undetermined, shall have
the same value in both.

For brevity we say “φx always implies ψx” when we mean
that “φx implies ψx” is always true. Propositions of the form
“φx always implies ψx” are called “formal implications”; this
name is given equally if there are several variables.

The above definitions show how far removed from the sim-
plest forms are such propositions as “all S is P,” with which
traditional logic begins. It is typical of the lack of analysis
involved that traditional logic treats “all S is P” as a proposition
of the same form as “x is P”—e.g., it treats “all men are mortal”
as of the same form as “Socrates is mortal.” As we have just
seen, the first is of the form “φx always implies ψx,” while the
second is of the form “ψx.” The emphatic separation of these
two forms, which was effected by Peano and Frege, was a very
vital advance in symbolic logic.

It will be seen that “all S is P” and “no S is P” do not really
differ in form, except by the substitution of not-ψx for ψx,
and that the same applies to “some S is P” and “some S is
not P.” It should also be observed that the traditional rules of
conversion are faulty, if we adopt the view, which is the only
technically tolerable one, that such propositions as “all S is P”
do not involve the “existence” of S’s, i.e. do not require that
there should be terms which are S’s. The above definitions lead
to the result that, if φx is always false, i.e. if there are no S’s,
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then “all S is P” and “no S is P” will both be true, | whatever P
may be. For, according to the definition in the last chapter, “φx
implies ψx” means “not-φx or ψx,” which is always true if not-
φx is always true. At the first moment, this result might lead
the reader to desire different definitions, but a little practical
experience soon shows that any different definitions would
be inconvenient and would conceal the important ideas. The
proposition “φx always implies ψx, and φx is sometimes true”
is essentially composite, and it would be very awkward to give
this as the definition of “all S is P,” for then we should have
no language left for “φx always implies ψx,” which is needed
a hundred times for once that the other is needed. But, with
our definitions, “all S is P” does not imply “some S is P,” since
the first allows the non-existence of S and the second does not;
thus conversion per accidens becomes invalid, and some moods
of the syllogism are fallacious, e.g. Darapti: “All M is S, all M is
P, therefore some S is P,” which fails if there is no M.

The notion of “existence” has several forms, one of which
will occupy us in the next chapter; but the fundamental form
is that which is derived immediately from the notion of “some-
times true.” We say that an argument a “satisfies” a function φx
if φa is true; this is the same sense in which the roots of an equa-
tion are said to satisfy the equation. Now if φx is sometimes
true, we may say there are x’s for which it is true, or we may
say “arguments satisfying φx exist.” This is the fundamental
meaning of the word “existence.” Other meanings are either
derived from this, or embody mere confusion of thought. We
may correctly say “men exist,” meaning that “x is a man” is
sometimes true. But if we make a pseudo-syllogism: “Men
exist, Socrates is a man, therefore Socrates exists,” we are talk-
ing nonsense, since “Socrates” is not, like “men,” merely an
undetermined argument to a given propositional function. The
fallacy is closely analogous to that of the argument: “Men are
numerous, Socrates is a man, therefore Socrates is numerous.”
In this case it is obvious that the conclusion is nonsensical, but |
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 in the case of existence it is not obvious, for reasons which will
appear more fully in the next chapter. For the present let us
merely note the fact that, though it is correct to say “men exist,”
it is incorrect, or rather meaningless, to ascribe existence to a
given particular x who happens to be a man. Generally, “terms
satisfying φx exist” means “φx is sometimes true”; but “a ex-
ists” (where a is a term satisfying φx) is a mere noise or shape,
devoid of significance. It will be found that by bearing in mind
this simple fallacy we can solve many ancient philosophical
puzzles concerning the meaning of existence.

Another set of notions as to which philosophy has allowed
itself to fall into hopeless confusions through not sufficiently
separating propositions and propositional functions are the no-
tions of “modality”: necessary, possible, and impossible. (Some-
times contingent or assertoric is used instead of possible.) The tra-
ditional view was that, among true propositions, some were nec-
essary, while others were merely contingent or assertoric; while
among false propositions some were impossible, namely, those
whose contradictories were necessary, while others merely hap-
pened not to be true. In fact, however, there was never any
clear account of what was added to truth by the conception of
necessity. In the case of propositional functions, the threefold
division is obvious. If “φx” is an undetermined value of a cer-
tain propositional function, it will be necessary if the function
is always true, possible if it is sometimes true, and impossible
if it is never true. This sort of situation arises in regard to
probability, for example. Suppose a ball x is drawn from a bag
which contains a number of balls: if all the balls are white, “x
is white” is necessary; if some are white, it is possible; if none,
it is impossible. Here all that is known about x is that it satisfies
a certain propositional function, namely, “x was a ball in the
bag.” This is a situation which is general in probability prob-
lems and not uncommon in practical life—e.g. when a person
calls of whom we know nothing except that he brings a letter
of introduction from our friend so-and-so. In all such | cases,
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as in regard to modality in general, the propositional function
is relevant. For clear thinking, in many very diverse directions,
the habit of keeping propositional functions sharply separated
from propositions is of the utmost importance, and the failure
to do so in the past has been a disgrace to philosophy.



CHAPTER XVI

DESCRIPTIONS

 We dealt in the preceding chapter with the words all and some;
in this chapter we shall consider the word the in the singular,
and in the next chapter we shall consider the word the in the
plural. It may be thought excessive to devote two chapters to
one word, but to the philosophical mathematician it is a word
of very great importance: like Browning’s Grammarian with
the enclitic δε, I would give the doctrine of this word if I were
“dead from the waist down” and not merely in a prison.

We have already had occasion to mention “descriptive func-
tions,” i.e. such expressions as “the father of x” or “the sine of
x.” These are to be defined by first defining “descriptions.”

A “description” may be of two sorts, definite and indefinite
(or ambiguous). An indefinite description is a phrase of the
form “a so-and-so,” and a definite description is a phrase of the
form “the so-and-so” (in the singular). Let us begin with the
former.

“Who did you meet?” “I met a man.” “That is a very indefi-
nite description.” We are therefore not departing from usage in
our terminology. Our question is: What do I really assert when
I assert “I met a man”? Let us assume, for the moment, that
my assertion is true, and that in fact I met Jones. It is clear that
what I assert is not “I met Jones.” I may say “I met a man, but
it was not Jones”; in that case, though I lie, I do not contradict
myself, as I should do if when I say I met a | man I really mean
that I met Jones. It is clear also that the person to whom I am


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speaking can understand what I say, even if he is a foreigner
and has never heard of Jones.

But we may go further: not only Jones, but no actual man,
enters into my statement. This becomes obvious when the
statement is false, since then there is no more reason why
Jones should be supposed to enter into the proposition than
why anyone else should. Indeed the statement would remain
significant, though it could not possibly be true, even if there
were no man at all. “I met a unicorn” or “I met a sea-serpent” is
a perfectly significant assertion, if we know what it would be to
be a unicorn or a sea-serpent, i.e. what is the definition of these
fabulous monsters. Thus it is only what we may call the concept
that enters into the proposition. In the case of “unicorn,” for
example, there is only the concept: there is not also, somewhere
among the shades, something unreal which may be called “a
unicorn.” Therefore, since it is significant (though false) to
say “I met a unicorn,” it is clear that this proposition, rightly
analysed, does not contain a constituent “a unicorn,” though it
does contain the concept “unicorn.”

The question of “unreality,” which confronts us at this point,
is a very important one. Misled by grammar, the great major-
ity of those logicians who have dealt with this question have
dealt with it on mistaken lines. They have regarded grammat-
ical form as a surer guide in analysis than, in fact, it is. And
they have not known what differences in grammatical form
are important. “I met Jones” and “I met a man” would count
traditionally as propositions of the same form, but in actual
fact they are of quite different forms: the first names an actual
person, Jones; while the second involves a propositional func-
tion, and becomes, when made explicit: “The function ‘I met
x and x is human’ is sometimes true.” (It will be remembered
that we adopted the convention of using “sometimes” as not
implying more than once.) This proposition is obviously not
of the form “I met x,” which accounts | for the existence of the
proposition “I met a unicorn” in spite of the fact that there is
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no such thing as “a unicorn.”
For want of the apparatus of propositional functions, many

logicians have been driven to the conclusion that there are
unreal objects. It is argued, e.g. by Meinong, that we can
speak about “the golden mountain,” “the round square,” and
so on; we can make true propositions of which these are the
subjects; hence they must have some kind of logical being, since
otherwise the propositions in which they occur would be mean-
ingless. In such theories, it seems to me, there is a failure of
that feeling for reality which ought to be preserved even in the
most abstract studies. Logic, I should maintain, must no more
admit a unicorn than zoology can; for logic is concerned with
the real world just as truly as zoology, though with its more
abstract and general features. To say that unicorns have an ex-
istence in heraldry, or in literature, or in imagination, is a most
pitiful and paltry evasion. What exists in heraldry is not an ani-
mal, made of flesh and blood, moving and breathing of its own
initiative. What exists is a picture, or a description in words.
Similarly, to maintain that Hamlet, for example, exists in his
own world, namely, in the world of Shakespeare’s imagination,
just as truly as (say) Napoleon existed in the ordinary world,
is to say something deliberately confusing, or else confused to
a degree which is scarcely credible. There is only one world,
the “real” world: Shakespeare’s imagination is part of it, and
the thoughts that he had in writing Hamlet are real. So are
the thoughts that we have in reading the play. But it is of the
very essence of fiction that only the thoughts, feelings, etc., in
Shakespeare and his readers are real, and that there is not, in
addition to them, an objective Hamlet. When you have taken
account of all the feelings roused by Napoleon in writers and
readers of history, you have not touched the actual man; but in
the case of Hamlet you have come to the end of him. If no one
thought about Hamlet, there would be nothing | left of him; if
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no one had thought about Napoleon, he would have soon seen
to it that some one did. The sense of reality is vital in logic,
and whoever juggles with it by pretending that Hamlet has an-
other kind of reality is doing a disservice to thought. A robust
sense of reality is very necessary in framing a correct analysis of
propositions about unicorns, golden mountains, round squares,
and other such pseudo-objects.

In obedience to the feeling of reality, we shall insist that, in
the analysis of propositions, nothing “unreal” is to be admit-
ted. But, after all, if there is nothing unreal, how, it may be
asked, could we admit anything unreal? The reply is that, in
dealing with propositions, we are dealing in the first instance
with symbols, and if we attribute significance to groups of sym-
bols which have no significance, we shall fall into the error of
admitting unrealities, in the only sense in which this is pos-
sible, namely, as objects described. In the proposition “I met
a unicorn,” the whole four words together make a significant
proposition, and the word “unicorn” by itself is significant, in
just the same sense as the word “man.” But the two words “a
unicorn” do not form a subordinate group having a meaning
of its own. Thus if we falsely attribute meaning to these two
words, we find ourselves saddled with “a unicorn,” and with
the problem how there can be such a thing in a world where
there are no unicorns. “A unicorn” is an indefinite description
which describes nothing. It is not an indefinite description
which describes something unreal. Such a proposition as “x
is unreal” only has meaning when “x” is a description, defi-
nite or indefinite; in that case the proposition will be true if
“x” is a description which describes nothing. But whether the
description “x” describes something or describes nothing, it
is in any case not a constituent of the proposition in which it
occurs; like “a unicorn” just now, it is not a subordinate group
having a meaning of its own. All this results from the fact that,
when “x” is a description, “x is unreal” or “x does not exist” is
not nonsense, but is always significant and sometimes true. |
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 We may now proceed to define generally the meaning of
propositions which contain ambiguous descriptions. Suppose
we wish to make some statement about “a so-and-so,” where
“so-and-so’s” are those objects that have a certain propertyφ, i.e.
those objects x for which the propositional function φx is true.
(E.g. if we take “a man” as our instance of “a so-and-so,” φx
will be “x is human.”) Let us now wish to assert the property
ψ of “a so-and-so,” i.e. we wish to assert that “a so-and-so” has
that property which x has when ψx is true. (E.g. in the case of
“I met a man,” ψx will be “I met x.”) Now the proposition that
“a so-and-so” has the property ψ is not a proposition of the form
“ψx.” If it were, “a so-and-so” would have to be identical with x
for a suitable x; and although (in a sense) this may be true in
some cases, it is certainly not true in such a case as “a unicorn.”
It is just this fact, that the statement that a so-and-so has the
property ψ is not of the form ψx, which makes it possible for
“a so-and-so” to be, in a certain clearly definable sense, “unreal.”
The definition is as follows:—

The statement that “an object having the property φ has the
property ψ”

means:

“The joint assertion of φx and ψx is not always false.”

So far as logic goes, this is the same proposition as might
be expressed by “some φ’s are ψ’s”; but rhetorically there is
a difference, because in the one case there is a suggestion of
singularity, and in the other case of plurality. This, however,
is not the important point. The important point is that, when
rightly analysed, propositions verbally about “a so-and-so” are
found to contain no constituent represented by this phrase.
And that is why such propositions can be significant even when
there is no such thing as a so-and-so.

The definition of existence, as applied to ambiguous descrip-
tions, results from what was said at the end of the preceding
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chapter. We say that “men exist” or “a man exists” if the |
propositional function “x is human” is sometimes true; and gen-

erally “a so-and-so” exists if “x is so-and-so” is sometimes true.
We may put this in other language. The proposition “Socrates
is a man” is no doubt equivalent to “Socrates is human,” but it is
not the very same proposition. The is of “Socrates is human” ex-
presses the relation of subject and predicate; the is of “Socrates
is a man” expresses identity. It is a disgrace to the human race
that it has chosen to employ the same word “is” for these two
entirely different ideas—a disgrace which a symbolic logical
language of course remedies. The identity in “Socrates is a man”
is identity between an object named (accepting “Socrates” as a
name, subject to qualifications explained later) and an object
ambiguously described. An object ambiguously described will
“exist” when at least one such proposition is true, i.e. when
there is at least one true proposition of the form “x is a so-and-
so,” where “x” is a name. It is characteristic of ambiguous (as
opposed to definite) descriptions that there may be any number
of true propositions of the above form—Socrates is a man, Plato
is a man, etc. Thus “a man exists” follows from Socrates, or
Plato, or anyone else. With definite descriptions, on the other
hand, the corresponding form of proposition, namely, “x is
the so-and-so” (where “x” is a name), can only be true for one
value of x at most. This brings us to the subject of definite
descriptions, which are to be defined in a way analogous to
that employed for ambiguous descriptions, but rather more
complicated.

We come now to the main subject of the present chapter,
namely, the definition of the word the (in the singular). One
very important point about the definition of “a so-and-so” ap-
plies equally to “the so-and-so”; the definition to be sought is
a definition of propositions in which this phrase occurs, not
a definition of the phrase itself in isolation. In the case of “a
so-and-so,” this is fairly obvious: no one could suppose that “a
man” was a definite object, which could be defined by itself. |
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 Socrates is a man, Plato is a man, Aristotle is a man, but we can-
not infer that “a man” means the same as “Socrates” means and
also the same as “Plato” means and also the same as “Aristotle”
means, since these three names have different meanings. Nev-
ertheless, when we have enumerated all the men in the world,
there is nothing left of which we can say, “This is a man, and
not only so, but it is the ‘a man,’ the quintessential entity that
is just an indefinite man without being anybody in particular.”
It is of course quite clear that whatever there is in the world is
definite: if it is a man it is one definite man and not any other.
Thus there cannot be such an entity as “a man” to be found
in the world, as opposed to specific men. And accordingly it
is natural that we do not define “a man” itself, but only the
propositions in which it occurs.

In the case of “the so-and-so” this is equally true, though
at first sight less obvious. We may demonstrate that this must
be the case, by a consideration of the difference between a
name and a definite description. Take the proposition, “Scott is
the author of Waverley.” We have here a name, “Scott,” and
a description, “the author of Waverley,” which are asserted to
apply to the same person. The distinction between a name and
all other symbols may be explained as follows:—

A name is a simple symbol whose meaning is something
that can only occur as subject, i.e. something of the kind that, in
Chapter XIII., we defined as an “individual” or a “particular.”
And a “simple” symbol is one which has no parts that are sym-
bols. Thus “Scott” is a simple symbol, because, though it has
parts (namely, separate letters), these parts are not symbols. On
the other hand, “the author of Waverley” is not a simple symbol,
because the separate words that compose the phrase are parts
which are symbols. If, as may be the case, whatever seems to be
an “individual” is really capable of further analysis, we shall
have to content ourselves with what may be called “relative in-
dividuals,” which will be terms that, throughout the context in
question, are never analysed and never occur | otherwise than
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as subjects. And in that case we shall have correspondingly to
content ourselves with “relative names.” From the standpoint
of our present problem, namely, the definition of descriptions,
this problem, whether these are absolute names or only relative
names, may be ignored, since it concerns different stages in the
hierarchy of “types,” whereas we have to compare such couples
as “Scott” and “the author of Waverley,” which both apply to
the same object, and do not raise the problem of types. We
may, therefore, for the moment, treat names as capable of being
absolute; nothing that we shall have to say will depend upon
this assumption, but the wording may be a little shortened by
it.

We have, then, two things to compare: () a name, which is
a simple symbol, directly designating an individual which is
its meaning, and having this meaning in its own right, inde-
pendently of the meanings of all other words; () a description,
which consists of several words, whose meanings are already
fixed, and from which results whatever is to be taken as the
“meaning” of the description.

A proposition containing a description is not identical with
what that proposition becomes when a name is substituted,
even if the name names the same object as the description de-
scribes. “Scott is the author of Waverley” is obviously a different
proposition from “Scott is Scott”: the first is a fact in literary
history, the second a trivial truism. And if we put anyone other
than Scott in place of “the author of Waverley,” our proposition
would become false, and would therefore certainly no longer
be the same proposition. But, it may be said, our proposition
is essentially of the same form as (say) “Scott is Sir Walter,” in
which two names are said to apply to the same person. The
reply is that, if “Scott is Sir Walter” really means “the person
named ‘Scott’ is the person named ‘Sir Walter,’” then the names
are being used as descriptions: i.e. the individual, instead of be-
ing named, is being described as the person having that name.
This is a way in which names are frequently used | in practice,
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and there will, as a rule, be nothing in the phraseology to show
whether they are being used in this way or as names. When a
name is used directly, merely to indicate what we are speaking
about, it is no part of the fact asserted, or of the falsehood if our
assertion happens to be false: it is merely part of the symbolism
by which we express our thought. What we want to express
is something which might (for example) be translated into a
foreign language; it is something for which the actual words
are a vehicle, but of which they are no part. On the other hand,
when we make a proposition about “the person called ‘Scott,’”
the actual name “Scott” enters into what we are asserting, and
not merely into the language used in making the assertion. Our
proposition will now be a different one if we substitute “the
person called ‘Sir Walter.’” But so long as we are using names as
names, whether we say “Scott” or whether we say “Sir Walter”
is as irrelevant to what we are asserting as whether we speak
English or French. Thus so long as names are used as names,
“Scott is Sir Walter” is the same trivial proposition as “Scott is
Scott.” This completes the proof that “Scott is the author of Wa-
verley” is not the same proposition as results from substituting
a name for “the author of Waverley,” no matter what name may
be substituted.

When we use a variable, and speak of a propositional func-
tion, φx say, the process of applying general statements about
φx to particular cases will consist in substituting a name for the
letter “x,” assuming that φ is a function which has individuals
for its arguments. Suppose, for example, that φx is “always
true”; let it be, say, the “law of identity,” x = x. Then we may
substitute for “x” any name we choose, and we shall obtain a
true proposition. Assuming for the moment that “Socrates,”
“Plato,” and “Aristotle” are names (a very rash assumption),
we can infer from the law of identity that Socrates is Socrates,
Plato is Plato, and Aristotle is Aristotle. But we shall commit a
fallacy if we attempt to infer, without further premisses, that
the author of Waverley is the author of Waverley. This results |
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from what we have just proved, that, if we substitute a name
for “the author of Waverley” in a proposition, the proposition
we obtain is a different one. That is to say, applying the result
to our present case: If “x” is a name, “x = x” is not the same
proposition as “the author of Waverley is the author of Waver-
ley,” no matter what name “x” may be. Thus from the fact that
all propositions of the form “x = x” are true we cannot infer,
without more ado, that the author of Waverley is the author of
Waverley. In fact, propositions of the form “the so-and-so is the
so-and-so” are not always true: it is necessary that the so-and-so
should exist (a term which will be explained shortly). It is false
that the present King of France is the present King of France, or
that the round square is the round square. When we substitute
a description for a name, propositional functions which are
“always true” may become false, if the description describes
nothing. There is no mystery in this as soon as we realise (what
was proved in the preceding paragraph) that when we substi-
tute a description the result is not a value of the propositional
function in question.

We are now in a position to define propositions in which a
definite description occurs. The only thing that distinguishes
“the so-and-so” from “a so-and-so” is the implication of unique-
ness. We cannot speak of “the inhabitant of London,” because
inhabiting London is an attribute which is not unique. We
cannot speak about “the present King of France,” because there
is none; but we can speak about “the present King of Eng-
land.” Thus propositions about “the so-and-so” always imply
the corresponding propositions about “a so-and-so,” with the
addendum that there is not more than one so-and-so. Such a
proposition as “Scott is the author of Waverley” could not be
true if Waverley had never been written, or if several people had
written it; and no more could any other proposition resulting
from a propositional function φx by the substitution of “the
author of Waverley” for “x.” We may say that “the author of
Waverley” means “the value of x for which ‘x wrote | Waverley’
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is true.” Thus the proposition “the author of Waverley was
Scotch,” for example, involves:

() “x wrote Waverley” is not always false;
() “if x and y wrote Waverley, x and y are identical” is

always true;
() “if x wrote Waverley, x was Scotch” is always true.

These three propositions, translated into ordinary language,
state:

() at least one person wrote Waverley;
() at most one person wrote Waverley;
() whoever wrote Waverley was Scotch.

All these three are implied by “the author of Waverley was
Scotch.” Conversely, the three together (but no two of them)
imply that the author of Waverley was Scotch. Hence the three
together may be taken as defining what is meant by the propo-
sition “the author of Waverley was Scotch.”

We may somewhat simplify these three propositions. The
first and second together are equivalent to: “There is a term c
such that ‘x wrote Waverley’ is true when x is c and is false when
x is not c.” In other words, “There is a term c such that ‘x wrote
Waverley’ is always equivalent to ‘x is c.’” (Two propositions are
“equivalent” when both are true or both are false.) We have here,
to begin with, two functions of x, “x wrote Waverley” and “x is
c,” and we form a function of c by considering the equivalence
of these two functions of x for all values of x; we then proceed
to assert that the resulting function of c is “sometimes true,”
i.e. that it is true for at least one value of c. (It obviously cannot
be true for more than one value of c.) These two conditions
together are defined as giving the meaning of “the author of
Waverley exists.”

We may now define “the term satisfying the function φx
exists.” This is the general form of which the above is a particu-
lar case. “The author of Waverley” is “the term satisfying the
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function ‘x wrote Waverley.’” And “the so-and-so” will | always
involve reference to some propositional function, namely, that
which defines the property that makes a thing a so-and-so. Our
definition is as follows:—

“The term satisfying the function φx exists” means:
“There is a term c such that φx is always equivalent to ‘x is

c.’”
In order to define “the author of Waverley was Scotch,” we

have still to take account of the third of our three propositions,
namely, “Whoever wrote Waverley was Scotch.” This will be
satisfied by merely adding that the c in question is to be Scotch.
Thus “the author of Waverley was Scotch” is:

“There is a term c such that () ‘x wrote Waverley’ is always
equivalent to ‘x is c,’ () c is Scotch.”

And generally: “the term satisfying φx satisfies ψx” is defined
as meaning:

“There is a term c such that () φx is always equivalent to ‘x
is c,’ () ψc is true.”

This is the definition of propositions in which descriptions
occur.

It is possible to have much knowledge concerning a term
described, i.e. to know many propositions concerning “the so-
and-so,” without actually knowing what the so-and-so is, i.e.
without knowing any proposition of the form “x is the so-and-
so,” where “x” is a name. In a detective story propositions
about “the man who did the deed” are accumulated, in the
hope that ultimately they will suffice to demonstrate that it
was A who did the deed. We may even go so far as to say
that, in all such knowledge as can be expressed in words—with
the exception of “this” and “that” and a few other words of
which the meaning varies on different occasions—no names,
in the strict sense, occur, but what seem like names are really
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descriptions. We may inquire significantly whether Homer
existed, which we could not do if “Homer” were a name. The
proposition “the so-and-so exists” is significant, whether true or
false; but if a is the so-and-so (where “a” is a name), the words
“a exists” are meaningless. It is only of descriptions | —definite
or indefinite—that existence can be significantly asserted; for,
if “a” is a name, it must name something: what does not name
anything is not a name, and therefore, if intended to be a name,
is a symbol devoid of meaning, whereas a description, like
“the present King of France,” does not become incapable of
occurring significantly merely on the ground that it describes
nothing, the reason being that it is a complex symbol, of which
the meaning is derived from that of its constituent symbols.
And so, when we ask whether Homer existed, we are using the
word “Homer” as an abbreviated description: we may replace
it by (say) “the author of the Iliad and the Odyssey.” The same
considerations apply to almost all uses of what look like proper
names.

When descriptions occur in propositions, it is necessary to
distinguish what may be called “primary” and “secondary” oc-
currences. The abstract distinction is as follows. A description
has a “primary” occurrence when the proposition in which it
occurs results from substituting the description for “x” in some
propositional function φx; a description has a “secondary” oc-
currence when the result of substituting the description for x
in φx gives only part of the proposition concerned. An instance
will make this clearer. Consider “the present King of France is
bald.” Here “the present King of France” has a primary occur-
rence, and the proposition is false. Every proposition in which a
description which describes nothing has a primary occurrence
is false. But now consider “the present King of France is not
bald.” This is ambiguous. If we are first to take “x is bald,” then
substitute “the present King of France” for “x,” and then deny
the result, the occurrence of “the present King of France” is
secondary and our proposition is true; but if we are to take “x
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is not bald” and substitute “the present King of France” for “x,”
then “the present King of France” has a primary occurrence and
the proposition is false. Confusion of primary and secondary
occurrences is a ready source of fallacies where descriptions
are concerned. |

Descriptions occur in mathematics chiefly in the form of
descriptive functions, i.e. “the term having the relation R to y,”
or “the R of y” as we may say, on the analogy of “the father
of y” and similar phrases. To say “the father of y is rich,” for
example, is to say that the following propositional function
of c: “c is rich, and ‘x begat y’ is always equivalent to ‘x is c,’”
is “sometimes true,” i.e. is true for at least one value of c. It
obviously cannot be true for more than one value.

The theory of descriptions, briefly outlined in the present
chapter, is of the utmost importance both in logic and in the-
ory of knowledge. But for purposes of mathematics, the more
philosophical parts of the theory are not essential, and have
therefore been omitted in the above account, which has con-
fined itself to the barest mathematical requisites.



CHAPTER XVII

CLASSES

 In the present chapter we shall be concerned with the in the
plural: the inhabitants of London, the sons of rich men, and so
on. In other words, we shall be concerned with classes. We saw
in Chapter II. that a cardinal number is to be defined as a class
of classes, and in Chapter III. that the number  is to be defined
as the class of all unit classes, i.e. of all that have just one
member, as we should say but for the vicious circle. Of course,
when the number  is defined as the class of all unit classes,
“unit classes” must be defined so as not to assume that we know
what is meant by “one”; in fact, they are defined in a way closely
analogous to that used for descriptions, namely: A class α is
said to be a “unit” class if the propositional function “‘x is an
α’ is always equivalent to ‘x is c’” (regarded as a function of c)
is not always false, i.e., in more ordinary language, if there is
a term c such that x will be a member of α when x is c but not
otherwise. This gives us a definition of a unit class if we already
know what a class is in general. Hitherto we have, in dealing
with arithmetic, treated “class” as a primitive idea. But, for the
reasons set forth in Chapter XIII., if for no others, we cannot
accept “class” as a primitive idea. We must seek a definition on
the same lines as the definition of descriptions, i.e. a definition
which will assign a meaning to propositions in whose verbal or
symbolic expression words or symbols apparently representing
classes occur, but which will assign a meaning that altogether
eliminates all mention of classes from a right analysis | of such


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propositions. We shall then be able to say that the symbols for
classes are mere conveniences, not representing objects called
“classes,” and that classes are in fact, like descriptions, logical
fictions, or (as we say) “incomplete symbols.”

The theory of classes is less complete than the theory of
descriptions, and there are reasons (which we shall give in
outline) for regarding the definition of classes that will be sug-
gested as not finally satisfactory. Some further subtlety appears
to be required; but the reasons for regarding the definition
which will be offered as being approximately correct and on
the right lines are overwhelming.

The first thing is to realise why classes cannot be regarded
as part of the ultimate furniture of the world. It is difficult
to explain precisely what one means by this statement, but
one consequence which it implies may be used to elucidate
its meaning. If we had a complete symbolic language, with
a definition for everything definable, and an undefined sym-
bol for everything indefinable, the undefined symbols in this
language would represent symbolically what I mean by “the
ultimate furniture of the world.” I am maintaining that no
symbols either for “class” in general or for particular classes
would be included in this apparatus of undefined symbols. On
the other hand, all the particular things there are in the world
would have to have names which would be included among
undefined symbols. We might try to avoid this conclusion by
the use of descriptions. Take (say) “the last thing Cæsar saw
before he died.” This is a description of some particular; we
might use it as (in one perfectly legitimate sense) a definition
of that particular. But if “a” is a name for the same particular,
a proposition in which “a” occurs is not (as we saw in the pre-
ceding chapter) identical with what this proposition becomes
when for “a” we substitute “the last thing Cæsar saw before he
died.” If our language does not contain the name “a,” or some
other name for the same particular, we shall have no means
of expressing the proposition which we expressed by means
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of “a” as opposed to the one that | we expressed by means of
the description. Thus descriptions would not enable a perfect
language to dispense with names for all particulars. In this
respect, we are maintaining, classes differ from particulars,
and need not be represented by undefined symbols. Our first
business is to give the reasons for this opinion.

We have already seen that classes cannot be regarded as a
species of individuals, on account of the contradiction about
classes which are not members of themselves (explained in
Chapter XIII.), and because we can prove that the number of
classes is greater than the number of individuals.

We cannot take classes in the pure extensional way as simply
heaps or conglomerations. If we were to attempt to do that,
we should find it impossible to understand how there can be
such a class as the null-class, which has no members at all and
cannot be regarded as a “heap”; we should also find it very
hard to understand how it comes about that a class which has
only one member is not identical with that one member. I do
not mean to assert, or to deny, that there are such entities as
“heaps.” As a mathematical logician, I am not called upon to
have an opinion on this point. All that I am maintaining is that,
if there are such things as heaps, we cannot identify them with
the classes composed of their constituents.

We shall come much nearer to a satisfactory theory if we try
to identify classes with propositional functions. Every class, as
we explained in Chapter II., is defined by some propositional
function which is true of the members of the class and false of
other things. But if a class can be defined by one propositional
function, it can equally well be defined by any other which is
true whenever the first is true and false whenever the first is
false. For this reason the class cannot be identified with any one
such propositional function rather than with any other—and
given a propositional function, there are always many others
which are true when it is true and false when it is false. We
say that two propositional functions are “formally equivalent”
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when this happens. Two propositions are | “equivalent” when
both are true or both false; two propositional functions φx, ψx
are “formally equivalent” when φx is always equivalent to ψx.
It is the fact that there are other functions formally equivalent
to a given function that makes it impossible to identify a class
with a function; for we wish classes to be such that no two
distinct classes have exactly the same members, and therefore
two formally equivalent functions will have to determine the
same class.

When we have decided that classes cannot be things of the
same sort as their members, that they cannot be just heaps or
aggregates, and also that they cannot be identified with propo-
sitional functions, it becomes very difficult to see what they
can be, if they are to be more than symbolic fictions. And
if we can find any way of dealing with them as symbolic fic-
tions, we increase the logical security of our position, since
we avoid the need of assuming that there are classes without
being compelled to make the opposite assumption that there
are no classes. We merely abstain from both assumptions. This
is an example of Occam’s razor, namely, “entities are not to be
multiplied without necessity.” But when we refuse to assert
that there are classes, we must not be supposed to be asserting
dogmatically that there are none. We are merely agnostic as
regards them: like Laplace, we can say, “je n’ai pas besoin de
cette hypothèse.”

Let us set forth the conditions that a symbol must fulfil if it
is to serve as a class. I think the following conditions will be
found necessary and sufficient:—

() Every propositional function must determine a class,
consisting of those arguments for which the function is true.
Given any proposition (true or false), say about Socrates, we
can imagine Socrates replaced by Plato or Aristotle or a gorilla
or the man in the moon or any other individual in the world. In
general, some of these substitutions will give a true proposition
and some a false one. The class determined will consist of all
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those substitutions that give a true one. Of course, we have
still to decide what we mean by “all those which, etc.” All that
| we are observing at present is that a class is rendered determi-
nate by a propositional function, and that every propositional
function determines an appropriate class.

() Two formally equivalent propositional functions must
determine the same class, and two which are not formally
equivalent must determine different classes. That is, a class is
determined by its membership, and no two different classes
can have the same membership. (If a class is determined by a
function φx, we say that a is a “member” of the class if φa is
true.)

() We must find some way of defining not only classes, but
classes of classes. We saw in Chapter II. that cardinal numbers
are to be defined as classes of classes. The ordinary phrase of
elementary mathematics, “The combinations of n things m at
a time” represents a class of classes, namely, the class of all
classes of m terms that can be selected out of a given class of n
terms. Without some symbolic method of dealing with classes
of classes, mathematical logic would break down.

() It must under all circumstances be meaningless (not
false) to suppose a class a member of itself or not a member of
itself. This results from the contradiction which we discussed
in Chapter XIII.

() Lastly—and this is the condition which is most difficult
of fulfilment—it must be possible to make propositions about
all the classes that are composed of individuals, or about all the
classes that are composed of objects of any one logical “type.”
If this were not the case, many uses of classes would go astray—
for example, mathematical induction. In defining the posterity
of a given term, we need to be able to say that a member of the
posterity belongs to all hereditary classes to which the given
term belongs, and this requires the sort of totality that is in
question. The reason there is a difficulty about this condition
is that it can be proved to be impossible to speak of all the
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propositional functions that can have arguments of a given
type.

We will, to begin with, ignore this last condition and the
problems which it raises. The first two conditions may be |

taken together. They state that there is to be one class, no more
and no less, for each group of formally equivalent propositional
functions; e.g. the class of men is to be the same as that of feath-
erless bipeds or rational animals or Yahoos or whatever other
characteristic may be preferred for defining a human being.
Now, when we say that two formally equivalent propositional
functions may be not identical, although they define the same
class, we may prove the truth of the assertion by pointing out
that a statement may be true of the one function and false of
the other; e.g. “I believe that all men are mortal” may be true,
while “I believe that all rational animals are mortal” may be
false, since I may believe falsely that the Phœnix is an immortal
rational animal. Thus we are led to consider statements about
functions, or (more correctly) functions of functions.

Some of the things that may be said about a function may
be regarded as said about the class defined by the function,
whereas others cannot. The statement “all men are mortal”
involves the functions “x is human” and “x is mortal”; or, if
we choose, we can say that it involves the classes men and mor-
tals. We can interpret the statement in either way, because its
truth-value is unchanged if we substitute for “x is human” or
for “x is mortal” any formally equivalent function. But, as we
have just seen, the statement “I believe that all men are mor-
tal” cannot be regarded as being about the class determined
by either function, because its truth-value may be changed
by the substitution of a formally equivalent function (which
leaves the class unchanged). We will call a statement involv-
ing a function φx an “extensional” function of the function
φx, if it is like “all men are mortal,” i.e. if its truth-value is
unchanged by the substitution of any formally equivalent func-
tion; and when a function of a function is not extensional, we
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will call it “intensional,” so that “I believe that all men are mor-
tal” is an intensional function of “x is human” or “x is mortal.”
Thus extensional functions of a function φx may, for practical |

 purposes, be regarded as functions of the class determined by
φx, while intensional functions cannot be so regarded.

It is to be observed that all the specific functions of functions
that we have occasion to introduce in mathematical logic are ex-
tensional. Thus, for example, the two fundamental functions of
functions are: “φx is always true” and “φx is sometimes true.”
Each of these has its truth-value unchanged if any formally
equivalent function is substituted for φx. In the language of
classes, if α is the class determined by φx, “φx is always true”
is equivalent to “everything is a member of α,” and “φx is
sometimes true” is equivalent to “α has members” or (better)
“α has at least one member.” Take, again, the condition, dealt
with in the preceding chapter, for the existence of “the term
satisfying φx.” The condition is that there is a term c such that
φx is always equivalent to “x is c.” This is obviously extensional.
It is equivalent to the assertion that the class defined by the
function φx is a unit class, i.e. a class having one member; in
other words, a class which is a member of .

Given a function of a function which may or may not be
extensional, we can always derive from it a connected and cer-
tainly extensional function of the same function, by the follow-
ing plan: Let our original function of a function be one which
attributes to φx the property f ; then consider the assertion
“there is a function having the property f and formally equiv-
alent to φx.” This is an extensional function of φx; it is true
when our original statement is true, and it is formally equiv-
alent to the original function of φx if this original function
is extensional; but when the original function is intensional,
the new one is more often true than the old one. For example,
consider again “I believe that all men are mortal,” regarded as
a function of “x is human.” The derived extensional function
is: “There is a function formally equivalent to ‘x is human’ and
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such that I believe that whatever satisfies it is mortal.” This
remains true when we substitute “x is a rational animal” | for
“x is human,” even if I believe falsely that the Phœnix is rational
and immortal.

We give the name of “derived extensional function” to the
function constructed as above, namely, to the function: “There
is a function having the property f and formally equivalent to
φx,” where the original function was “the function φx has the
property f.”

We may regard the derived extensional function as having
for its argument the class determined by the function φx, and
as asserting f of this class. This may be taken as the definition
of a proposition about a class. I.e. we may define:

To assert that “the class determined by the function φx has
the property f” is to assert that φx satisfies the extensional
function derived from f.

This gives a meaning to any statement about a class which
can be made significantly about a function; and it will be found
that technically it yields the results which are required in order
to make a theory symbolically satisfactory.

What we have said just now as regards the definition of
classes is sufficient to satisfy our first four conditions. The way
in which it secures the third and fourth, namely, the possibility
of classes of classes, and the impossibility of a class being or not
being a member of itself, is somewhat technical; it is explained
in Principia Mathematica, but may be taken for granted here.
It results that, but for our fifth condition, we might regard
our task as completed. But this condition—at once the most
important and the most difficult—is not fulfilled in virtue of
anything we have said as yet. The difficulty is connected with
the theory of types, and must be briefly discussed.

See Principia Mathematica, vol. i. pp. – and ∗.
The reader who desires a fuller discussion should consult Principia

Mathematica, Introduction, chap. ii.; also ∗.
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We saw in Chapter XIII. that there is a hierarchy of logical
types, and that it is a fallacy to allow an object belonging to
one of these to be substituted for an object belonging to an-
other. | Now it is not difficult to show that the various functions
which can take a given object a as argument are not all of one
type. Let us call them all a-functions. We may take first those
among them which do not involve reference to any collection
of functions; these we will call “predicative a-functions.” If
we now proceed to functions involving reference to the total-
ity of predicative a-functions, we shall incur a fallacy if we
regard these as of the same type as the predicative a-functions.
Take such an every-day statement as “a is a typical Frenchman.”
How shall we define a “typical Frenchman”? We may define
him as one “possessing all qualities that are possessed by most
Frenchmen.” But unless we confine “all qualities” to such as
do not involve a reference to any totality of qualities, we shall
have to observe that most Frenchmen are not typical in the
above sense, and therefore the definition shows that to be not
typical is essential to a typical Frenchman. This is not a logical
contradiction, since there is no reason why there should be any
typical Frenchmen; but it illustrates the need for separating off
qualities that involve reference to a totality of qualities from
those that do not.

Whenever, by statements about “all” or “some” of the val-
ues that a variable can significantly take, we generate a new
object, this new object must not be among the values which our
previous variable could take, since, if it were, the totality of
values over which the variable could range would only be defin-
able in terms of itself, and we should be involved in a vicious
circle. For example, if I say “Napoleon had all the qualities that
make a great general,” I must define “qualities” in such a way
that it will not include what I am now saying, i.e. “having all
the qualities that make a great general” must not be itself a
quality in the sense supposed. This is fairly obvious, and is the
principle which leads to the theory of types by which vicious-
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circle paradoxes are avoided. As applied to a-functions, we
may suppose that “qualities” is to mean “predicative functions.”
Then when I say “Napoleon had all the qualities, etc.,” I mean |

“Napoleon satisfied all the predicative functions, etc.” This
statement attributes a property to Napoleon, but not a predica-
tive property; thus we escape the vicious circle. But wherever
“all functions which” occurs, the functions in question must be
limited to one type if a vicious circle is to be avoided; and, as
Napoleon and the typical Frenchman have shown, the type is
not rendered determinate by that of the argument. It would
require a much fuller discussion to set forth this point fully,
but what has been said may suffice to make it clear that the
functions which can take a given argument are of an infinite se-
ries of types. We could, by various technical devices, construct
a variable which would run through the first n of these types,
where n is finite, but we cannot construct a variable which will
run through them all, and, if we could, that mere fact would at
once generate a new type of function with the same arguments,
and would set the whole process going again.

We call predicative a-functions the first type of a-functions;
a-functions involving reference to the totality of the first type
we call the second type; and so on. No variable a-function can
run through all these different types: it must stop short at some
definite one.

These considerations are relevant to our definition of the
derived extensional function. We there spoke of “a function
formally equivalent to φx.” It is necessary to decide upon the
type of our function. Any decision will do, but some decision
is unavoidable. Let us call the supposed formally equivalent
function ψ. Then ψ appears as a variable, and must be of some
determinate type. All that we know necessarily about the type
of φ is that it takes arguments of a given type—that it is (say) an
a-function. But this, as we have just seen, does not determine
its type. If we are to be able (as our fifth requisite demands) to
deal with all classes whose members are of the same type as a,
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we must be able to define all such classes by means of functions
of some one type; that is to say, there must be some type of
a-function, say the nth, such that any a-function is formally |

 equivalent to some a-function of the nth type. If this is the case,
then any extensional function which holds of all a-functions of
the nth type will hold of any a-function whatever. It is chiefly
as a technical means of embodying an assumption leading to
this result that classes are useful. The assumption is called the
“axiom of reducibility,” and may be stated as follows:—

“There is a type (τ say) of a-functions such that, given any
a-function, it is formally equivalent to some function of the
type in question.”

If this axiom is assumed, we use functions of this type in
defining our associated extensional function. Statements about
all a-classes (i.e. all classes defined by a-functions) can be re-
duced to statements about all a-functions of the type τ . So
long as only extensional functions of functions are involved,
this gives us in practice results which would otherwise have
required the impossible notion of “all a-functions.” One partic-
ular region where this is vital is mathematical induction.

The axiom of reducibility involves all that is really essential
in the theory of classes. It is therefore worth while to ask
whether there is any reason to suppose it true.

This axiom, like the multiplicative axiom and the axiom of
infinity, is necessary for certain results, but not for the bare
existence of deductive reasoning. The theory of deduction,
as explained in Chapter XIV., and the laws for propositions
involving “all” and “some,” are of the very texture of mathe-
matical reasoning: without them, or something like them, we
should not merely not obtain the same results, but we should
not obtain any results at all. We cannot use them as hypothe-
ses, and deduce hypothetical consequences, for they are rules
of deduction as well as premisses. They must be absolutely
true, or else what we deduce according to them does not even
follow from the premisses. On the other hand, the axiom of
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reducibility, like our two previous mathematical axioms, could
perfectly well be stated as an hypothesis whenever it is used,
instead of being assumed to be actually true. We can deduce |

its consequences hypothetically; we can also deduce the conse-
quences of supposing it false. It is therefore only convenient,
not necessary. And in view of the complication of the theory
of types, and of the uncertainty of all except its most general
principles, it is impossible as yet to say whether there may
not be some way of dispensing with the axiom of reducibility
altogether. However, assuming the correctness of the theory
outlined above, what can we say as to the truth or falsehood of
the axiom?

The axiom, we may observe, is a generalised form of Leib-
niz’s identity of indiscernibles. Leibniz assumed, as a logical
principle, that two different subjects must differ as to predi-
cates. Now predicates are only some among what we called
“predicative functions,” which will include also relations to
given terms, and various properties not to be reckoned as pred-
icates. Thus Leibniz’s assumption is a much stricter and nar-
rower one than ours. (Not, of course, according to his logic,
which regarded all propositions as reducible to the subject-
predicate form.) But there is no good reason for believing his
form, so far as I can see. There might quite well, as a matter of
abstract logical possibility, be two things which had exactly the
same predicates, in the narrow sense in which we have been
using the word “predicate.” How does our axiom look when
we pass beyond predicates in this narrow sense? In the actual
world there seems no way of doubting its empirical truth as re-
gards particulars, owing to spatio-temporal differentiation: no
two particulars have exactly the same spatial and temporal rela-
tions to all other particulars. But this is, as it were, an accident,
a fact about the world in which we happen to find ourselves.
Pure logic, and pure mathematics (which is the same thing),
aims at being true, in Leibnizian phraseology, in all possible
worlds, not only in this higgledy-piggledy job-lot of a world in
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which chance has imprisoned us. There is a certain lordliness
which the logician should preserve: he must not condescend to
derive arguments from the things he sees about him. |

Viewed from this strictly logical point of view, I do not see
any reason to believe that the axiom of reducibility is logically
necessary, which is what would be meant by saying that it
is true in all possible worlds. The admission of this axiom
into a system of logic is therefore a defect, even if the axiom
is empirically true. It is for this reason that the theory of
classes cannot be regarded as being as complete as the theory
of descriptions. There is need of further work on the theory of
types, in the hope of arriving at a doctrine of classes which does
not require such a dubious assumption. But it is reasonable to
regard the theory outlined in the present chapter as right in
its main lines, i.e. in its reduction of propositions nominally
about classes to propositions about their defining functions.
The avoidance of classes as entities by this method must, it
would seem, be sound in principle, however the detail may still
require adjustment. It is because this seems indubitable that
we have included the theory of classes, in spite of our desire
to exclude, as far as possible, whatever seemed open to serious
doubt.

The theory of classes, as above outlined, reduces itself to
one axiom and one definition. For the sake of definiteness, we
will here repeat them. The axiom is:

There is a type τ such that if φ is a function which can take a
given object a as argument, then there is a function ψ of the type τ
which is formally equivalent to φ.

The definition is:
If φ is a function which can take a given object a as argument,

and τ the type mentioned in the above axiom, then to say that
the class determined by φ has the property f is to say that there
is a function of type τ , formally equivalent to φ, and having the
property f.

CHAPTER XVIII

MATHEMATICS AND LOGIC

Mathematics and logic, historically speaking, have been en-
tirely distinct studies. Mathematics has been connected with
science, logic with Greek. But both have developed in modern
times: logic has become more mathematical and mathematics
has become more logical. The consequence is that it has now
become wholly impossible to draw a line between the two; in
fact, the two are one. They differ as boy and man: logic is the
youth of mathematics and mathematics is the manhood of logic.
This view is resented by logicians who, having spent their time
in the study of classical texts, are incapable of following a piece
of symbolic reasoning, and by mathematicians who have learnt
a technique without troubling to inquire into its meaning or
justification. Both types are now fortunately growing rarer. So
much of modern mathematical work is obviously on the border-
line of logic, so much of modern logic is symbolic and formal,
that the very close relationship of logic and mathematics has
become obvious to every instructed student. The proof of their
identity is, of course, a matter of detail: starting with premisses
which would be universally admitted to belong to logic, and
arriving by deduction at results which as obviously belong to
mathematics, we find that there is no point at which a sharp
line can be drawn, with logic to the left and mathematics to
the right. If there are still those who do not admit the identity
of logic and mathematics, we may challenge them to indicate
at what point, in the successive definitions and | deductions of


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Principia Mathematica, they consider that logic ends and math-
ematics begins. It will then be obvious that any answer must
be quite arbitrary.

In the earlier chapters of this book, starting from the natural
numbers, we have first defined “cardinal number” and shown
how to generalise the conception of number, and have then
analysed the conceptions involved in the definition, until we
found ourselves dealing with the fundamentals of logic. In a
synthetic, deductive treatment these fundamentals come first,
and the natural numbers are only reached after a long jour-
ney. Such treatment, though formally more correct than that
which we have adopted, is more difficult for the reader, because
the ultimate logical concepts and propositions with which it
starts are remote and unfamiliar as compared with the natural
numbers. Also they represent the present frontier of knowl-
edge, beyond which is the still unknown; and the dominion of
knowledge over them is not as yet very secure.

It used to be said that mathematics is the science of “quan-
tity.” “Quantity” is a vague word, but for the sake of argument
we may replace it by the word “number.” The statement that
mathematics is the science of number would be untrue in two
different ways. On the one hand, there are recognised branches
of mathematics which have nothing to do with number—all
geometry that does not use co-ordinates or measurement, for
example: projective and descriptive geometry, down to the
point at which co-ordinates are introduced, does not have to
do with number, or even with quantity in the sense of greater
and less. On the other hand, through the definition of cardi-
nals, through the theory of induction and ancestral relations,
through the general theory of series, and through the defini-
tions of the arithmetical operations, it has become possible
to generalise much that used to be proved only in connection
with numbers. The result is that what was formerly the single
study of Arithmetic has now become divided into a number
of separate studies, no one of which is specially concerned
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with numbers. The most | elementary properties of numbers
are concerned with one-one relations, and similarity between
classes. Addition is concerned with the construction of mu-
tually exclusive classes respectively similar to a set of classes
which are not known to be mutually exclusive. Multiplication
is merged in the theory of “selections,” i.e. of a certain kind of
one-many relations. Finitude is merged in the general study of
ancestral relations, which yields the whole theory of mathemat-
ical induction. The ordinal properties of the various kinds of
number-series, and the elements of the theory of continuity of
functions and the limits of functions, can be generalised so as
no longer to involve any essential reference to numbers. It is a
principle, in all formal reasoning, to generalise to the utmost,
since we thereby secure that a given process of deduction shall
have more widely applicable results; we are, therefore, in thus
generalising the reasoning of arithmetic, merely following a
precept which is universally admitted in mathematics. And
in thus generalising we have, in effect, created a set of new
deductive systems, in which traditional arithmetic is at once
dissolved and enlarged; but whether any one of these new de-
ductive systems—for example, the theory of selections—is to
be said to belong to logic or to arithmetic is entirely arbitrary,
and incapable of being decided rationally.

We are thus brought face to face with the question: What
is this subject, which may be called indifferently either math-
ematics or logic? Is there any way in which we can define
it?

Certain characteristics of the subject are clear. To begin
with, we do not, in this subject, deal with particular things or
particular properties: we deal formally with what can be said
about any thing or any property. We are prepared to say that
one and one are two, but not that Socrates and Plato are two,
because, in our capacity of logicians or pure mathematicians,
we have never heard of Socrates and Plato. A world in which
there were no such individuals would still be a world in which
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one and one are two. It is not open to us, as pure mathemati-
cians or logicians, to mention anything at all, because, if we
do so, | we introduce something irrelevant and not formal. We
may make this clear by applying it to the case of the syllogism.
Traditional logic says: “All men are mortal, Socrates is a man,
therefore Socrates is mortal.” Now it is clear that what we mean
to assert, to begin with, is only that the premisses imply the
conclusion, not that premisses and conclusion are actually true;
even the most traditional logic points out that the actual truth
of the premisses is irrelevant to logic. Thus the first change
to be made in the above traditional syllogism is to state it in
the form: “If all men are mortal and Socrates is a man, then
Socrates is mortal.” We may now observe that it is intended to
convey that this argument is valid in virtue of its form, not in
virtue of the particular terms occurring in it. If we had omitted
“Socrates is a man” from our premisses, we should have had
a non-formal argument, only admissible because Socrates is
in fact a man; in that case we could not have generalised the
argument. But when, as above, the argument is formal, nothing
depends upon the terms that occur in it. Thus we may substi-
tute α for men, β for mortals, and x for Socrates, where α and
β are any classes whatever, and x is any individual. We then
arrive at the statement: “No matter what possible values x and
α and β may have, if all α’s are β’s and x is an α, then x is a
β”; in other words, “the propositional function ‘if all α’s are β’s
and x is an α, then x is a β’ is always true.” Here at last we have
a proposition of logic—the one which is only suggested by the
traditional statement about Socrates and men and mortals.

It is clear that, if formal reasoning is what we are aiming at,
we shall always arrive ultimately at statements like the above,
in which no actual things or properties are mentioned; this will
happen through the mere desire not to waste our time proving
in a particular case what can be proved generally. It would
be ridiculous to go through a long argument about Socrates,
and then go through precisely the same argument again about
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Plato. If our argument is one (say) which holds of all men,
we shall prove it concerning “x,” with the hypothesis “if x is
a man.” With | this hypothesis, the argument will retain its
hypothetical validity even when x is not a man. But now we
shall find that our argument would still be valid if, instead
of supposing x to be a man, we were to suppose him to be a
monkey or a goose or a Prime Minister. We shall therefore not
waste our time taking as our premiss “x is a man” but shall take
“x is an α,” where α is any class of individuals, or “φx” where
φ is any propositional function of some assigned type. Thus
the absence of all mention of particular things or properties in
logic or pure mathematics is a necessary result of the fact that
this study is, as we say, “purely formal.”

At this point we find ourselves faced with a problem which
is easier to state than to solve. The problem is: “What are
the constituents of a logical proposition?” I do not know the
answer, but I propose to explain how the problem arises.

Take (say) the proposition “Socrates was before Aristotle.”
Here it seems obvious that we have a relation between two
terms, and that the constituents of the proposition (as well as
of the corresponding fact) are simply the two terms and the
relation, i.e. Socrates, Aristotle, and before. (I ignore the fact
that Socrates and Aristotle are not simple; also the fact that
what appear to be their names are really truncated descriptions.
Neither of these facts is relevant to the present issue.) We
may represent the general form of such propositions by “xRy,”
which may be read “x has the relation R to y.” This general form
may occur in logical propositions, but no particular instance
of it can occur. Are we to infer that the general form itself is a
constituent of such logical propositions?

Given a proposition, such as “Socrates is before Aristotle,”
we have certain constituents and also a certain form. But the
form is not itself a new constituent; if it were, we should need a
new form to embrace both it and the other constituents. We can,
in fact, turn all the constituents of a proposition into variables,
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while keeping the form unchanged. This is what we do when
we use such a schema as “xRy,” which stands for any | one of a
certain class of propositions, namely, those asserting relations
between two terms. We can proceed to general assertions,
such as “xRy is sometimes true”—i.e. there are cases where
dual relations hold. This assertion will belong to logic (or
mathematics) in the sense in which we are using the word. But
in this assertion we do not mention any particular things or
particular relations; no particular things or relations can ever
enter into a proposition of pure logic. We are left with pure
forms as the only possible constituents of logical propositions.

I do not wish to assert positively that pure forms—e.g. the
form “xRy”—do actually enter into propositions of the kind
we are considering. The question of the analysis of such propo-
sitions is a difficult one, with conflicting considerations on
the one side and on the other. We cannot embark upon this
question now, but we may accept, as a first approximation, the
view that forms are what enter into logical propositions as their
constituents. And we may explain (though not formally define)
what we mean by the “form” of a proposition as follows:—

The “form” of a proposition is that, in it, that remains un-
changed when every constituent of the proposition is replaced
by another.

Thus “Socrates is earlier than Aristotle” has the same form
as “Napoleon is greater than Wellington,” though every con-
stituent of the two propositions is different.

We may thus lay down, as a necessary (though not sufficient)
characteristic of logical or mathematical propositions, that they
are to be such as can be obtained from a proposition containing
no variables (i.e. no such words as all, some, a, the, etc.) by
turning every constituent into a variable and asserting that the
result is always true or sometimes true, or that it is always true
in respect of some of the variables that the result is sometimes
true in respect of the others, or any variant of these forms. And
another way of stating the same thing is to say that logic (or
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mathematics) is concerned only with forms, and is concerned
with them only in the way of stating that they are always or
| sometimes true—with all the permutations of “always” and
“sometimes” that may occur.

There are in every language some words whose sole func-
tion is to indicate form. These words, broadly speaking, are
commonest in languages having fewest inflections. Take “Socra-
tes is human.” Here “is” is not a constituent of the proposition,
but merely indicates the subject-predicate form. Similarly in
“Socrates is earlier than Aristotle,” “is” and “than” merely in-
dicate form; the proposition is the same as “Socrates precedes
Aristotle,” in which these words have disappeared and the
form is otherwise indicated. Form, as a rule, can be indicated
otherwise than by specific words: the order of the words can
do most of what is wanted. But this principle must not be
pressed. For example, it is difficult to see how we could con-
veniently express molecular forms of propositions (i.e. what
we call “truth-functions”) without any word at all. We saw
in Chapter XIV. that one word or symbol is enough for this
purpose, namely, a word or symbol expressing incompatibility.
But without even one we should find ourselves in difficulties.
This, however, is not the point that is important for our present
purpose. What is important for us is to observe that form may
be the one concern of a general proposition, even when no word
or symbol in that proposition designates the form. If we wish
to speak about the form itself, we must have a word for it; but
if, as in mathematics, we wish to speak about all propositions
that have the form, a word for the form will usually be found
not indispensable; probably in theory it is never indispensable.

Assuming—as I think we may—that the forms of proposi-
tions can be represented by the forms of the propositions in
which they are expressed without any special words for forms,
we should arrive at a language in which everything formal be-
longed to syntax and not to vocabulary. In such a language we
could express all the propositions of mathematics even if we
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did not know one single word of the language. The language
of | mathematical logic, if it were perfected, would be such a
language. We should have symbols for variables, such as “x”
and “R” and “y,” arranged in various ways; and the way of ar-
rangement would indicate that something was being said to be
true of all values or some values of the variables. We should not
need to know any words, because they would only be needed
for giving values to the variables, which is the business of the
applied mathematician, not of the pure mathematician or logi-
cian. It is one of the marks of a proposition of logic that, given
a suitable language, such a proposition can be asserted in such
a language by a person who knows the syntax without knowing
a single word of the vocabulary.

But, after all, there are words that express form, such as
“is” and “than.” And in every symbolism hitherto invented for
mathematical logic there are symbols having constant formal
meanings. We may take as an example the symbol for incom-
patibility which is employed in building up truth-functions.
Such words or symbols may occur in logic. The question is:
How are we to define them?

Such words or symbols express what are called “logical con-
stants.” Logical constants may be defined exactly as we defined
forms; in fact, they are in essence the same thing. A fundamen-
tal logical constant will be that which is in common among a
number of propositions, any one of which can result from any
other by substitution of terms one for another. For example,
“Napoleon is greater than Wellington” results from “Socrates
is earlier than Aristotle” by the substitution of “Napoleon” for
“Socrates,” “Wellington” for “Aristotle,” and “greater” for “ear-
lier.” Some propositions can be obtained in this way from the
prototype “Socrates is earlier than Aristotle” and some cannot;
those that can are those that are of the form “xRy,” i.e. express
dual relations. We cannot obtain from the above prototype by
term-for-term substitution such propositions as “Socrates is
human” or “the Athenians gave the hemlock to Socrates,” be-
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cause the first is of the subject- | predicate form and the second
expresses a three-term relation. If we are to have any words
in our pure logical language, they must be such as express
“logical constants,” and “logical constants” will always either
be, or be derived from, what is in common among a group of
propositions derivable from each other, in the above manner,
by term-for-term substitution. And this which is in common is
what we call “form.”

In this sense all the “constants” that occur in pure math-
ematics are logical constants. The number , for example, is
derivative from propositions of the form: “There is a term c
such that φx is true when, and only when, x is c.” This is a func-
tion of φ, and various different propositions result from giving
different values to φ. We may (with a little omission of interme-
diate steps not relevant to our present purpose) take the above
function of φ as what is meant by “the class determined by φ
is a unit class” or “the class determined by φ is a member of ”
( being a class of classes). In this way, propositions in which
 occurs acquire a meaning which is derived from a certain
constant logical form. And the same will be found to be the
case with all mathematical constants: all are logical constants,
or symbolic abbreviations whose full use in a proper context is
defined by means of logical constants.

But although all logical (or mathematical) propositions can
be expressed wholly in terms of logical constants together with
variables, it is not the case that, conversely, all propositions
that can be expressed in this way are logical. We have found
so far a necessary but not a sufficient criterion of mathematical
propositions. We have sufficiently defined the character of the
primitive ideas in terms of which all the ideas of mathematics
can be defined, but not of the primitive propositions from which
all the propositions of mathematics can be deduced. This is a
more difficult matter, as to which it is not yet known what the
full answer is.

We may take the axiom of infinity as an example of a propo-
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sition which, though it can be enunciated in logical terms, |
 cannot be asserted by logic to be true. All the propositions of

logic have a characteristic which used to be expressed by say-
ing that they were analytic, or that their contradictories were
self-contradictory. This mode of statement, however, is not sat-
isfactory. The law of contradiction is merely one among logical
propositions; it has no special pre-eminence; and the proof
that the contradictory of some proposition is self-contradictory
is likely to require other principles of deduction besides the
law of contradiction. Nevertheless, the characteristic of logical
propositions that we are in search of is the one which was felt,
and intended to be defined, by those who said that it consisted
in deducibility from the law of contradiction. This character-
istic, which, for the moment, we may call tautology, obviously
does not belong to the assertion that the number of individuals
in the universe is n, whatever number n may be. But for the
diversity of types, it would be possible to prove logically that
there are classes of n terms, where n is any finite integer; or
even that there are classes of ℵ terms. But, owing to types,
such proofs, as we saw in Chapter XIII., are fallacious. We are
left to empirical observation to determine whether there are as
many as n individuals in the world. Among “possible” worlds,
in the Leibnizian sense, there will be worlds having one, two,
three, . . . individuals. There does not even seem any logical
necessity why there should be even one individual—why, in
fact, there should be any world at all. The ontological proof
of the existence of God, if it were valid, would establish the
logical necessity of at least one individual. But it is generally
recognised as invalid, and in fact rests upon a mistaken view
of existence—i.e. it fails to realise that existence can only be as-
serted of something described, not of something named, so that
it is meaningless to argue from “this is the so-and-so” and “the
The primitive propositions in Principia Mathematica are such as to allow

the inference that at least one individual exists. But I now view this as a
defect in logical purity.
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so-and-so exists” to “this exists.” If we reject the ontological |
argument, we seem driven to conclude that the existence of a

world is an accident—i.e. it is not logically necessary. If that be
so, no principle of logic can assert “existence” except under a
hypothesis, i.e. none can be of the form “the propositional func-
tion so-and-so is sometimes true.” Propositions of this form,
when they occur in logic, will have to occur as hypotheses or
consequences of hypotheses, not as complete asserted proposi-
tions. The complete asserted propositions of logic will all be
such as affirm that some propositional function is always true.
For example, it is always true that if p implies q and q implies
r then p implies r, or that, if all α’s are β’s and x is an α then
x is a β. Such propositions may occur in logic, and their truth
is independent of the existence of the universe. We may lay it
down that, if there were no universe, all general propositions
would be true; for the contradictory of a general proposition
(as we saw in Chapter XV.) is a proposition asserting existence,
and would therefore always be false if no universe existed.

Logical propositions are such as can be known a priori, with-
out study of the actual world. We only know from a study of
empirical facts that Socrates is a man, but we know the cor-
rectness of the syllogism in its abstract form (i.e. when it is
stated in terms of variables) without needing any appeal to
experience. This is a characteristic, not of logical propositions
in themselves, but of the way in which we know them. It has,
however, a bearing upon the question what their nature may be,
since there are some kinds of propositions which it would be
very difficult to suppose we could know without experience.

It is clear that the definition of “logic” or “mathematics”
must be sought by trying to give a new definition of the old
notion of “analytic” propositions. Although we can no longer
be satisfied to define logical propositions as those that follow
from the law of contradiction, we can and must still admit that
they are a wholly different class of propositions from those that
we come to know empirically. They all have the characteristic
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which, a moment ago, we agreed to call “tautology.” This, |
 combined with the fact that they can be expressed wholly in

terms of variables and logical constants (a logical constant be-
ing something which remains constant in a proposition even
when all its constituents are changed)—will give the definition
of logic or pure mathematics. For the moment, I do not know
how to define “tautology.” It would be easy to offer a defi-
nition which might seem satisfactory for a while; but I know
of none that I feel to be satisfactory, in spite of feeling thor-
oughly familiar with the characteristic of which a definition is
wanted. At this point, therefore, for the moment, we reach the
frontier of knowledge on our backward journey into the logical
foundations of mathematics.

We have now come to an end of our somewhat summary
introduction to mathematical philosophy. It is impossible to
convey adequately the ideas that are concerned in this subject
so long as we abstain from the use of logical symbols. Since
ordinary language has no words that naturally express exactly
what we wish to express, it is necessary, so long as we adhere
to ordinary language, to strain words into unusual meanings;
and the reader is sure, after a time if not at first, to lapse into
attaching the usual meanings to words, thus arriving at wrong
notions as to what is intended to be said. Moreover, ordinary
grammar and syntax is extraordinarily misleading. This is the
case, e.g., as regards numbers; “ten men” is grammatically the
same form as “white men,” so that might be thought to be
an adjective qualifying “men.” It is the case, again, wherever
propositional functions are involved, and in particular as re-
gards existence and descriptions. Because language is mislead-
ing, as well as because it is diffuse and inexact when applied
to logic (for which it was never intended), logical symbolism

The importance of “tautology” for a definition of mathematics was
pointed out to me by my former pupil Ludwig Wittgenstein, who was
working on the problem. I do not know whether he has solved it, or even
whether he is alive or dead.
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is absolutely necessary to any exact or thorough treatment of
our subject. Those readers, | therefore, who wish to acquire a
mastery of the principles of mathematics, will, it is to be hoped,
not shrink from the labour of mastering the symbols—a labour
which is, in fact, much less than might be thought. As the above
hasty survey must have made evident, there are innumerable
unsolved problems in the subject, and much work needs to be
done. If any student is led into a serious study of mathematical
logic by this little book, it will have served the chief purpose
for which it has been written.
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CHANGES TO ONLINE EDITION

This Online Corrected Edition was created by Kevin C. Kle-
ment; this is version . (February , ). It is based on
the April  so-called “second edition” published by Allen
& Unwin, which, by contemporary standards, was simply a
second printing of the original  edition but incorporating
various, mostly minor, fixes. This edition incorporates fixes
from later printings as well, and some new fixes, mentioned
below. The pagination of the Allen & Unwin edition is given in
the margins, with page breaks marked with the sign “|”. These
are in red, as are other additions to the text not penned by
Russell.

Thanks to members of the Russell-l and HEAPS-l mailing
lists for help in checking and proofreading the version, includ-
ing Adam Killian, Pierre Grenon, David Blitz, Brandon Young,
Rosalind Carey, and, especially, John Ongley. A tremendous
debt of thanks is owed to Kenneth Blackwell of the Bertrand
Russell Archives/Research Centre, McMaster University, for
proofreading the bulk of the edition, checking it against Rus-
sell’s handwritten manuscript, and providing other valuable
advice and assistance. Another large debt of gratitude is owed
to Christof Gräber who compared this version to the print
versions and showed remarkable aptitude in spotting discrep-
ancies. I take full responsibility for any remaining errors. If you
discover any, please email me at klement@philos.umass.edu.

The online edition differs from the  Allen & Unwin



Changes to Online Edition 

edition, and reprintings thereof, in certain respects. Some are
mere stylistic differences. Others represent corrections based
on discrepancies between Russell’s manuscript and the print
edition, or fix small grammatical or typographical errors. The
stylistic differences are these:

• In the original, footnote numbering begins anew with
each page. Since this version uses different pagination, it
was necessary to number footnotes sequentially through
each chapter. Thus, for example, the footnote listed as
note  on page  of this edition was listed as note  on
page  of the original.

• With some exceptions, the Allen & Unwin edition uses
linear fractions of the style “x/y” mid-paragraph, but
vertical fractions of the form “xy” in displays. Contrary
to this usual practice, those in the display on page 
of the original (page  of this edition) were linear, but
have been converted to vertical fractions in this edition.
Similarly, the mid-paragraph fractions on pages , ,
 and  of the original (pages , ,  and 
here) were printed vertically in the original, but here are
horizontal.

The following more significant changes and revisions are mark-
ed in green in this edition. Most of these result from Ken
Blackwell’s comparison with Russell’s manuscript. A few were
originally noted in an early review of the book by G. A. Pfeiffer
(Bulletin of the American Mathematical Society : (), pp.
–).

. (page n. / original page n.) Russell wrote the wrong
publication date () for the second volume of Principia
Mathematica; this has been fixed to .

. (page  / original page ) “. . . or all that are less than
 . . . ” is changed to “. . . or all that are not less than
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 . . . ” to match Russell’s manuscript and the obvi-
ously intended meaning of the passage. This error was
noted by Pfeiffer in  but unfixed in Russell’s lifetime.

. (page  / original page ) “. . . either by limiting the
domain to males or by limiting the converse to females”
is changed to “. . . either by limiting the domain to males
or by limiting the converse domain to females”, which is
how it read in Russell’s manuscript, and seems better to
fit the context.

. (page  / original page ) “. . . provided neither m or n
is zero.” is fixed to “. . . provided neither m nor n is zero.”
Thanks to John Ongley for spotting this error, which exists
even in Russell’s manuscript.

. (page n. / original page n.) The word “deutschen”
in the original’s (and the manuscript’s) “Jahresbericht der
deutschen Mathematiker-Vereinigung” has been capitalized.

. (page  / original page ) “. . . of a class α, i.e. its limits
or maximum, and then . . . ” is changed to “. . . of a class α,
i.e. its limit or maximum, and then . . . ” to match Russell’s
manuscript, and the apparent meaning of the passage.

. (page  / original page ) “. . . the limit of its value
for approaches either from . . . ” is changed to “. . . the
limit of its values for approaches either from . . . ”, which
matches Russell’s manuscript, and is more appropriate
for the meaning of the passage.

. (page  / original page ) The ungrammatical “. . .
advantages of this form of definition is that it analyses . . . ”
is changed to “. . . advantage of this form of definition is
that it analyses . . . ” to match Russell’s manuscript.

Changes to Online Edition 

. (page  / original page ) “. . . all terms z such that x
has the relation P to x and z has the relation P to y . . . ” is
fixed to “. . . all terms z such that x has the relation P to
z and z has the relation P to y . . . ” Russell himself hand-
corrected this in his manuscript, but not in a clear way,
and at his request, it was changed in the  printing.

. (page  / original page ) The words “correlator of α
with β, and similarly for every other pair. This requires a”,
which constitute exactly one line of Russell’s manuscript,
were omitted, thereby amalgamating two sentences into
one. The missing words are now restored.

. (page  / original page ) The passage “. . . if x is
the member of y, x is a member of y, x is a member
of y, and so on; then . . . ” is changed to “. . . if x is the
member of γ, x is a member of γ, x is a member of γ,
and so on; then . . . ” to match Russell’s manuscript, and
the obviously intended meaning of the passage.

. (page  / original page ) The words “and then the
idea of the idea of Socrates” although present in Rus-
sell’s manuscript, were left out of previous print editions.
Note that Russell mentions “all these ideas” in the next
sentence.

. (pages – / original page ) The two footnotes
on this page were misplaced. The second, the reference
to Principia Mathematica ∗, was attached in previous ver-
sions to the sentence that now refers to the first footnote
in the chapter. That footnote was placed three sentences
below. The footnote references have been returned to
where they had been placed in Russell’s manuscript.

. (page  / original page ) “. . . the negation of propo-
sitions of the type to which x belongs . . . ” is changed
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to “. . . the negation of propositions of the type to which
φx belongs . . . ” to match Russell’s manuscript. This is
another error noted by Pfeiffer.

. (page  / original page ) “Suppose we are consid-
ering all “men are mortal”: we will . . . ” is changed to
“Suppose we are considering “all men are mortal”: we
will . . . ” to match the obviously intended meaning of
the passage, and the placement of the opening quotation
mark in Russell’s manuscript (although he here used sin-
gle quotation marks, as he did sporadically throughout).
Thanks to Christof Gräber for spotting this error.

. (page  / original page ) “. . . as opposed to specific
man.” is fixed to “. . . as opposed to specific men.” Russell
sent this change to Unwin in , and it was made in
the  printing.

. (page  / original page ) The “φ” in “. . . the process
of applying general statements about φx to particular
cases . . . ”, present in Russell’s manuscript, was excluded
from the Allen & Unwin printings, and has been restored.

. (page  / original page ) The “φ” in “. . . result-
ing from a propositional function φx by the substitution
of . . . ” was excluded from previous published versions,
though it does appear in Russell’s manuscript, and seems
necessary for the passage to make sense. Thanks to John
Ongley for spotting this error, which had also been noted
by Pfeiffer.

. (page  / original pages –) The two occurrences of
“φ” in “. . . extensional functions of a function φx may, for
practical purposes, be regarded as functions of the class
determined by φx, while intensional functions cannot . . . ”
were omitted from previous published versions, but do
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appear in Russell’s manuscript. Again thanks to John
Ongley.

. (page  / original page ) The Allen & Unwin print-
ings have the sentence as “How shall we define a “typical”
Frenchman?” Here, the closing quotation mark has been
moved to make it “How shall we define a “typical French-
man”?” Although Russell’s manuscript is not entirely
clear here, it appears the latter was intended, and it also
seems to make more sense in context.

. (page  / original page ) “There is a type (r say)
. . . ” has been changed to “There is a type (τ say) . . . ” to
match Russell’s manuscript, and conventions followed
elsewhere in the chapter.

. (page  / original page ) “. . . divided into numbers
of separate studies . . . ” has been changed to “. . . divided
into a number of separate studies . . . ” Russell’s manu-
script just had “number”, in the singular, without the
indefinite article. Some emendation was necessary to
make the passage grammatical, but the fix adopted here
seems more likely what was meant.

. (page  / original page ) The passage “the proposi-
tional function ‘if all α’s are β and x is an α, then x is a
β’ is always true” has been changed to “the propositional
function ‘if all α’s are β’s and x is an α, then x is a β’ is
always true” to match Russell’s manuscript, as well as to
make it consistent with the other paraphrase given earlier
in the sentence. Thanks to Christof Gräber for noticing
this error.

. (page  / original page ) “. . . without any special
word for forms . . . ” has been changed to “. . . without
any special words for forms . . . ”, which matches Russell’s
manuscript and seems to fit better in the context.
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. (page  / original page ) The original index listed a
reference to Frege on page , but in fact, the discussion
of Frege occurs on page . Here, “” is crossed out, and
“[]” inserted.

Some very minor corrections to punctuation have been made to
the Allen & Unwin  printing, but not marked in green.

a) Ellipses have been regularized to three closed dots through-
out.

b) (page  / original page ) “We may define two relations
. . . ” did not start a new paragraph in previous editions,
but does in Russell’s manuscript, and is changed to do so.

c) (page  / original page ) What appears in the 
and later printings as “. . . is the field of Q. and which is
. . . ” is changed to “. . . is the field of Q, and which is . . . ”

d) (page  / original page ) “. . . a relation number is a
class of . . . ” is changed to “. . . a relation-number is a class
of . . . ” to match the hyphenation in the rest of the book
(and in Russell’s manuscript). A similar change is made
in the index.

e) (page  / original page ) “. . . and “featherless biped,”—
so two . . . ” is changed to “. . . and “featherless biped”—so
two . . . ”

f) (pages – / original pages –) One misprint of
“progession” for “progression”, and one misprint of “pro-
gessions” for “progressions”, have been corrected. (Thanks
to Christof Gräber for noticing these errors in the origi-
nal.)

g) (page  / original page ) In the Allen & Unwin
printing, the “s” in “y’s” in what appears here as “Form all
such sections for all y’s . . . ” was italicized along with the
“y”. Nothing in Russell’s manuscript suggests it should be
italicized, however. (Again thanks to Christof Gräber.)

h) (page  / original page ) In the Allen & Unwin
printing, “Let y be a member of β . . . ” begins a new
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paragraph, but it does not in Russell’s manuscript, and
clearly should not.

i) (page  / original pages –) The phrase “well
ordered” has twice been changed to “well-ordered” to
match Russell’s manuscript (in the first case) and the rest
of the book (in the second).

j) (page  / original page ) “The way in which the
need for this axiom arises may be explained as follows:—
One of Peano’s . . . ” is changed to “The way in which the
need for this axiom arises may be explained as follows.
One of Peano’s . . . ” and has been made to start a new
paragraph, as it did in Russell’s manuscript.

k) (page  / original page ) The accent on “Métaphys-
ique”, included in Russell’s manuscript but left off in
print, has been restored.

l) (page  / original page ) “. . . or what not,—and
clearly . . . ” is changed to “. . . or what not—and clearly
. . . ”

m) (page  / original page ) Italics have been added to
one occurrence of “Waverley” to make it consistent with
the others.

n) (page  / original page ) “. . . most difficult of ful-
filment,—it must . . . ” is changed to “. . . most difficult of
fulfilment—it must . . . ”

o) (page  / original page ) In the Allen & Unwin
printings, “Socrates” was not italicized in “. . . we may
substitute α for men, β for mortals, and x for Socrates,
where . . . ” Russell had marked it for italicizing in the
manuscript, and it seems natural to do so for the sake of
consistency, so it has been italicized.

p) (page  / original page ) The word “seem” was not
italicized in “. . . a definition which might seem satisfac-
tory for a while . . . ” in the Allen & Unwin editions, but
was marked to be in Russell’s manuscript; it is italicized
here.
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q) (page  / original page ) Under “Relations” in the
index, “similar, ff;” has been changed to “similar, ff.;”
to match the punctuation elsewhere.

There are, however, a number of other places where the pre-
vious print editions differ from Russell’s manuscript in minor
ways that were left unchanged in this edition. For a detailed
examination of the differences between Russell’s manuscript
and the print editions, and between the various printings them-
selves (including the changes from the  to the  print-
ings not documented here), see Kenneth Blackwell, “Variants,
Misprints and a Bibliographical Index for Introduction to Math-
ematical Philosophy”, Russell n.s.  (): –.
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