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1 Introduction

Second-order logic was first introduced by Gottlob Frege in his
Begriffsschrift of 1879, and full higher-order logic was first popu-
larized among analytic philosophers by Whitehead and Russell’s
Principia Mathematica, the first volume of which was published in
1910. Both Russell (who was mostly responsible for the philo-
sophical foundations of his work with Whitehead) and Frege held
related philosophical views on the nature of higher-order quantifi-
cation which have been influential on the generations of analytic
philosophers that followed them. Both developed these views in
the context of their logicisms, i.e., in arguing that arithmetic is a
branch of logic. Both understood higher-order quantification as
quantification over a kind of function, but they differed in exactly
how such functions were to be understood, and even over whether
or not these functions could be considered entities in their own
right. They also both had views that developed over time. Frege
first understood functions as having to do with the analysis of the
judgeable content of assertions, and later took functions simply
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to be mappings from objects to other objects. He sharply divided
functions from objects, but took the division between them to be
one founded “deep in the nature of things” (Frege, 1984b [1891],
158). Early Russell took what he called propositional functions
to be proposition-like entities containing variables, but later shied
away from reifying variables or even propositional functions. The
mature position of Principia Mathematica was that propositional
functions were simply a device of language used when generaliz-
ing over possible expressions of a certain form. Both Frege and
Russell encountered difficulties with versions of their views that
postulated as many objects as functions, and both were led to
views that seem to make their own metaphysical positions impossi-
ble to state from within their own strictures. It is worth examining
the views of each in more detail.

2 Frege on Functions and Higher-Order
Quantification

When Frege introduced second-order quantification, he did so in
connection with his function/argument analysis of language. In
his logical language, every proposition has the following form:

𝐴

The vertical line at the far left is called the “judgment stroke”, and
is used to indicate that what follows is asserted as true. Without
the judgment stroke:

𝐴

the remainder of the proposition beginning with the horizontal
line is thought merely to represent the possible content of a judg-
ment, or “the circumstance that 𝐴” as he puts it in his early work
(Frege, 1972 [1879], §2). In his later work, he bifurcated the no-
tion of content into sense and reference, and took a term of the form
“ 𝐴” as a name of a truth-value, which was then asserted to be
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the True if the judgment stroke was added. The horizontal line
was itself considered as representing a function, mapping its argu-
ment to the True if the argument was itself the True, and mapping
it to the False otherwise. Except for names of objects, Frege un-
derstood all simple signs in his logical language as representing
functions. “Socrates is human” would be rendered:

𝐻 (𝑠)

Here the “𝐻 ( )” would be understood as representing a function,
and “𝐻 (𝑠)” a term. In his early work, the function would be un-
derstood as mapping Socrates to the circumstance that Socrates
is human; in his later work, as mapping Socrates to the True just
in case Socrates is human.

In his early Begriffsschrift he introduced the notion of function
by consideration of the replaceability of one part of an expression
with another:

If, in an expression . . . , a simple or a complex symbol
occurs in one or more places and we imagine it as
replaceable by another (but the same one each time)
at all or some of the places, then we call the part of
the expression that shows itself invariant a function
and the replaceable part its argument. (Frege, 1972
[1879], 127)

Context makes it clear that the expression with which we begin
could be either a complex term for an object, or a symbol for
the assertible content of a complete judgment—a “circumstance”.
So one might begin with a judgment like “Cato killed Cato”. We
might substitute for the name “Cato” the sign “𝜉” at the places
we regard it as replaceable. If we think of “Cato” as replaceable
at its first instance, we divide the expression into the argument
expression “Cato” and the function expression “𝜉 killed Cato”; if
we think of it as replaceable in its second occurrence we get “Cato”
and “Cato killed 𝜉” . We may also think of “Cato” as replaceable
at both instances, and then the function, Frege tells us, is “𝜉 killed
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𝜉”, or “killing oneself”. A function with a single argument whose
value is always a judgeable content (early on) or truth-value (later
on), Frege calls a concept.

Technically, the above passage and others from Frege’s early
work identify functions with parts of expressions, pieces of lan-
guage, but it is clear Frege thinks of the content of the expression
as being what is important. He thinks of the content of a propo-
sition as a function of the content of its replaceable parts. In his
mature work, after the notion of content is further disambiguated
into sense and reference, a function is described not as an expres-
sion, but as the reference of the remainder of a complex expression
when another part is regarded as replaceable by other expressions
(Frege, 1984b [1891], 2013 [1893–1902]).

Functions of multiple arguments can be obtained by regarding
two different components of a judgment as replaceable. In “Jupiter
is larger than Mars” we can regard both “Jupiter” and “Mars”
as replaceable and end up with the two-argument function “𝜉 is
larger than 𝜁”. Frege dubs multi-argument functions, whose values
are always judgeable contents or truth-values, “relations”.

Frege describes an expression for a function as being in a sense
“incomplete” or “unsaturated”, since it contains a spot for the ar-
gument or arguments, and likewise, Frege tells us, is the function
the expression refers to, insofar as it calls for an argument. He
divides functions into various levels. A first-level function calls for
an object to be supplied, so the reference of “𝜉 killed Cato” would
be such a function. A second-level function would be a function
that calls for a first-level function as argument. Frege gives quan-
tifiers as examples. If we regard “𝜉 killed Cato” as replaceable by
other first-level function expressions in “Something is such that it
killed Cato” we get the expression “Something is such that . . . it
. . . ”, which refers to a second-level function. The kind of “incom-
pleteness” exhibited by such a function is different in that what
it is completed by must itself have a spot to receive the “it”, i.e.,
must itself be incomplete. Similarly, in logical notation, a quanti-
fier such as “(∃𝑥) . . . 𝑥 . . .” must be completed by something such
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as “𝐹 ( )” that has a gap to receive the bound “𝑥”. A third-level
function would be a function that calls for a second-level function
as argument. These levels are strictly distinct. A function is never
of the right level to take itself as argument. “(∃𝑥) . . . 𝑥 . . .” cannot
fit in its own argument spot.

As we have just seen, Frege understands first-order quantifica-
tion as the application of a second-level function to a first-level
one. “(∀𝑥)𝐹 (𝑥)” names the circumstance (early on), or the truth-
value (later on), of the argument function 𝐹 ( ) yielding a truth (or
the True) for all its arguments. He introduces second-order quan-
tification as the application of a third-level function to a second-
level function. Recall that a second-level function has a structure
similar to “(∃𝑥) . . . 𝑥 . . .”, i.e., it must have a way of showing that
it mutually saturates with its argument function. In this case, the
bound variable “𝑥” is placed in the argument spot of its argument
function. Frege uses a structured variable 𝑀𝛽 (. . . 𝛽 . . .) to indicate
arbitrary second-level functions (Frege, 2013 [1893–1902], §25).
The second-order quantification “(∀𝐹)𝑀𝛽 (𝐹 (𝛽))” is then taken
as asserting of the argument function 𝑀𝛽 (. . . 𝛽 . . .) that it yields
a truth for every first-level function as its argument. Similarly, we
could quantify over relations, “(∀ 𝑓 )𝑀𝛽,𝛿 ( 𝑓 (𝛽, 𝛿))”, and here the
argument function would be a second-level function taking rela-
tions as argument. It is thus understood as a third-level function
taking this second-level function as argument. Frege does not in-
troduce quantifiers of third or higher order, but it is clear that if he
had he would have understood, e.g., a quantifier over second-level
functions as a fourth-level function taking a third-level function as
argument.
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3 Frege’s Analysis of Mathematical In-
duction and the Abundance of Con-
cepts

Frege put higher-order quantification to work already in his early
work in his analysis of the ancestrals of relations. If 𝐹 is a concept
and 𝑓 a relation, we can say that 𝐹 is hereditary in the 𝑓 -series,
if whenever 𝑥 has 𝐹 and 𝑓 (𝑥, 𝑦), then 𝑦 has 𝐹 as well. Partly
modernizing Frege’s notation, we may put this:

Hered𝛽,𝛿 (𝐹 (𝛽), 𝑓 (𝛽, 𝛿)) =df (∀𝑥) (𝐹 (𝑥) → (∀𝑦) ( 𝑓 (𝑥, 𝑦) → 𝐹 (𝑦)))

If the relation 𝑓 is taken as generating a series, Frege analyzes 𝑦

following 𝑥 in that series as the possession by 𝑦 of all hereditary
concepts possessed by 𝑓 -relata of 𝑥:

follows 𝑓 (𝑥, 𝑦) =df (∀𝐹) (Hered𝛽,𝛿 (𝐹 (𝛽), 𝑓 (𝛽, 𝛿)) →
((∀𝑧) ( 𝑓 (𝑥, 𝑧) → 𝐹 (𝑧)) → 𝐹 (𝑦)))

The ancestral of relation 𝑓 , which I write here as 𝑓∗, can be defined
as the relation holding between 𝑥 and 𝑦 when 𝑥 = 𝑦 or 𝑦 follows 𝑥
in the 𝑓 -series:

𝑓∗(𝑥, 𝑦) =df 𝑥 = 𝑦 ∨ follows 𝑓 (𝑥, 𝑦)

Frege argues that this analysis of following in a series shows that
what might otherwise be taken as synthetic truths about the nature
of series in fact turn out to be analytic consequences of these
definitions.

Although he does not define numbers or the relation of suc-
cessor between one number and another in his early work, it is
clear that the principal application of these analyses is to the series
of natural numbers. Once zero, and the relation “succ” between
a number and its successor are defined, a natural number may
be defined as anything in the ancestral of the successor relation
beginning with 0:

ℕ(𝑥) = succ∗(0, 𝑥)
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The principle of mathematical induction—that all natural num-
bers have every succ-hereditary concept possessed by zero—
becomes a logical consequence of these definitions.

It should be noted that in order for Frege’s general analysis of
following in a series, and with it his treatment of mathematical
induction, to be plausible, the range of functions quantified over
must be abundant. Put in modern terms, this means that a con-
cept must exist for every possible subset of objects.1 For if not, it
might be accidentally true that an object has every hereditary con-
cept possessed by zero, and still not be a natural number, if, for ex-
ample, there simply isn’t a concept that all successor-descendants
of zero fall under but this object does not. Is it plausible to think
of Fregean concepts as being abundant? Concepts are a species
of function. In his early work, Frege’s conception of a function is
a bit too unclear to assess this point fully. Again, technically, he
there defines functions as types of expression, and it is not very
plausible to suppose that an open sentence exists for every subset
of objects. This may have been a slip in presentation, however,
as Frege clearly puts special emphasis on judgeable contents or
possible circumstances when presenting his views on functions. If
we think of a concept as a mapping from objects to circumstances
about those objects, it becomes more plausible to think that one
would exist for every subset of objects, but given the lack of clarity
about what a “circumstance” is supposed to be, the point is still
less than fully clear. Mature Frege thinks of concepts as mappings
from objects to truth-values, and there it is natural to suppose
that such a mapping exists for every subset of objects, i.e., one
that maps precisely those objects to the True and everything else
to the False. There could then be concepts not referred to by any

1Frege of course did not himself employ or acknowledge the modern con-
ception of set, but only a conception of extensions of concepts understood
as value-ranges of functions. Here I allow myself to use modern terminology
to make clear what is required even though Frege would not himself have ex-
pressed it this way. A similar point applies to our discussion of abundance for
Russell in Section 6 below.
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expression in language.

4 Treating Functions as Objects

As mentioned, Frege did not think that a function could take it-
self as argument. There is a deep gulf between objects on the
one hand and concepts and other functions on the other. A com-
plete expression can only refer to an object. Frege held this view
so strongly that he insisted that a complete expression that on its
surface appears to refer to a concept, such as “the concept horse”,
in fact refers to an object. During the 1890s at least, he held that
for every function, there was an object that goes proxy for that
function when one attempts to refer to the function using a com-
plete expression. If one writes “the concept horse is instantiated”
one is asserting a first-level concept of a special object named “the
concept horse” (Frege, 1984c [1892], 186).

Similarly, in his mature logical work, Frege held that corre-
sponding to every first-level function was an object, its value-range
(Werthverlauf ), considered as its complete mapping from argu-
ments to values, sort of like its “graph”, taken as an abstract ob-
ject. Functions have the same value-range just in case they have
the same value for every argument; this is Frege’s infamous “Basic
Law V”. Using the notation –𝛼𝐹 (𝛼) for the value-range of 𝐹 ( ),
this could be expressed:

⊢ (∀𝐹) (∀𝐺) (–𝛼𝐹 (𝛼) = –𝛼𝐺 (𝛼) ↔ (∀𝑥) (𝐹 (𝑥) = 𝐺 (𝑥)))

In the case of concepts, Frege identified their value-ranges with
their extensions: concepts have the same extension just in case
they map the same arguments to the True.

Through the use of value-ranges, Frege held that second-level
concepts could be reduced to first-level concepts. That is, for every
second-level concept, there is a first-level concept true of the value-
range of a function just in case the second-level concept applies
to the first-level function of which it is the value-range. This, he
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thought, led to a simplification in his logic, and obviated the need
to introduce quantifiers above second-order.

Unfortunately, this attempt at simplification was unsuccessful,
and it allowed the inconsistency due to Russell’s paradox to en-
ter the system, at least so long as the second-order quantifiers
ranged over impredicative functions, i.e., those themselves defined
in terms of quantification over functions. One such function is the
concept 𝑊 of being the value-range of a function that does not
map that value-range to the True, i.e.:

𝑊 (𝑥) =df (∃𝐹) (𝑥 =
–𝛼𝐹 (𝛼) ∧ ¬𝐹 (𝑥))

If we now consider the value-range of 𝑊 itself, viz., –𝛼𝑊 (𝛼), and
ask whether or not it falls under 𝑊 , we get a contradiction. The
proof of the contradiction uses the left-to-right direction of Law
V, called Vb:

⊢ (∀𝐹) (∀𝐺) (–𝛼𝐹 (𝛼) = –𝛼𝐺 (𝛼) → (∀𝑥) (𝐹 (𝑥) = 𝐺 (𝑥))) (Vb)

Suppose 𝑊 (–𝛼𝑊 (𝛼)). Then there is some 𝐹 such that –𝛼𝑊 (𝛼) =
–𝛼𝐹 (𝛼) and ¬𝐹 (–𝛼𝑊 (𝛼)). By Vb, 𝑊 (–𝛼𝑊 (𝛼)) = 𝐹 (–𝛼𝑊 (𝛼)), and
so ¬𝑊 (–𝛼𝑊 (𝛼)), contradicting our supposition. So ¬𝑊 (–𝛼𝑊 (𝛼)),
but then for every 𝐹, if –𝛼𝑊 (𝛼) =

–𝛼𝐹 (𝛼) then 𝐹 (–𝛼𝑊 (𝛼)); this
includes 𝑊 itself, and we have –𝛼𝑊 (𝛼) =

–𝛼𝑊 (𝛼), so 𝑊 (–𝛼𝑊 (𝛼)),
contradicting our earlier result.

Frege understood the value-range notation “–𝛼(. . . 𝛼 . . .)” as
standing for a second-level function mapping its argument func-
tion to its value-range. In the appendix to the 1902 second volume
of his Grundgesetze der Arithmetik, which he added after being in-
formed of the contradiction by Russell, Frege goes on to prove that
there can be no other interpretation of this functor that satisfies
Vb, i.e., there can be no second-level function mapping first-level
functions to objects that always yields a distinct object for func-
tions that do not have the same value for every argument. Every
such mapping from functions to objects must sometimes have the
same object as value for two “different” functions; in short, there
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cannot be as many objects as functions. The point is very much
related to Cantor’s powerclass theorem which proves that 2𝑛 > 𝑛

even when 𝑛 is infinite. Notice that there are 2𝑛 possible mappings
from objects to the two truth-values, the True and the False, i.e.,
2𝑛 possible concepts, for 𝑛 objects. The number of concepts must
therefore be greater than the total number of objects. Frege puts
the point in a 1925 letter thus: “We must set up a warning sign
visible from afar: let no one imagine that he can transform a con-
cept into an object” (Frege, 1980, 55). The point is instructive,
as there are many intuitive arguments that would posit a distinct
object for distinct concepts, not just the intuitive belief in value-
ranges or extensions (or similar objects such as sets), but also be-
lief in intensional entities such as senses, thoughts, propositions,
properties, etc., comes to mind.2

Fortunately, value-ranges can be dropped from Frege’s logic
leaving a perfectly workable second-order system. Still, this
requires thinking of the values of second-order quantifiers—
functions—as distinct from objects, and not at all values of first-
level quantifiers or as possible references of complete names. Ar-
guably, this leaves the Fregean position with an awkward stance
regarding its own metaphysics of functions. Consider such a claim
as “functions are not objects”. There appears to be no formal
analogue of this truth in Frege’s formal logic. If “functions” is
treated as representing a first-level concept—applicable or not to
objects—trivially, nothing falls under it. If it is treated instead as
representing a second-level concept, then in saying that what sat-
isfy this concept are not “objects”, one must treat “objects” as a
second-level concept as well, and again, it’ll be trivial that noth-
ing falls under it. Noting that his own wording of his own theories
about the nature of functions and their difference from objects
does not live up to the strictures of those very theories, Frege
writes that “By a kind of necessity of language, my expressions,
taken literally, sometimes miss my thought . . . I fully realize that

2For more on the potential difficulties that might arise in Frege’s philosophy
from positing too many senses or thoughts, see Klement (2002, chaps. 5–7).
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in such cases I was relying upon a reader who would be ready to
meet me halfway—who does not begrudge a pinch of salt” (Frege,
1984c [1892], 193). Commentators have often found this to be one
of the most puzzling aspects of Frege’s views, and have often seen
it as a forerunner of Wittgenstein’s position in the Tractatus that
there are things that can only be shown not said.3

5 The Development of Russell’s Views
on Propositional Functions

In his first letter to Frege, Russell writes that “On functions in par-
ticular. . . , I have been led independently to the same views even
in detail” (Frege, 1980, 130). This is an exaggeration: there were
important differences between Russell’s view of what he called
propositional functions and Frege’s views on functions. What is true,
however, is that prior to reading Frege, Russell too became con-
vinced that a proposition—the objective content of a declarative
sentence—could be understood as a function of its parts. He also
introduced means for quantifying over these propositional func-
tions.

For early Russell a proposition was understood as a structured
complex of constituents. For example, the proposition Hypatia is
wise consists of Hypatia herself as well as the universal of Wis-
dom. His early notion of a propositional function was built on
top of this notion of proposition. In his first major logical work,
1903’s The Principles of Mathematics, Russell describes a proposi-
tional function as what is got from a proposition by replacing a
constituent with a variable (or multiple constituents with multi-
ple variables). He ontologized variables and understood them as
a special kind of object: a variable is any individual, where the in-
dividual in question is not specified, though the same individual
for each occurrence of the variable (Russell, 1931 [1903], chap. 8).

3See, e.g., Geach (1976); for examples of those who believe Frege does not
deserve his pinch of salt, see, e.g., Burgess (2005); Wright (1998).
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The propositional function itself is therefore any proposition of a
given form. The function “𝑥 is human” denotes one, but no one in
particular, of the various propositions “Socrates is human”, “Xan-
thippe is human”, etc.

These curious objects which are any thing but no one thing
in particular were short-lived in Russell’s philosophy, and in his
1903 manuscripts he reimagined the variable as a kind of denot-
ing concept. The distinguishing feature of a denoting concept is
that when a denoting concept occurs as a constituent in a propo-
sition, the truth or falsity of the proposition is not determined by
direct features of the concept but rather by those of some entity
or entities to which it is related: its denotation, or those entities it
is “about”. For example, propositions in which the denoting con-
cept “any human” occur are made true or false by the properties of
humans, not by properties of the concept itself. Similarly, when
a variable occurs in a proposition, the proposition is not about
the variable itself but about the values of the variable. A propo-
sitional function is a kind of denoting complex. When one uses
an open formula as part of a sentence expressing a proposition,
the proposition expressed will not be made true or false by direct
features of the function but rather by features of the propositions
which are among its range of values. However, Russell did con-
sider it possible for there also to exist propositions whose truth or
falsity does depend on features of denoting concepts or denoting
complexes themselves, i.e., propositions about them as entities in
their own right. In his own writing, Russell signified the difference
with notational variants: using inverted commas for simple denot-
ing concepts and circumflected variable letters when speaking of
denoting complexes containing variables:

The circumflex has the same sort of effect as inverted
commas have. E.g., we say

Any man is a biped;
“Any man” is a denoting concept.

The difference between 𝑝 ⊃ 𝑞 .⊃. 𝑞 and 𝑝 ⊃ 𝑞 .⊃. 𝑞
corresponds to the difference between any man and
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“any man”. (Russell, 1994a, 128–129)

This does not directly answer the question as to what the differ-
ence is, metaphysically, between the two kinds of propositions:
those containing denoting concepts that are about the denotata,
and those about the concepts themselves. Do the latter kind con-
tain the denoting concepts themselves but occurring in an usual
way, or do they contain other denoting concepts that denote the
denoting concepts they are about? This is an issue Russell strug-
gled with and never settled on a stable view.

The notion of a propositional function was an important one to
early Russell. He was of course aware of paradoxes about classes
such as the one bearing his name, which made him doubt the ex-
istence of classes as entities separable from their members. As
early as mid-1903, he had hoped to eliminate class-talk from his
logic in favor of talk of functions, and quantification over func-
tions.4 For example, the cardinal number of 𝜙s might be defined
as the function satisfied by (true of) all functions that can be put
in 1–1 correspondence with 𝜙.

Early Russell took the variable 𝑥 to be absolutely unrestricted.
Even a propositional function could be the value of its own vari-
able. Russell soon realized that this meant one would have a
propositional function satisfied by all and only propositional func-
tions that do not satisfy themselves, and hence a contradiction
stemming from asking whether or not this function satisfied itself.
He summarized the problem in a 1906 letter this way:

Then, in May 1903, I thought I had solved the whole
thing by denying classes altogether; I still kept propo-
sitional functions, and made 𝜙 do duty for –𝑧(𝜙𝑧). I
treated 𝜙 as an entity. All went well till I came to con-
sider the function 𝑊 , where

𝑊 (𝜙) .≡. ∼𝜙(𝜙).
4See, e.g., his May 1903 letter to Frege (Frege, 1980, 158–160).
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This brought back the contradiction, and showed that
I had gained nothing by rejecting classes. (Grattan-
Guinness, 1977, 78)

As is clear from his wording here, Russell became suspect of the
idea that a propositional function could be considered an “entity”
in its own right, distinct from the propositions that are its values,
and the individuals that are its arguments. This suspicion was
no doubt strengthened by his coming to the conclusion that it is
incoherent to attempt to disambiguate between denoting concepts
and what they denote,5 leading him to abandon his former theory
of denoting concepts in favor of 1905’s theory of descriptions.

In late 1905, through most of 1907, Russell took the strategy
of eschewing propositional functions as single entities in favor of
what he called substitutional matrices, which consist of propo-
sitions and entities-to-be-substituted-for in them. That is, rather
than considering “𝑥 is human” to be an ambiguous proposition, or
something that denotes the various propositions Socrates is human,
Xanthippe is human and so on, Russell would consider the pair of
entities, the proposition Socrates is human, and Socrates. The vari-
ous values of what he formerly regarded as values of this function
could instead be regarded as various results of substituting other
things for Socrates in the proposition. He wrote “𝑝 𝑥

𝑎
!𝑞” for the

four-place relation meaning that 𝑥 substituted for 𝑎 in 𝑝 yields
𝑞. A single result of substitution, 𝑝 𝑥

𝑎
, could be defined using his

theory of descriptions as the 𝑞 such that 𝑝 𝑥
𝑎
!𝑞. Then, instead of

quantifying over functions, one could quantify over such pairs of
entities. E.g., instead of writing:

(∀𝜙) (𝜙𝑎 ⊃ 𝜙𝑏)

to say that whatever is true of 𝑎 is also true of 𝑏, one could instead
put:

(∀𝑝) (∀𝑥) (𝑝 𝑎
𝑥
⊃ 𝑝

𝑏

𝑥
)

5This is the main thrust of the infamous “Gray’s Elegy” passage of Russell
(1994b [1905]).
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I.e., for every proposition 𝑝 and entity in it 𝑥, if substituting 𝑎

for 𝑥 yields a truth, so does substituting 𝑏. This replaces a single
higher-order quantifier with two quantifiers for objects (proposi-
tions included among objects).

Most of the things one would want to say about a “function”
could be proxied in this way, and something vaguely like a hier-
archy of levels or types of functions emerges. One could speak of
a function whose argument itself is a function by talking of two
substitutions within a proposition, substituting for the entire sub-
stitutional matrix of both a proposition and the entity in it. E.g.,
if (∀𝑥)𝑝 𝑥

𝑎
says of the matrix consisting of 𝑝 and 𝑎 that all its val-

ues are true, one can regard this as a matrix for other matrices
by substituting other propositions for 𝑝 and other entities for 𝑎.
Moreover, the method disallowed any kind of proxy for a function
taking itself as argument. A substitutional matrix that does duty
for a function of individuals is two entities, and there is no means
in the theory for substituting a pair of things for a single thing.
A substitutional matrix that does duty for a function of functions
is three entities: an original proposition, a proposition in it to
be substituted for, and an individual, but again, its “values” are
gotten by substituting two entities, not three.

The difficulty with this approach was that it required taking
propositions as entities, and quantifying over them. We have seen
in the case of Frege that it must not be possible to generate a
distinct object for every function. Russell’s substitutional theory
successfully avoided taking functions themselves to be objects on
their own, but as first formulated, the theory allowed one to gen-
erate a distinct proposition for every substitutional matrix. For
example, one could generate the proposition that all values of
that matrix are true. Below, we use the notation ⌜⟨𝐴⟩⌝ for the
proposition expressed by 𝐴. Diagonalizing then, one would be
led to consider the matrix consisting of 𝑝0 and 𝑎0, where 𝑎0 is an
arbitrary thing, and 𝑝0 defined thus:

𝑝0 =df ⟨(∃𝑝) (∃𝑎) (𝑎0 = ⟨(∀𝑞) (∀𝑥) (𝑝 𝑥
𝑎
!𝑞 ⊃ 𝑞)⟩ ∧ ∼𝑝 𝑎0

𝑎
)⟩
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That is, 𝑝0 is the proposition that there is some matrix of 𝑝 and
𝑎 where 𝑎0 is identical to the proposition that all values of this
matrix are true, but 𝑎0 itself does not satisfy this matrix. We then
consider the proposition 𝑟0 that all values of the matrix 𝑝0 and 𝑎0
are true:

𝑟0 =df ⟨(∀𝑞) (∀𝑥) (𝑝0
𝑥

𝑎0
!𝑞 ⊃ 𝑞)⟩

Accepting Russellian assumptions about the identity conditions
of propositions, we are led to a contradiction if we ask whether
𝑟0 substituted for 𝑎0 in 𝑝0 yields a truth or not.6 Suppose 𝑟0
is substituted for 𝑎0 in 𝑝0: the result would be ⟨(∃𝑝) (∃𝑎) (𝑟0 =

⟨(∀𝑞) (∀𝑥) (𝑝 𝑥
𝑎
!𝑞 ⊃ 𝑞)⟩ ∧ ∼𝑝 𝑟0

𝑎
)⟩. For this to be true, there must

be a 𝑝 and 𝑎 where 𝑟0 = ⟨(∀𝑞) (∀𝑥) (𝑝 𝑥
𝑎
!𝑞 ⊃ 𝑞)⟩ but when 𝑟0

is substituted for 𝑎 in 𝑝, the result is false. Identical proposi-
tions have identical constituents. Since 𝑟0 is identical to both
⟨(∀𝑞) (∀𝑥) (𝑝0 𝑥

𝑎0
!𝑞 ⊃ 𝑞)⟩ and ⟨(∀𝑞) (∀𝑥) (𝑝 𝑥

𝑎
!𝑞 ⊃ 𝑞)⟩, it must be

that 𝑎0 = 𝑎 and 𝑝0 = 𝑝. But this would mean that when 𝑟0 is sub-
stituted for 𝑎0 in 𝑝0, the result is false. In short, in order for 𝑟0 sub-
stituted for 𝑎0 in 𝑝0 to be true, it must be false. It is therefore false.
The negation of what we get when we substitute 𝑟0 for 𝑎0 in 𝑝0 is
thereby true, i.e., ∼(∃𝑝) (∃𝑎) (𝑟0 = ⟨(∀𝑞) (∀𝑥) (𝑝 𝑥

𝑎
!𝑞 ⊃ 𝑞)⟩ ∧ ∼𝑝 𝑟0

𝑎
).

This is equivalent to (∀𝑝) (∀𝑎) (𝑟0 = ⟨(∀𝑞) (∀𝑥) (𝑝 𝑥
𝑎
!𝑞 ⊃ 𝑞)⟩ ⊃ 𝑝

𝑟0
𝑎
).

Instantiating to 𝑝0 and 𝑎0 we get 𝑟0 = ⟨(∀𝑞) (∀𝑥) (𝑝0 𝑥
𝑎0
!𝑞 ⊃ 𝑞)⟩ ⊃

𝑝0
𝑟0
𝑎0

. By the definition of 𝑟0, then 𝑝0
𝑟0
𝑎0

, i.e., the result of substi-
tuting 𝑟0 for 𝑎0 in 𝑝0 is true. This contradicts our earlier result.

Obtaining the contradiction requires the possibility of the (∃𝑝)
quantifier in 𝑝0 taking 𝑝0 itself as a value, i.e., for a proposition
to be able to quantify over a range that includes that very propo-
sition. In his manuscripts and works of the period,7 Russell tried
various solutions, including denying the existence of quantified
propositions, and also dividing quantified propositions into vari-
ous orders depending on what kinds of propositions they quanti-

6See Landini (1998) for more details as well as further discussion of this
period of Russell’s thought and the problems he encountered.

7See the papers on the substitutional theory gathered in Russell (2014).
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fied over. In his well-known “Mathematical Logic as Based on the
Theory of Types” (Russell, 1956b [1908], 77), written in 1907 and
published in 1908, Russell reintroduced a notation for quantifying
over functions, but explained why functions must be divided into
various types, so that a function cannot take itself as argument,
by citing the notion of substitution, so that function-quantification
was not to be taken as fundamental. Functions would also be di-
vided into various orders, depending on the types of quantification
that exist in their values, in keeping with the idea that the matri-
ces in virtue of which they’re defined are divided by the order of
the proposition into which substitutions are made in their values.
The result was the first version of a so-called “ramified” theory of
types.

However, this precise metaphysical picture of the underpin-
nings of ramified type-theory was short-lived. Russell had been
convinced as early as The Principles of Mathematics that all gen-
uine entities form a logical type—that of an individual, or some-
thing that can be counted as one (Russell, 1931 [1903], §47). Hav-
ing to divide propositions into various orders depending on what
they quantify over, and not having a single variable encompass-
ing all entities whatsoever, appears to be something with which
he was uncomfortable. As a result, he reconsidered his entire
metaphysics of propositions as the contents of judgments and as-
sertions. Whereas he had previously understood judgment as a
relation between a subject and a single thing, a proposition con-
sidered as a single unit, he now adopted what is known as the
multiple-relation theory of judgment (Russell, 1992b [1910], 1984).
On this view, 𝑆 judging that Hypatia is wise is not a binary rela-
tion between 𝑆 and a proposition taken as a single unit but a
three-place relation between 𝑆, Hypatia, and Wisdom as separate
entities. Giving up his older view of propositions required giving a
rather different account of how to understand quantification over
functions.
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6 The Mature View of Principia Mathe-
matica

The metaphysics behind the higher-order logic of Principia Math-
ematica, and its countenancing of individuals and propositional
functions of various order-types, are often seen as obscure. Geach
claimed that Russell’s notion of propositional function is “hope-
lessly confused and inconsistent” (Geach, 1972), and Cartwright
agrees adding that “attempts to say what exactly a Russellian
propositional function is, or is supposed to be, are bound to end
in frustration” (Cartwright, 2005, 915).

I believe we can get a better handle on his view by con-
sidering its origins, as well as the account of truth and falsity
sketched briefly in the introduction to Principia Mathematica. The
truth of a higher-order quantified proposition is still understood
in terms of substitutions within propositions, but the notion of a
“proposition” is de-ontologized and mainly understood linguisti-
cally. Around the same time he adopted the metaphysical view
of logical atomism. According to this view, the world consists of
simple entities holding simple properties and standing in simple
relations. Simple facts of this form were called atomic facts, and
serve as direct truth-makers for the elementary propositions ex-
pressing them. However, all truths, even more complicated ones,
ultimately rest on the collection of atomic facts. Part and parcel of
this involved explaining the truth or falsity of quantified proposi-
tions in terms of their non-quantified instances. In 1940, he wrote
that “in the language of the second order, variables denote sym-
bols, not what is symbolized” (Russell, 1940, 192). This does not
mean that higher-order quantification is to be understood as objec-
tual quantification over expressions. It is rather to be understood
as claiming that the truth or falsity of second (and higher) order
formulas is to be defined substitutionally in terms of the truth or
falsity of the lower order formulas that are their instances, ulti-
mately resolving into the basic truths upon which all others rest.

A quantifier-free formula in the language of Principia Mathe-
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matica is thought of as expressing an elementary proposition. It
records a judgment a subject makes to the effect that a certain re-
lation holds between certain relata.8 This judgment is a multiple
relation between a subject, that relation, and those relata, and is
true if the relation in fact holds between those relata, i.e., there is
a complex or fact of this form. The truth or falsity of elementary
propositions is the basis for all other notions of truth, which Rus-
sell tells us, form a hierarchy. Functions are like propositions ex-
cept containing variables—only now, both propositions and vari-
ables, and thereby functions—are understood linguistically. The
values of a function, Russell also tells us, are always prior to the
function itself, and when a variable is used essentially—as in a
quantified proposition—the truth or falsity of the resulting propo-
sition is defined in terms of the truth or falsity of its instances:

. . . the meaning of truth which is applicable to this [a
first-order quantified] proposition is not the same as
the meaning of truth which is applicable to “𝑥 is a man”
or to “𝑥 is mortal”. And generally, in any judgment
(𝑥).𝜙𝑥, the sense in which this judgment is or may be
true is not the same as to which 𝜙𝑥 may be true. If 𝜙𝑥
is an elementary judgment, it is true when it points to
a corresponding complex. But (𝑥).𝜙𝑥 does not point
to a single corresponding complex: the corresponding
complexes are as numerous as the possible values of 𝑥.
(Whitehead and Russell, 1925–1927 [1910–1914], 46)

The quotation is a bit difficult in that Russell allows himself to
use a free variable in his informal discussion to speak of arbitrary
variable-free propositions. I.e., when he speaks of the kind of truth
applying to “𝑥 is a man”, he means the kind of truth applicable
to all elementary judgments such as “𝑎 is a man”, “𝑏 is a man”,
etc., alike. These do not contain variables. The facts that make

8For an explanation of how even molecular quantifier-free judgments can be
understood as expressing a relation between relata, see Klement (2015, §5).
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these particular judgments true are ultimately what make quan-
tified propositions—those that do use variables essentially—true.
A quantified proposition is not made true or false by a single fact.
Instead, a quantified proposition has a different kind of truth or
falsity that depends on whether its instances are true or false.
The truth or falsity of those instances therefore cannot depend
on anything only definable utilizing the function contained in the
quantified proposition, for fear of circularity.

Once truth or falsity for first-order quantified propositions is
defined, we can go on to define a notion of truth or falsity for
second-order quantified propositions which depends on whether
or not all instances of first-order propositions of a certain form
are true. For example, “(∀𝜙)𝜙!𝑎” could be taken to possess its
appropriate variety of truth iff all first-order propositions contain-
ing “𝑎” have their appropriate variety of truth. Order restrictions
come from the place in the hierarchy of senses of truth and fal-
sity a given formula holds. Russell adds the shriek “!” to bound
function variables to indicate that they must be predicative, i.e.,
they are of the lowest order possible for their type and the notion
of truth applicable to their instances must always be lower in the
hierarchy than the notion of truth applicable to the propositions
in which they are used. Although this was not well-understood
by the first generation of commentators on Principia Mathematica,
all bound function variables in Principia Mathematica are predica-
tive.9 For a second-order quantifier, this means, for example, that
the instances of 𝜙!𝑎 in virtue of which the truth of “(∀𝜙)𝜙!𝑎” is
defined cannot make use of function quantifiers.

This restriction to quantification over predicative functions
poses certain problems for the mathematical project of Principia
Mathematica. The primary use of higher-order quantification in
Principia Mathematica is as a part of its treatment of classes, the so-

9For a defense of this claim and a comparison of different interpretations,
see Landini (1998, chap. 10). For further explanation of how to understand the
non-predicative function variables that apparently occur in Principia Mathemat-
ica, see Klement (2013).
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called “no classes theory of classes”. On this approach, talk about
classes or sets is not taken as fundamental but defined in terms
of higher-order quantification. To say something about {𝑥 |𝐴𝑥},
the class of all 𝑥 such that 𝐴𝑥, is really to say that there is a
function—a predicative function—𝜙!, such that for all 𝑥, 𝜙!𝑥 iff
𝐴𝑥 and that something holds of 𝜙!. If the expression 𝐴𝑥 con-
tains function variables, it is not obvious that there will always be
such a function. Moreover, Russell treats mathematical induction
in a manner similar to Frege, using a kind of quantification over
classes that is resolvable into quantifying over functions. If there
isn’t a predicative function coextensive with arbitrary open sen-
tences regardless of the orders of their quantifiers, mathematical
induction would be limited to those instances in which there was
such a function, crippling the system. To get around these limita-
tions, Russell assumes something called the axiom of reducibility,
which for the lowest type can be stated schematically as follows:

(∃𝜙) (∀𝑥) (𝜙!𝑥 ↔ 𝐴𝑥)

where 𝐴𝑥 is any open sentence, even one containing higher-order
quantifiers. Semantically, the truth or falsity of a formula con-
taining a predicative second-order variable 𝜙! is not defined in
terms of non-predicative instances, but there must be a predica-
tive instance coextensive with any arbitrary open sentence. The
inclusion of the axiom of reducibility makes Russell’s logic as pow-
erful as, and easily mutually interpretable with, full impredicative
higher-order logic.

It is natural to ask whether or not the axiom of reducibility is
a plausible assumption, and whether or not it can be considered
a basic principle of logic. This is a difficult question. Let us focus
again for the moment on the lowest type, and remember that a
formula using higher-order quantification is to be understood as
getting its truth or falsity from the formulas that are its instances.
The axiom of reducibility requires that for every formula contain-
ing a variable 𝐴𝑥, even one containing higher-order quantifiers,
there is a value of the second-order variable 𝜙! such that 𝜙!𝑥 is
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satisfied if and only if 𝐴𝑥 is, or crudely, that 𝜙!𝑥 is coextensive
with 𝐴𝑥. This is plausible if, similar to the case for Frege, pred-
icative first-order functions are abundant, i.e, for every subset of
the set of individuals, there is a predicative function satisfied by
all and only members of that subset. Given the substitutional se-
mantics described above, the values of the predicative variable 𝜙!
are determined by the otherwise closed predicative formulas that
can be substituted for it, i.e., formulas not containing any second
or higher order quantifiers. Taking predicative first-order func-
tions to be abundant therefore is tantamount to holding that for
every subset of the domain there is an open sentence containing
𝑥 without higher-order quantifiers satisfied by exactly that subset.

Russell argues (Russell, 1919, 192–193) that this is plausible
if we accept a generalized version of Leibniz’s principle of the
identity of indiscernibles. On this version, it is assumed that the
entirety of a given individual’s monadic properties and relations to
other individuals is unique to it. For a given individual 𝑎, let 𝐵𝑎𝑥

be the conjunction of the form 𝑃1𝑥∧𝑃2𝑥∧. . .∧𝑅1𝑥𝑏 . . ., containing
all of 𝑎’s properties and relations. Now let 𝐵𝑥 be the disjunction of
such conjunctions, 𝐵𝑎𝑥∨𝐵𝑏𝑥∨ . . ., etc., for any arbitrary subset of
the domain containing 𝑎, 𝑏, . . . , etc. The resulting open sentence
𝐵𝑥 does not contain higher-order quantifiers and thus is one in
terms of which the truth or falsity of which the relevant instance
of the axiom of reducibility is defined, and arguably, such a 𝐵𝑥

exists coextensive with any arbitrary 𝐴𝑥. Russell seems unper-
turbed that such disjunctions of conjunctions might be infinitely
complex, both in terms of the properties and relations of a given
individual, and in terms of the number of individuals making up
the subset. This suggests that Russell believes the lower-order in-
stances in virtue of which the truth of a higher-order quantified
proposition is defined can include infinitely long or complex in-
stances. Russell confirms that this is his view, writing later that
our human inability to produce infinitely complex formulas for
defining arbitrary classes is “is an empirical fact which logicians
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should ignore” (Russell, 1958, 91).10

Although Russell employs quantifiers for what he calls “propo-
sitional functions”, it is clear that this kind of quantification is not
to be understood as introducing a new kind of entity into his meta-
physics. The truth or falsity of a formula that involves such quan-
tification resolves into the truth or falsity of its instances, which,
if they contain further (lower-order) quantifiers, are similarly re-
solved into the truth or falsity of their instances, and so on, until
we reach elementary propositions. The entities and complexes
making elementary propositions true or false indirectly make all
other orders of propositions true or false as well. Hence we find
Russell writing that a propositional function “in itself is nothing;
it is merely a schema” (Russell, 1956c [1918], 234), or “is nothing
but an expression” (Russell, 1958, 53). As Russell himself claims,
this means that “we do not need to ask, or attempt to answer,
the question ‘What is a propositional function?’” (Russell, 1919,
157)—so long as we can understand the semantics of higher-order
quantified formulas, there is nothing more that needs explaining,
or so Russell believed during this period. Perhaps commentators
such as Cartwright and Geach are reading too much into the no-
tion.

7 Logical Form and General Facts

While Russell did not have a realist metaphysics of “propositional
functions”, and therefore did not have one that could not be ex-
pressed according to its own strictures, there are puzzles in Rus-
sell’s view that do not have a clear solution. As we have seen, a uni-
versally quantified proposition is true just in case all the instances
of a more basic logical form are true. But what is a logical form?
One possible answer to the question what is the form of “Socrates
loves Xanthippe”? would be the propositional function 𝑥�̂��̂�, where

10For further discussion of this and related points, see Klement (2010, 655–
659).
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all the constituents are replaced by variables. If we are eschewing
propositional functions as metaphysical entities, this could only
define a form as a kind of expression containing variables. As
we have seen, expressions containing variables are used to speak
about all or some of the expressions that are their instances. Is
talk about a “form” really just a way of talking about a certain
class or pattern of propositions, considered linguistically?

Part of the problem with this is that it doesn’t seem to ade-
quately capture what propositions of the same form really have
in common. It is natural to think that what all binary relational
propositions have in common is not merely something linguistic
but something reflected in reality, something in the facts corre-
sponding to them. Isn’t what we’re really interested in the thing
in reality reflected by these linguistic patterns? Russell himself
often spoke about creating a logically perfect language: in such
a language, there would be a simple expression for every simple
entity, and complex things would be represented by complex ex-
pressions. But this seems to suggest that there is an objectivity
that goes beyond language to what is simple, and what is com-
plex, and that a logically ideal language is one that “gets the true
logical form” correct in its own syntax, suggesting there is a non-
linguistic criterion for what counts as correct. Without this, it is
unclear what could make one language more “logically perfect”
than another.

Moreover, even if we do focus entirely on linguistic patterns,
we need an explanation for why certain expressions match a given
pattern and others do not. Why is “Socrates loves Xanthippe” an
instance of 𝑥�̂��̂� but “the Earth rotates” not? There is something
structurally different in the very expressions that is not adequately
captured merely by pointing out that they are members of different
sets of propositions. Not every arbitrary set of propositions qual-
ifies as a distinct logical form, only those in which the members
genuinely have something in common. What is this something,
and isn’t that what we’re really interested in when we speak of log-
ical form? We could try to spell it in out in terms of some notion
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of “substitution” or “assignment” for variables, but we still need
an explanation of this notion that explains why one could never
obtain “the Earth rotates” by substituting or assigning values to
the variables in 𝑥�̂��̂�. Why isn’t “Earth” an appropriate substitute
for �̂�?

In his 1913 Theory of Knowledge manuscript (Russell, 1984,
114), Russell defines a logical form of a proposition as the ex-
istentially quantified fact corresponding to the proposition got by
replacing all its definite constituents with variables and existen-
tially generalizing. Thus the form of “Socrates loves Xanthippe”
would be the fact that (∃𝑥) (∃𝑦) (∃𝑅)𝑥𝑅𝑦—but how are we to un-
derstand this? It is a deviation from the view of Principia Mathe-
matica according to which, as we have seen, quantified judgments
are not made true or false directly by single facts but through
their instances, ultimately bottoming out only in elementary, non-
quantified judgments. The fact that Socrates loves Xanthippe has
Socrates, love, and Xanthippe as constituents, but what are the
constituents of fully general facts such as he now defines logical
forms? The official answer in 1913 seems to be that these facts
have no constituents, as all the particular constituents have been
removed. What are they then? What’s left? Russell tells us no
more.

In his 1918 lectures on “The Philosophy of Logical Atomism”
(Russell, 1956c [1918], 234–235), Russell goes on to argue that in
addition to the atomic facts that make atomic propositions true
or false, there must be general and existence facts correspond-
ing to quantified formulas. His argument for this proceeds as fol-
lows. Consider the quantified truth that all humans are mortal, or
(∀𝑥) (𝑥 is human ⊃ 𝑥 is mortal). Even if we have an enumeration
of every object there is, and have established for each, either that
it is non-human, thus making the conditional true by making the
antecedent false, or that it is mortal, thus making the conditional
true by making the consequent true, this is not enough to guar-
antee the truth of the quantified formula. One needs additionally
that those enumerated are all the objects there are—itself a gen-
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eral fact. However, he does not say much about how to understand
the nature of general facts, even admitting uncertainty:

I do not profess to know what the right analysis of gen-
eral facts is. It is an exceedingly difficult question, and
one which I should very much like to see studied. I am
sure that, although the convenient technical treatment
is by means of propositional functions, that is not the
whole of the right analysis. Beyond that I cannot go.
(Russell, 1956c [1918], 236–237)

Russell also discusses fully general, or logical, truths, and claims
not to fully understand what their constituents are, hinting that
forms may be one possible answer, but without giving an account
of what forms are supposed to be. However, if it is right that
the correct technical treatment of generality/quantification involves
propositional functions, and there are not just general formulas,
but also facts corresponding to those formulas, this suggests very
much that there must be something with external ontological sta-
tus associated with propositional functions.

It is a natural worry that by introducing general facts into his
metaphysics, Russell runs the risk of again postulating distinct
entities for every propositional function. Can a general fact be
about a generality that includes that fact itself? When functions
and general facts aren’t ontologized, it is natural to think that the
truth conditions of a quantified formula must be specifiable in a
non-circular way and that, therefore, the values of a propositional
function must be prior to the function itself. But this is not so clear
if general facts are understood as ontologically real.11 Recall that
Russell pushed for a view according to which all genuine entities,
those that do not “disappear on analysis” (Whitehead and Rus-
sell, 1925–1927 [1910–1914], 51), can be considered individuals.
Facts would appear to be such entities. As we have seen, Russell

11A related point was made by Gödel in his remarks on Russell’s logic; see
Gödel (1944, 148).
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recognized the paradoxical nature of postulating as many proposi-
tions as propositional functions thereof, a problem which plagued
even the substitutional theory where functions were reimagined as
substitutional matrices. Isn’t he now in danger of postulating as
many facts as functions on facts, and thereby facing a Cantorian
paradox similar to those considered earlier?

Russell did not believe in “false” facts: there are just facts.
Since he did early on believe in false propositions, arguably this
would mean he is not postulating quite as many facts as he previ-
ously did propositions. However, in this period, he does believe
in what he calls “negative” facts: facts which make the negation
of a false proposition true. In the case of quantified propositions,
the distinction is rather between general and existence facts: the
negation of a false general proposition is made true by an exis-
tence fact, and the negation of a false existential proposition is
made true by a general fact (Russell, 1956c [1918], 211–215, 236–
238). So for every pair of proposition and its negation, there is
a fact. Half of an infinite number is the same infinite number, so
this does not lead to a meaningful reduction in his metaphysics.
We can still assume that, for every formula 𝐴, there is a fact which
either makes 𝐴 true or makes it false (by making ∼𝐴 true).

Suppose we replace our earlier ⌜⟨𝐴⟩⌝ notation for propositions
with ⌜[𝐴]⌝ for the fact that makes it true or false that 𝐴, whichever
is the case. Whether or not they are individuals, facts must be in
some logical type; let us use Greek letters as variables for facts.
There must also be properties of (propositional functions satisfied
or not by) facts. For each property 𝜙 of facts, there is fact making
it either true or false that every fact has 𝜙. Now there appear to
be too many facts, and Cantorian paradoxes loom. Consider the
function:

𝜓𝛼 =df (∃𝜙) (𝛼 = [(∀𝛽)𝜙𝛽] ∧ ¬𝜙𝛼)
That is, 𝜓 is the property a fact has if it makes true or false a
formula of the form (∀𝛽)𝜙𝛽 but it itself does not have the 𝜙 in
question. We can then consider the fact [(∀𝛽)𝜓𝛽] making it true
or false (well, false) that all facts have 𝜓. Arguably, this fact itself
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satisfies 𝜓 just in case it doesn’t:

𝜓( [(∀𝛽)𝜓𝛽]) ↔ ¬𝜓( [(∀𝛽)𝜓𝛽])

For suppose 𝜓( [(∀𝛽)𝜓𝛽]). Then [(∀𝛽)𝜓𝛽] is identical to some
fact [(∀𝛽)𝜙𝛽] for some 𝜙 it does not have. But presumably facts
are individuated so they correspond to the generalization or exis-
tence of a unique property, so 𝜙 can only be 𝜓, and since it does
not have 𝜙, it must not have 𝜓, so our supposition cannot be true.
Suppose instead [(∀𝛽)𝜓𝛽] does not have 𝜓. This means it has
every property 𝜙 for which it is the same as the fact [(∀𝛽)𝜙𝛽],
including 𝜓 itself, so it does have 𝜓 after all: a contradiction.

Russell could try to resist this by pointing out the impredica-
tivity of 𝜓—we are assuming 𝜓 itself is a possible value to the
(∃𝜙) quantifier it contains. Unfortunately, the axiom of reducibil-
ity might provide a coextensive function to 𝜓 which is in the range
of the (∃𝜙). Russell could argue that facts must be subdivided
into logical types depending on what they quantify over, so that
[(∀𝛽)𝜓𝛽] is not of the right type to be an argument to 𝜓, but
again, if general facts are considered ontologically real, it is un-
clear why a fact cannot involve quantification over a range that
includes itself.

Another response Russell could give would be to deny that
it is possible to name or quantify over facts at all, and indeed,
in his logical atomism lectures, he claims that facts cannot be
named. This appears to have been a point that he took from
early Wittgenstein and he does not argue for it or explain it in the
detail it deserves. Sometimes he seems only to mean that facts
are best represented with complex expressions rather than sim-
ple ones (Russell, 1956c [1918], 189). This does not mean that
we cannot quantify over or form complex names of (descriptions
for) facts. More explanation would need to be given to determine
whether or not it would give him grounds for resisting our nota-
tion ⌜[𝐴]⌝, and with it, a way to block this paradox. A strong
interpretation of this position, one on which it is wholly impossi-
ble to quantify over facts, or talk about them similarly to regular
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things, seems to create problems for Russell similar to those that
led Frege to ask for his pinch of salt. What are we to make of
such claims as that “there are general facts in addition to atomic
facts”, or “the proposition ‘Socrates is human’ is made true by a
fact” if facts cannot be named or quantified over? Even the inter-
mediate view that quantification over facts is possible but that no
fact can involve quantification over a range that includes itself is
difficult to express by its own lights. Is that claim itself made true
by a fact, and if so, is it included in its own range of applicability?
Unfortunately, Russell’s later views on the nature of general facts
and logical forms are probably too unclear to fully assess. He
might be better off not positing a general fact for every quantified
judgment. This would involve suggesting not only that there are
no false facts but that negations of false general propositions are
not always made true by distinct facts. It might be sufficient to
postulate just one general fact, i.e., that the list of individuals in
the world is comprehensive. In that case, there is no risk of postu-
lating as many general facts as propositional functions satisfiable
by them, which would ease any such Cantorian worries.

8 Conclusion

Frege and Russell are often heralded as two of the principal
founders of analytic philosophy and their views have been remark-
ably influential. I have attempted to sketch the development of
their views on the nature of (propositional) functions and higher-
order quantification. I have argued that the views of each devel-
oped as they did due in part to the difficulties that resulted from
taking functions to be objects, or to be correlated with objects
in a way postulating as many objects as there are functions. I
have further explained how each held a mature position on which
their own metaphysical views on the nature of functions or general
facts were difficult to state from within their own position. These
issues are still of ongoing concern. Perhaps most significantly is
that contemporary researchers need to take seriously the warning
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Frege wanted to be “visible from afar”: that if we do adopt things
such as higher-order/higher-level functions or properties into our
logical systems, we must be very careful not to take them to be
objects in their own right or even correlate them one-to-one with
objects, or else we run the risk of contradiction.
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