Active Bias: Training a More Accurate Neural Network by Emphasizing High Variance Samples

Haw-Shiuan Chang, Erik Learned-Miller, Andrew McCallum

hscang@cs.umass.edu elm@cs.umass.edu mccallum@cs.umass.edu

Main Idea

NN accuracy often gained by techniques such as momentum, dropout, batch normalization, distillation. We propose a compatible "sibling": Weight more informative training examples using variance based active learning.

Methods and Related Work

Example: Logistic Regression

Obj func: \[-\log(p(Y=W|X)) = -\sum \log(p(y_i|x_i, w)) - \frac{\mathbb{E}[|w|^2]}{2\eta} \]

Assumption 1: \[P_Y(W = w | Y, X) \propto \mathcal{N}(w | w_N, S_N) \]

Assumption 2: \[p(y_i|x_i, W) \approx p(y_i|x_i, w) + g_i(w)^T (W - w) \]

\[\text{Var}(p(y_i|x_i, W)) \approx g_i(w)^T S_N g_i(w) \]

Weighting more uncertain examples (with high prediction variance or close to decision boundary) reduces classifier uncertainty.

Experimental setup

Table: The average of the best testing error rates for different sampling methods and datasets (%).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Modal</th>
<th>SGD-Uni</th>
<th>SGD-SW</th>
<th>SGD-AD</th>
<th>SGD-LB</th>
<th>SGD-SC</th>
<th>SGD-TP</th>
<th>SGD-WP</th>
<th>SGD-WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>0.54%</td>
<td>0.48%</td>
<td>0.56%</td>
<td>0.49%</td>
<td>0.48%</td>
<td>0.50%</td>
<td>0.54%</td>
<td>0.48%</td>
<td></td>
</tr>
<tr>
<td>CIFAR 10</td>
<td>6.48%</td>
<td>6.18%</td>
<td>6.66%</td>
<td>6.66%</td>
<td>6.01%</td>
<td>6.12%</td>
<td>6.16%</td>
<td>6.16%</td>
<td></td>
</tr>
<tr>
<td>Cifar 100</td>
<td>19.40%</td>
<td>18.30%</td>
<td>19.60%</td>
<td>18.60%</td>
<td>19.00%</td>
<td>18.70%</td>
<td>18.40%</td>
<td>18.40%</td>
<td></td>
</tr>
<tr>
<td>CoNLL2003</td>
<td>11.62%</td>
<td>11.50%</td>
<td>11.75%</td>
<td>11.50%</td>
<td>11.75%</td>
<td>11.50%</td>
<td>11.75%</td>
<td>11.50%</td>
<td></td>
</tr>
<tr>
<td>OntoNote 5.0</td>
<td>17.58%</td>
<td>17.05%</td>
<td>17.38%</td>
<td>17.58%</td>
<td>17.58%</td>
<td>17.58%</td>
<td>17.58%</td>
<td>17.58%</td>
<td></td>
</tr>
<tr>
<td>MNIST</td>
<td>2.27%</td>
<td>2.13%</td>
<td>2.23%</td>
<td>2.18%</td>
<td>2.18%</td>
<td>2.18%</td>
<td>2.18%</td>
<td>2.18%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: MNIST error rate (%)

Figure 4: MNIST error rate (%)

Conclusion and Future Work

Lightweight supervised training trick motivated by active learning.

References