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1. Introduction 

 As noted earlier, the use of the word ‘scale’ in measurement theory is closely related to its use in 
music; in particular, this use of ‘scale’ derives from the Latin word sc³lae [ladder].  In this section we 
examine musical scales from the viewpoint of measurement theory (and of course music theory) .  As 
we will see, from the viewpoint of measurement theory, a musical scale is basically an interval scale; 
indeed, in music theory, the distances between notes are even called ‘intervals’!  The question then is – 
how are these intervals measured? 

 Music is based on pitch.  For example, when a guitar string is plucked, it vibrates, thereby 
producing sound with a characteristic fundamental frequency, which we perceive as pitch or tone.  Pitch 
recognition is part of the human sensory endowment; we innately recognize when frequency/pitch goes 
up, and when it goes down.  The evolution of this ability is most likely associated with communication, 
which played a vital role in the development of modern humans.1  Pitch production and recognition 

                                                 
1 Needless to say, humans are not the only animals that sing, or even the only animals that produce "messages" involving 
pitch.  
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allows for more subtle and varied communication.  This shows up in modern languages, in which pitch 
distinctions are crucial for conveying grammatical (and even lexical2) information.  For example, the 
question "you did ?" is intonated quite differently from the statement "you did"; this tonal distinction 
would be impossible without our ability to produce and hear pitch. 

 Singing basically involves producing sequences of syllable-tones.  Some sequences seem more 
agreeable than others; and some combinations of pitches seem more harmonious than others.  This is 
partly cultural, and it is partly psycho-physical.  In any case, over the course of history, by way of 
organizing pitch combinations, various human cultures have devised various musical scales.   

 It is quite difficult to give a simple definition of musical scale, but it is extremely simple to give 
an example.  In the Western world, probably the best known (and most widely used) musical scale is the 
major scale  

do re mi fa so la ti do 

which virtually everyone can recite, and which is immortalized in a song from the movie “Sound of 
Music”.3 

 What is crucial to realize in describing the major scale is that the scale-values (do, re, …) do not 
correspond to particular pitches; for example, do does not correspond to a frequency of 400 Hz,4 or any 
other frequency.  In other words, a musical scale does not correspond to a conventional ratio-scale, like 
weight or volume.  On the other hand, a musical scale is more than an ordinal scale; there is more to a 
musical scale than the order of the pitches, low to high.  Rather, a major scale is a special kind of 
interval scale – one defined by the pitch-relations (intervals) among the various scale-values. 

 In addition to the major scale, there have been thousands of other scales that have been 
theoretically proposed and studied, and there have been hundreds of scales that have been actually used 
by people to produce music.  What further complicates the study of musical scales is that the major scale 
is not a singular object, since there are different ways of calibrating its different components.  In what 
follows, first we examine the various ways in which the major scale can be calibrated (i.e., tuned), and 
second we examine a few alternative musical scales, both theoretical and practical. 

2. The Fundamental Unit – The Octave 

 The first scientific construction of the major scale was accomplished by Pythagoras (569-475 
BC).  Pythagoras discovered that the fundamental harmonious pitch-combinations correspond to the 
following mathematical ratios.   

1:1 2:1 3:2 

                                                 
2 In conveying lexical information, I have in mind tonal languages, the most notable of which are the various Chinese 
languages.  In a tonal language, a given syllable has different meanings according to how it is intonated.  These tonal 
distinctions make phonetic transcriptions very difficult, which partly explains why the official written language of China is 
not phonetic, but is instead logographic.    
3 This used to be a classic children’s song – “do, a deer, a female deer; re, a drop of golden sun; mi, a name I call myself; fa, a 
long long way to run; so, a needle pulling thread; la, a note that follows so; ti, a drink with jam and bread; and that brings us 
back to do”. 
4 The unit of frequency is cycles per second, which are called "Hertz" (abbreviated Hz), after the German physicist Heinrich 
Rudolf Hertz (1857-94), who experimentally demonstrated that energy can be transmitted in electromagnetic waves, which 
travel at the speed of light and which possess many other properties of light.  These discoveries ultimately led to the 
development of all the wonderful "wireless" communication devices – telegraph, radio, television, etc.   
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In this section, we concentrate on the 1:1 and 2:1 ratio.  By way of an idealized reconstruction of 
Pythagoras’s experimental setup, we imagine constructing a single-string "guitar" by stretching a 
musical string between two "bridges", separated by a distance of L, as follows. 

 ←−−−−−−−−−−−− L −−−−−−−−−−−−→  

Now, when we pluck the string, it produces a characteristic pitch.  Next, we construct another such 
instrument, but one in which the bridge distance is one-half L.  

 
  ←− L × ½ −→  

Now, here is the trick.  If we make sure that the tensions are the same for both strings, the resulting 
pitches will be very harmonious.  From the modern viewpoint, the shorter string will vibrate at a 
frequency that is exactly twice that of the longer string.  This ratio is so fundamental to human pitch-
recognition that two pitches that stand in this ratio are regarded as instances of the very same "note".  
For example, if I sing a 440 Hz tone, and you sing an 880 Hz tone, we are basically singing the same 
note – which is called "A" according to modern tuning standards.5  This interchangeability of note 
pitches is what enables hundreds of people to collectively sing the same hymn or anthem, but in widely 
different registers (e.g., bass, baritone, tenor, alto, and soprano). 

 The procedure described above can be repeated, in either direction, so that we could for example 
produce the following series of single-string guitars. 

 
 ←−−−−−−−−−−−−−−−−−−−−−−−−−− L × 2 −−−−−−−−−−−−−−−−−−−−−−−−−−→  

 
 ←−−−−−−−−−−−− L −−−−−−−−−−−−→  

 
  ←− L × ½ −→  

 
 L × ¼   

 
Under appropriate conditions, these strings would then produce frequencies with the following ratios. 

1:2 1:1 2:1 4:1 

There is a natural ordering of these ratios, from smaller to larger, so we have a natural ordinal scale.  
This is in turn part of an infinite ordinal scale given as follows. 

                                                 
5 The modern concert A is 440 Hz, which is the result of standardization.  Over the centuries, many other pitches have been 
used for tuning a "concert A".  For example, in the premier of Handel’s Messiah, Handel used a tuning fork (which we still 
have!) that vibrates at 423 Hz.  The difference from modern tuning is partly a matter of aesthetics, but is also partly a matter 
of technology.  We can now make instrument components that accept higher tensions.   
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… 1 
4 

< 1 
2 

< 1 
1 

< 2 
1 

< 4 
1 

< 8 
1 

… 

A particular scale of frequencies can be produced by assigning 1/1 to a particular frequency – say 220Hz 
– which yields the following derivative scale.     

… 55 
Hz 

… 110 
Hz 

< 220 
Hz 

< 440 
Hz 

< 880 
Hz 

< 1760 
Hz 

… 

Notice that this scale has neither a beginning nor an end, although of course we quickly exceed normal 
human hearing in either direction.6   

 So far, we have an ordinal scale with (in principle) neither a beginning nor an end.  This can be 
converted into an interval scale by declaring that all intervals between adjacent ratios/frequencies are 
equal.   

1 
4 − 

1 
2 

= 1 
2 − 

1 
1 

= 1 
1 − 

2 
1 

= 1 
octave 

             

55 
Hz − 

110 
Hz 

= 110 
Hz − 

220 
Hz 

= 220 
Hz − 

440 
Hz 

= 1 
octave 

 
The resulting interval-unit is musically fundamental, and is called an "octave"7; it is the tonal difference 
between a pitch and the next pitch with the same note-name.  For example, 220 Hz corresponds to the 
note A, and 440 Hz is the next frequency that corresponds to A; so the interval between 220 Hz and 440 
Hz is one octave.  Similarly, the interval between 440 Hz and 880 Hz is one octave.   

 Notice carefully that frequency-differences per se are musically irrelevant; only frequency-ratios 
matter.  Another way to describe this is that a musical scale is a logarithmic scale, which is a special 
kind of interval scale.  For example, if we take base-2 logarithms of the various ratios above, we get the 
following scale, which looks more familiar.   

… −2 < −1 < 0 < +1 < +2 … 

In particular, the distances between values are obtained by simple subtraction; for example, the distance 
between adjacent values is 1 – which in this case corresponds to 1 octave. 

                                                 
6 Normal human hearing is usually regarded as ranging from 20 Hz to 20,000 Hz, plus or minus.   
7 In the standard eight-note scale, the "distance" from the first note to the eighth note is 8 (octave), even though the number of 
scale-steps is 7!  In music, there is no zero; for example,  a one-step interval is called a "second", a two-step interval is called 
a "third", etc.     
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1. An Aside on Logarithmic Scales 

 At this point it might be helpful to consider another well-known logarithmic scale that is 
occasionally useful.  We can measure size (say, height) relative to a fixed unit (say meters or miles); this 
produces an arithmetic scale with an associated scale and a natural zero.  Such scales are useful in 
comparing objects of roughly the same size; for example, we might compare two buildings by saying 
that one is 10 meters taller than the other.   But arithmetic scaling is useless for comparing objects of 
widely different sizes.  For example, if we compare the volume of the planet Jupiter with the volume of 
a human, or the volume of an amoeba, we arrive at the very same comparison – Jupiter is a lot bigger!  
In particular, if we subtract a typical human’s volume from Jupiter’s volume, and we subtract a typical 
amoeba’s volume from Jupiter’s  volume, we pretty much get the same quantity.  Alternatively stated, if 
we place these three objects on an arithmetic scale, Jupiter is placed to the left somewhere, and the 
human and the amoeba are both placed infinitesimally close to the zero point.  Even seemingly similarly 
sized objects produce nearly useless comparisons on an arithmetic scale.  For example, if we subtract 
Jupiter’s volume from the Sun’s volume, and we subtract the Earth’s volume from the Sun’s volume, we 
also get pretty much the same volume difference!    

 A much more useful comparison of disparately sized objects is to compare them using a 
geometric (or logarithmic) scale, which is to say to compare their sizes using ratios.  For example, we 
can say (roughly) that the sun is 1000 times bigger than Jupiter, which is 1000 times bigger than the 
Earth.  Or considering the microscopic world, a human is 1018 times bigger than a cell, which is 1012 
times bigger than a molecule, which is 1015 times bigger than an atomic nucleus. 

 All logarithmic scales are based on the same underlying interval scale, given as follows. 

… −2 < −1 < 0 < +1 < +2 … 

What distinguishes logarithmic scales from each other is the underlying "base", which is usually a 
positive whole number, which provides the fundamental ratio.  For example, if the base is 10, then the 
corresponding ratios are given as follows. 

…    1 
100 

<  1 
10 

< 1 
1 

< 10 
1 

< 100 
1 

… 

On the other hand, if the base is 1000, then the corresponding ratios are given as follows. 

…              1 
1,000,000 

<      1 
1000 

< 1 
1 

< 1000 
1 

< 1,000,000 
1 

… 
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2. Cents and Sensibility 

 The system for measuring musical intervals is based on a logarithmic scale based on 2.     

… 1 
4 

< 1 
2 

< 1 
1 

< 2 
1 

< 4 
1 

… 

As already mentioned, the fundamental interval is called an "octave".  In the contemporary measurement 
system for musical intervals, this unit is divided into smaller units, just as miles are divided into feet, 
which are divided into inches.  In particular, an octave is officially divided into 12 semi-tones, each of 
which is divided into 100 cents.  Note carefully that, since the scale under consideration is logarithmic 
and not arithmetic, the meaning of the words ‘one-twelfth’ and ‘one-hundredth’ have to be very 
carefully considered.  In particular, in measuring musical intervals, we must vigilantly keep the 
following "equations" in mind. 

intervals = ratios 

adding 
intervals 

= multiplying 
ratios 

For example, we have the following 

3 octaves = 1 octave + 1 octave + 1 octave 
 = 2/1 × 2/1 × 2/1 
 = 8/1 

 Similarly, to say that a semi-tone is one-twelfth of an octave, we mean the following (where s is 
a semi-tone, and r is its associated ratio. 

s + s + s + s + s + s + s + s + s + s + s + s = octave 

r × r × r × r × r × r × r × r × r × r × r × r = 2/1 

Or more succinctly stated: 

r ^ 12  =  2 

which entails that: 

r   =   2 ^ (1/12) 

Here, the symbol ‘  ̂’ is the familiar programming symbol for exponentiation (raising to a power); in 
particular 

x  ̂y = x raised to the y power 

For example, 3 ^ 2  =  32  =  3-squared; on the other hand, 3 ^ ½ = 3½ = the square-root of 3.       
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 Thus, the ratio r corresponding to a semi-tone interval is an irrational number, which is 
approximately equal to 1.05946309.  By similar reasoning, we calculate that one cent corresponds to the 
ratio 1.0005777895.8    

 The following is a summary of the interval units.   

Unit Name Relative Value Pitch Ratio 

octave fundamental 2/1 

semi-tone 1/12 of an octave 2 ^ (1/12) 1.05946309 

cent 1/100 of a semi-tone 2 ^ (1/1200) 1.0005777895 

Notice that we have the following identities. 

1 octave = 12 semi-tones 
1 semi-tone = 100 cents 
1 octave = 1200 cents 

In thinking about musical interval units, please keep in mind that a cent, a semi-tone, and an octave are 
not frequencies, but rather ratios.  Once you have a frequency, say 440 Hz, you can add one octave to it, 
or subtract one octave from it, which is to say that you can multiply it by 2, or divide it by 2.  Similarly, 
you can add one cent to a given frequency, or subtract one cent from it, which is to say that you can 
multiply the frequency by 1.0005777895, or divide it by 1.0005777895. 

3. The Pythagorean Construction of the Major Scale 

 So far, we have discussed the octave, and we have discussed the contemporary division of the 
octave into semi-tones and cents.  Semi-tones and cents are relatively recent inventions.  Long before 
them, Pythagoras proposed a division of the octave into intervals based on the ratios 2:1 and 3:2, which 
he had discovered correspond to natural harmonies.   

 In particular, according to Pythagoras, we first interpolate the ratio 3:2 between 1:1 and 2:1, 
thereby producing the following ordinal scale. 

1 
1 

< 3 
2 

< 2 
1 

We next measure the interval between 3/2 and 2/1, which is calculated as follows. 

the interval between 3/2 and 2/1 

= 2/1 ÷ 3/2 

= 2/1 × 2/3 

= 4/3   

                                                 
8 We understand every number n to give rise to the ratio n:1 [n/1], even when n is irrational!  This is an enlargement of 
official usage. 
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This can be depicted thus:   

1 
1 

 3 
2 

 2 
1 

     
3/2 4/3 

We now have a derived ratio – 4/3 – which we next interpolate between 1/1 and 3/2, thereby producing 
the following ordinal scale. 

1 
1 

< 4 
3 

< 3 
2 

< 2 
1 

We next measure the interval between 4/3 and 3/2, which is calculated as follows. 

the interval between 3/2 and 4/3 

= 3/2 ÷ 4/3 

= 3/2 × 3/4 

= 9/8   

The following diagram summarizes what we have so far. 

3/2 
 

9/8 
 

 

1 
1 

 4 
3 

 3 
2 

 2 
1 

   
   

4/3  4/3 
 

3/2 

So far, we have measured all these intervals as ratios; we can also measure them in cents, which yields 
the following.9 

                                                 
9 These are approximations of irrational numbers; better approximations are: 203.910, 498.0445, 701.955 
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702 ¢ 
 

204 ¢ 
 

 

1 
1 

 4 
3 

 3 
2 

 2 
1 

      
498 ¢  498 ¢ 

 
702 ¢ 

These intervals have special names – "perfect fifth", "perfect fourth", and "perfect second", which we 
add to our list of interval units as follows.10   

Unit Name Pitch Ratio11 Cent Value 

octave 2:1 1200 

perfect fifth 3:2 702 

perfect fourth 4:3 498 

perfect second 9:8 204 

semi-tone 1.05946309 100 

cent 1.0005777895 1 

 Our next move in the Pythagorean construction is to take the ratio 9/8 (204 cents) as a 
fundamental step-increment, and interpolate four more ratios, as follows. 

1 
1 

 9 
8 

 81 
64 

 4 
3 

 3 
2 

 27 
16 

 243 
128 

 2 
1 

          
9/8 9/8  9/8 9/8 9/8  

Or using cents as our unit of measurement, we can write the following. 

0  204  408  498  702  906  1100  1200 
   

       
204 204   204 204 204  

Two increments still need to be computed.  This is easy using cents – the missing increments are each 
equal to 90 cents.  The corresponding ratio, however, is a bit untidy – 256/243.  Although 90 is a bit less 
than half of 204, we will nevertheless call this increment a "half-step", whereas we call the standard 
increment a "whole-step".      

                                                 
10 The ordinal number words – ‘second’, ‘third’, etc. – refer to the position on the eight-note scale; for example, do is first, re 
is second, etc. 
11 We use the term ‘ratio’ in an enlarged way.  A single number n automatically counts as the ratio n:1, or n-times. 
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 When we are done, we have the Pythagorean construction of the major scale, which is presented 
as follows in its familiar form, where ‘<<’ marks a whole-step, and ‘<’ marks a half-step.    

do << re << mi < fa << so << la << ti < do 
          

204 204  90 204 204 204 90 

Or, using the white keys on a Piano keyboard, this is a C-major scale. 

C << D << E < F << G << A << B < C′ 

4. Ptolemaic Tuning   

 The Pythagorean calibration (tuning) technique constructs the major scale out of two 
fundamental ratios – 2:1 (octave) and 3:2 (perfect fifth); in particular, all the intervals are obtained from 
these two using interval addition and interval subtraction.  The Pythagorean scale was widely used in the 
Middle Ages, but has generally fallen out of favor.  There are a number of reasons for this, both practical 
and aesthetic.  Let us consider the aesthetic problems first.  Here, the most conspicuous problem is that 
certain harmonic intervals are less than ideal.   

 A tuning system that attempts to solve this problem is variously called "just intonation" and 
"Ptolemaic tuning", named after the great Greek astronomer Claudius Ptolemy (AD 85-165) who first 
proposed it.  According to the Ptolemaic scheme, the Pythagorean ratios 2:1 and 3:2 are replaced by the 
following fundamental ratios 

2:1 5:4 6:5 

From these, one can derive the Pythagorean ratios.  In particular, 

3 
2 

= 5 
4 

× 6 
5 

This equation corresponds to the harmonically ideal sub-division of a perfect-fifth into a perfect major-
third and a perfect minor-third.  In other words: 

a perfect 
fifth 

= 
a perfect 

major-third 
+ 

a perfect 
minor-third 

Let us add these new units to our list. 
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Unit Name Pitch Ratio Cent Value 

octave 2:1 1200 

perfect fifth 3:2 702 cents 

perfect fourth 4:3 498 cents 

perfect major-third 5:4 386.3 cents 

perfect minor-third 6:5 315.6 cents 

perfect second 9:8 204 cents 

Next, the notes of an expanded C-major scale can all be inter-connected by these intervals, as displayed 
in the following chart. 

3/2 3/2 3/2 
   

 
3/2 3/2 

  
   

F  A  C  E  G  B  D 

         
5/4 6/5 5/4 6/5 5/4 6/5 

maj-3 min-3 maj-3 min-3 maj-3 min-3 

Once the intervals are normalized,12 we obtain the following C-major scale. 

C << D << E < F << G << A << B < C′ 
          

9 
8 

10 
9  

16 
15 

9 
8 

10 
9  

9 
8 

16 
15 

204 182 112 204 182 204 112 

Most people find the resulting harmonies quite pleasing; instruments tuned in this manner really "sing".  
There are nevertheless a few problems.  The first problem is that there are three different step-sizes – 
204 cents, 182 cents, and 112 cents, rather than just two.  This makes melodies sound a bit irregular.  
The other problem is that Ptolemaic tuning has a limited range.  We discuss this more fully in a later 
section (6.3). 

5. Mean-Tone Temperament (Tuning by Major Thirds) 

 So far, we have examined two different tunings of the major scale.  Whereas the Pythagorean 
tuning is based on the ratios 2:1 and 3:2, Ptolemaic tuning is based on the ratios 2:1, 5:4, and 6:5.  Since 
Ptolemaic tuning can produce the ratio 3:2 [3/2 = 5/4 × 6/5], Ptolemaic tuning is more inclusive.       

                                                 
12 For example, the distance from C to D on the expanded scale is two fifths – 3/2 × 3/2 = 9/4; subtracting one octave from 
9/4 yields 9/8.   
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 Another tuning technique – mean-tone temperament – is based on the ratios 2:1 (octave) and 5:4 
(perfect major-third).  In order to construct the C-major scale using mean-tone technique, we first set all 
the major thirds as follows. 

F  A  C  E  G  B 

        
maj-3  maj-3  maj-3 
5/4  5/4  5/4 

386 ¢  386 ¢  386 ¢ 

We then divide each major-third into two equal intervals of approximately 193 cents each (square root 
of 5/4), which gives us the following. 

C  D  E  F  G  A  B  C′ 

   
       

193 193  193 193 193  

All that remains is to assign the two half-step intervals – E-F and B-C′.  These are posited to equal each 
other.  Since the distance from C to C′ is assumed to be 2:1 (1200 cents), this means that the missing 
half-steps are each equal to 117 cents,13 which gives us the following major scale. 

C  D  E  F  G  A  B  C′ 

          
193 193 117 193 193 193 117 

6. Problems with Perfect Tuning 

 We have now discussed three classical tuning systems that are based on one or more "perfect" 
intervals, summarized as follows. 

Pythagorean 2:1 3:2  

Ptolemaic 2:1 5:4 6:5 

Mean-Tone 2:1 5:4  

The problem with "perfect" tuning is that it is not perfect.  This becomes evident as soon as we try to 
expand our tuning to the chromatic keys (black keys on the piano).  The reason that a piano has these 
extra keys is that very little music is written for the C-major scale.  Just counting major scales, there are 
15 official scale degrees (usually called "keys"), listed as follows.14 

                                                 
13 There are rounding errors.  5/4 = 386.313714 cents; so (5/4)½ = 193.156857; so the left-over half-step = 117.107858. 
14 It is reputed that J.S. Bach wrote in as many as 31 distinct scale degrees.  
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Key Scale Key 
Signature 

 CÙ major CÙ << DÙ << EÙ < FÙ << GÙ << AÙ << BÙ < CÙ 7 flats 

 GÙ major GÙ << AÙ << BÙ < CÙ << DÙ << EÙ << F < GÙ 6 flats 

DÙ major DÙ << EÙ << F < GÙ << AÙ << BÙ << C < DÙ 5 flats 

AÙ major AÙ << BÙ << C < DÙ << EÙ << F << G < AÙ 4 flats 

EÙ major EÙ << F << G < AÙ << BÙ << C << D < EÙ 3 flats 

BÙ major BÙ << C << D < EÙ << F << G << A < BÙ 2 flats 

F major F << G << A < BÙ << C << D << E < F 1 flat 

C major C << D << E < F << G << A << B < C ∅ 

G major G << A << B < C << D << E << FØ < G 1 sharp 

D major D << E << FØ < G << A << B << CØ < D 2 sharps 

A major A << B << CØ < D << E << FØ << GØ < A 3 sharps 

E major E << FØ << GØ < A << B << CØ << DØ < E 4 sharps 

B major B << CØ << DØ < E << FØ << GØ << AØ < B 5 sharps 

FØ major FØ << GØ << AØ < B << CØ << DØ << EØ < FØ 6 sharps 

CØ major CØ << DØ << EØ < FØ << GØ << AØ << BØ < CØ 7 sharps 

We quickly note, however, that on a standard piano, the first three scales [CÙ major, GÙ major, DÙ 
major] are respectively equivalent to the last three scales [B major, FØ major, CØ major].  This is because 
a standard piano only has 12 keys per octave, and accordingly cannot distinguish more than 12 of these 
scales.   Intimately related to this, a standard piano cannot distinguish the following note pairs.15   

CØ 
≡ 

DÙ 

DØ 
≡ 

EÙ 

E 
≡ 
FÙ 

EØ 
≡ 
F 

FØ 
≡ 

GÙ 

GØ 
≡ 
AÙ 

AØ 
≡ 

BÙ 

B 
≡ 

CÙ 

BØ 
≡ 
C 

In music theory, these pairs are said to be "enharmonic"; they are distinguishable, as we see below, but 
not on a standard piano.    

 This begins to reveal the fundamental problem with tuning a piano, or any instrument that 
permits only 12 steps per octave.  Specifically, if we tune by perfect ratios, then we cannot perfectly 
tune all 15 major scales at once; rather, we can perfectly tune only six adjacent scales at a time.  
Ptolemaic tuning is even more limited – each of the six adjacent scales has one dissonant triad. 

                                                 
15 A "hyper" piano – which has twice as many black keys – can distinguish enharmonic pairs.  Such a keyboard instrument is 
theoretically desirable, but impractical both from the viewpoint of construction, and from the viewpoint of playing.   
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1. An Aside on The Circle of Fifths and the Circle of Thirds 

 Adjacency of scales is measured against the quasi-ordinal scale known as the "circle of fifths", 
which we have already alluded to in the above list of major scales, and which is diagrammed as follows. 

   E    

  A C G B   

 D F   D FØ  

BÙ     A 
G 

EÙ     E 
CØ 

 C AÙ   B GØ  

  EØ CØ FØ DØ   

   AØ    
 

   C G    

  F   D   

 BÙ      A  

 EÙ    BØ     E  

 AÙ   EØ      B  

 DÙ   AØ   FØ  

   GÙ    DØ  CØ    

   CÙ  GØ   
FÙ 

   
 

    
 

The left diagram assumes a particular tuning of the black piano keys; the right diagram is a more 
accurate portrayal, which depicts a "spiral of fifths".  The left diagram actually depicts three circles: 

(1) shaded inside circle C G D A E B FØ … 
(2) unshaded outside circle E B FØ CØ GØ DØ AØ … 
(3) interleaved circle C E G B D FØ A… 

All three can be read clockwise.  The inner circle and the outer circle proceed by fifths; for example, a 
fifth above F is C, and a fifth above C is G, and a fifth above G is D.   The interleaved circle – which is 
called the "circle of thirds" – proceeds by thirds, alternating major-thirds and minor-thirds.  Moreover, a 
major scale can be constructed by starting on any shaded element and following the interleaved circle 
six steps; the third item will constitute the "tonic" key.  The following are a few examples.    

F A C E G B D  C-major 
C E G B D FØ A  G-major 
G B D FØ A CØ E  D-major 

2. Back to the Problem of Tuning by Fifths 

 The problem is that when we tune by perfect fifths, we face the problem of adjudicating the 
various enharmonic pairs, which are repeated from above.       

CØ 
≡ 

DÙ 

DØ 
≡ 

EÙ 

E 
≡ 
FÙ 

EØ 
≡ 
F 

FØ 
≡ 

GÙ 

GØ 
≡ 
AÙ 

AØ 
≡ 

BÙ 

B 
≡ 

CÙ 

BØ 
≡ 
C 

Now, as everyone "knows", CØ = DÙ!  Alternatively stated, if you are asked to find these keys on a piano 
within a given octave, you go the same key – the black key between C and D!  Nevertheless, this 
identity does not hold if we use Pythagorean tuning!  Rather, by Pythagorean tuning, we must tune as 
follows.  
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DÙ = five fifths "below" C 
 = C × 2/3 × 2/3 × 2/3 × 2/3 × 2/3 (× 8) 
 = C × 1.05350 
 = C + 90.23 cents 

CØ = seven fifths "above" C 
 = C × 3/2 × 3/2 × 3/2 × 3/2 × 3/2 × 3/2 × 3/2 (× 1/16)  
 = C × 1.06787 
 = C + 113.6 cents 

In other words, a Pythagorean-tuned CØ is quite a bit sharper than a Pythagorean-tuned DÙ!  In the 
Middle Ages, this discrepancy was called the "Pythagorean comma"; its modern cent value is 
approximately 23.   

 Now, go back and look at the above major scales.  Every major scale has a characteristic "key 
signature", which corresponds to which notes are sharped or flatted.  Moreover, if a given scale calls for 
a particular key, say CØ, then in order for that scale to be in perfect tune, the black key between C and D 
must be tuned as an CØ, not as a DÙ.  Conversely, if a scale calls for a DÙ, then in order for that scale to 
be in perfect tune, the key between C and D must be tuned as a DÙ, not as an CØ.  This holds mutatis 
mutandis for every enharmonic pair in the above chart.  

 When the dust has settled, this is what we have.  We can perfectly tune six adjacent scales, but 
the remaining scales will be variously imperfectly tuned.  Some of these will be usable; others will be 
unusable.  For example, if we perfectly tune the six scales EÙ through D, then the interval GØ − EÙ will 
be a very bad fifth.  In the Middle Ages, this interval was called a "wolf" (because on an organ it 
"growls"). 

3. Ptolemaic Tuning Makes Matters Even Worse! 

 So far we have discussed tuning by perfect fifths, and we have seen that we can perfectly tune at 
most 6 adjacent scales.  In the present section, we briefly examine what happens when we attempt to 
tune by perfect major-thirds (5:4) and perfect minor-thirds (6:5), as prescribed by Ptolemaic tuning.  
Recall that the Ptolemaic C-major scale is given as follows. 

C << D << E < F << G << A << B < C′ 
          

9 
8 

10 
9  

16 
15 

9 
8 

10 
9  

9 
8 

16 
15 

204 182 112 204 182 204 112 

This tuning provides five perfectly-tuned triads (3-note chords), given by the following chart. 
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3/2 3/2 3/2 
    

3/2 3/2 
     

F  A  C  E  G  B  D 

         
5/4 6/5 5/4 6/5 5/4 6/5 

maj-3 min-3 maj-3 min-3 maj-3 min-3 

These chords are respectively: 

F-major F−A−C 
A-minor A−C−E 
C-major C−E−G 
E-minor E−G−B 
G-major G−B−D 

What is missing is the triad D−F−A [D-minor].  For this chord to be perfect, we need the following 
intervals. 

702 
 

   

D  F  A 
     

316 386 

On the other hand, Ptolemaic tuning provides the following intervals.   

680 
    

D  F  A 
   

  
294 386 

Given that the fifth interval is flat by 22 cents, this surely qualifies as a "wolf". 

 The problem worsens as we move up or down the "circle of thirds".  Let us expand our tuning 
from C-major as follows. 
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3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 
        

 
3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 

        
   

AÙ C EÙ G BÙ D F A C E G B D FØ A CØ E GØ 

                    
5/4 6/5 5/4 6/5 5/4 6/5 5/4 6/5 5/4 6/5 5/4 6/5 5/4 6/5 5/4 6/5 5/4 

386 316 386 316 386 316 386 316 386 316 386 316 386 316 386 316 386 

Notice that the end points – AÙ and GØ – are enharmonic.  We already know from our work on 
Pythagorean tuning (by fifths) that we must tune the key between G and A as GØ or AÙ, which differ by 
24 cents.  But matters are much more serious; the above sequence of thirds harbors a much more 
fundamental discrepancy.  In particular, notice that C, G, D, A, and E all repeat in the above chart.  
Now, if we tune using the above chart, as required by Ptolemaic tuning, then the interval between the 
first C [G, D, A, E]  and the second C [G, D, A, E] is:    

6/5 × 5/4 × 6/5 × 5/4 × 6/5 × 5/4 × 6/5 = 4.04999 = 2422 cents  

On the other hand, octave-tuning requires this distance to be an octave-multiple, the closest of which is 
2400 cents, which produces a discrepancy of 22 cents!  In other words, the above chart involves tuning 
C and C′′ to two different pitches.  This is considered completely unacceptable by nearly everyone who 
has studied tuning.  The one sacrosanct tuning rule is that adjacent notes of the same note-class (e.g., C) 
are exactly one octave apart.   

 The question then is – how do we tune the keys on a piano using perfect-thirds?  The following 
constitutes one tuning for the notes DÙ - A (on the circle of thirds) 

3/2 3/2 3/2 þ 3/2 3/2 3/2 
       

 
3/2 3/2 3/2 þ 3/2 3/2 3/2 þ 

        
   

DÙ F AÙ C EÙ G BÙ D F A C E G B D FØ A 
                   

5/4 6/5 5/4 6/5 5/4 6/5 5/4 þ 5/4 6/5 5/4 6/5 5/4 6/5 5/4 þ 

386 316 386 316 386 316 386 294 386 316 386 316 386 316 386 294 

Notice the intervals designated þ, which are flat by 22 cents (316 – 294), which makes the triad 
dissonant.  Every one of the 6 major scales represented above – AÙ, EÙ, BÙ, F, C, G – contains at least 
one dissonant triad.  As we move farther away from the tuning center, we add more dissonant triads.      

4. Mean-Tone Temperament’s Wolves 

 Pythagorean tuning enables us to perfectly tune six adjacent scales (e.g., EÙ - D), but it has 
dissonant thirds.  Ptolemaic tuning gives us perfect thirds, but each of the six adjacent scales has at least 
one dissonant triad.  Mean-tone temperament, which was developed in the Baroque period (roughly 
1650-1750), attempts to steer a middle course between Ptolemaic tuning and Pythagorean tuning.  It 
produces perfect major-thirds, and produces decent approximations to perfect fifths and perfect minor-
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thirds.  Moreover, six adjacent scales can be perfectly tuned.  The remote scales remain out of tune, 
however, as seen in the following chart. 

696 696 696 696 696 696 696 737 
        

 
696 696 696 696 696 696 696 696 

        
   

AÙ C EÙ G BÙ D F A C E G B D FØ A CØ E AÙ 
                    

5/4  5/4  5/4  5/4  5/4  5/4  5/4  5/4  þ 

386 310 386 310 386 310 386 310 386 310 386 310 386 310 386 310 427 

Except for the last one, all the triads in the above diagram are nearly perfect; the major-thirds are 
perfect; the fifths and minor-thirds are slightly flat  (by 6 cents, which is completely acceptable to most 
musicians).  This tuning permits playing the six major scales from EÙ major to D major.  On the other 
hand, the remote scales contain dissonant triads.  The one that is apparent above is the CØ minor triad – 
CØ−E−GØ.  The above scale approximates this triad with CØ−E−AÙ.  The interval CØ−E is fine, being 
310 cents.  But the interval E−AÙ is an astonishing 427 cents, which is 41 cents sharp!  Any scale that 
needs this triad for harmony will be largely unusable (except for special-effects!).         

7. What to do? 

 We have a dilemma.  We have the following musical desiderata. 

(1) playing all official scales (CÙ, GÙ, …, FØ, CØ) equally well [universality] 
(2) with perfectly-tuned intervals [perfect-tuning] 
(3) on instruments that can be reliably constructed, tuned, and played [practicality] 

Unfortunately, these desiderata cannot be simultaneously satisfied.  As in dealing with any dilemma or 
paradox, we must seriously reconsider the fundamental principles that lead to the difficulty.  Which of 
these desiderata are we willing to give up, or to adjust? 

1. Give up Universality 

 We  have already discussed giving up universality.  Dating back to the beginning of music, we 
have been able to construct and play instruments that can play perfect intonation.  These instruments 
were all restricted in their tonal variety; they could only play one or two scale degrees.  As technology 
became more advanced, instruments with greater tonal variety became available, including the organ 
and the piano.  The problem is that, using perfect tuning, we are severely restricted in what keys we can 
play.  Retuning an organ or piano is an arduous and time-consuming task.  It is better to tune it once, and 
restrict what sorts of musical pieces one can play. 

2. Give up Practicality – The Purist Approach 

 The purist solution is to play only instruments that can be tuned on the fly.  We have several of 
these instruments already – the human voice, the trombone, and the four members of the violin family.  
If we restrict our ensembles to these instruments, played by musicians with very good pitch ability, then 
we can achieve the other two goals.     
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3. Give up Perfect Tuning – Equal Temperament 

 The almost universally accepted solution of the modern world, which nearly everyone pretty 
much takes for granted, abandons the ideal of perfect tuning, in order to achieve the other two goals.  
The proposed tuning system is known as "equal-temperament", or more strictly "12-tone equal 
temperament" or "12ET" for short.16  According to 12ET, the octave is divided into 12 equal intervals, 
called "semi-tones".  We have already seen semi-tones; a cent is defined to be one-hundredth of a semi-
tone, which is defined as one-twelfth of an octave.  As noted earlier, a semi-tone corresponds to an 
irrational number that is approximately 1.059463.  This constitutes a half-step; a whole-step is obtained 
simply by adding two half-steps, which is approximately 1.12246.   

 The problem with 12ET is that all the fundamental harmonic ratios are missed.  That’s the bad 
news.  The good news is that the discrepancies are not so big that it is musically atrocious.  For example, 
the equal-tempered fifth consists of seven half-steps (700 cents), which is a completely acceptable  
approximation to a perfect fifth (702 cents).  Similarly, the equal-tempered fourth consists of  5 half-
steps (500 cents), which is a completely acceptable approximation to a perfect fourth (498 cents).  
Thirds are a different matter.  The equal-tempered major-third is 400 cents, which is 14 cents sharp, and 
the equal-tempered minor-third is 300 cents, which is 15 cents flat.  But the thirds are still better than 
Pythagorean tuning.  Indeed, 12ET is probably best understood as a very slight adjustment of 
Pythagorean tuning in which the 24 cent discrepancy (the "wolf") is equally distributed across the scale, 
which requires us to flat each fifth by 2 cents.  We then obtain a tuning that allows a piano to play 12 
major scales.     

 Most people find equal temperament to be a workable compromise, and it is almost universally 
adopted in the manufacture of modern "fretted" instruments (guitars, flutes, horns, etc.), as well as 
electronic instruments (various synthesizers).  Most musicians – including those with "perfect pitch" – 
are able to work within this system when it is necessary.  For example, a violinist or singer who wishes 
to be accompanied by a piano is usually able to retune his/her playing to equal temperament.   

 There are hold-outs, however.  For example, there are violinists who refuse to play with 
performers who play equal-tempered instruments.17  Others are not so dogmatic, but are nevertheless 
frustrated by the strictures of equal temperament.  For example, there are numerous guitar players who 
become frustrated when they cannot tune their guitars so that they really "sing".  For these tortured 
souls, "enlightenment" comes only when they realize that it is impossible to perfectly tune a standard 
guitar, because it is manufactured to the standards of equal-temperament.   

4. Alternative Instruments 

 As mentioned above, we already have three groups of instruments – the human voice, the violin 
family, and the trombone – that can play any scale in perfect intonation.  This is because these 
instruments can be tuned "on the fly".  This is not possible with "fretted" instruments, which include 
pianos, guitars, flutes, horns, clarinets, oboes, etc..  So why don’t we manufacture fretless versions of 
these instruments, or versions that have more fixed intervals per octave (see Section 11).  The reason is 
that this is somewhat impractical both in terms of the manufacturing and in terms of playing.  For 
example, it is nearly impossible to get a decent chord on a fretless guitar.       

                                                 
16 Also called "12 TET" and "12-Equal" in the literature.  In a later section (11), we discuss other equal-interval scales, ones 
in which the number of intervals is not 12.       
17 These are usually amateurs; professionals are seldom given such latitude! 
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 A related solution is to build digital versions of all fretted instruments, which can then be retuned 
on the fly; tuning-on-the-fly is already feasible for digital pianos and organs (synthesizers).  This is 
certainly a feasible choice for the orchestra of the future, but current musical aesthetics – both listening 
and playing – demands acoustic instruments for most applications; millions of people continue to listen 
to and play traditional acoustic instruments.18          

5. Reconsidering Universality – Well-Tempered Scales 

 According to some people, the drawback of equal-temperament is not so much that it produces 
dissonant thirds, but that it produces homogeneously bland music.  In particular, in the pursuit of 
universality, equal-temperament has produced 12 scale degrees that are exactly alike in terms of tonal 
color; EÙ major sounds pretty much just like C major.    

 This leads us to yet another approach to the tuning dilemma – to question what the requirement 
of universality amounts to.  Does universality mean that all scale-degrees play exactly alike, as they do 
in 12-tone equal-temperament?  Or, does universality mean that all scale-degrees play equally well?  
Thus arises the concept of well-temperament, according to which 12 scale degrees all play equally well, 
and nearly in perfect tune, although each one has its own tonal individuality (i.e., quirkiness!), which 
can be taken advantage of by the skillful composer.  This is especially evident in Bach’s Well-Tempered 
Clavier19, in which he presents two books of preludes and fugues.  In particular, in each book, Bach 
presents a prelude and fugue in each of 12 major scales and 12 minor scales.  In each case, he takes 
advantage of the unique tonal personality of the scale degree. 

 It is not completely obvious what tuning Bach actually used, since it was never recorded, and 
there are in principle infinitely-many ways of accomplishing the vague criterion of well-temperament.  
However, a number of scholars and musicians have suggested that Bach’s tuning was something 
approximating the following, which is known as Werckmeister temperament. 

 AÙ EÙ BÙ F C G D A E B FØ CØ 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 204 204 204 198 192 192 198 204 198 198 204 204 

3 408 402 396 390 390 396 396 402 402 402 408 408 

4 498 498 498 498 498 504 504 504 498 498 504 498 

5 702 702 702 702 696 696 696 702 702 696 702 702 

6 906 906 900 894 888 894 900 900 900 900 906 906 

7 1104 1098 1092 1092 1092 1092 1098 1104 1104 1104 1110 1110 

8 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 

This provides the intervals for the 12 major scale degrees AÙ through CØ.  One can also inter-substitute 
enharmonic pairs (e.g., DÙ for CØ).  To read the cumulative intervals, one goes down the column.  
Notice that some of the fifths are perfect (702 cents), but not all.  

                                                 
18 In this context, an electric guitar counts as acoustic; a genuine acoustic process – a vibrating string – is involved in the 
production of sounds.      
19 A myth, perpetuated even in music schools based on some faulty musicology in the 19th Century, claims that Bach wrote 
the Well-Tempered Clavier for an equal-tempered instrument.  Wrong!  In Bach’s time, the word ‘equal tempered’ was used, 
but it did not mean what it means today; rather, it meant that every scale degree could be played equally well.  Thus, we have 
the more appropriate word ‘well-tempered’, which does not mean ‘equal-tempered’.     
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8. Summary of Temperament Systems 

 The following chart summarizes the five major tuning systems, in which we give the various 
increments in cents for the C-major scale.  

C << D << E < F << G << A << B < C′ 
   

        
Equal 200 200 100 200 200 200 100 

Pythagorean 204 204 90 204 204 204 90 

Ptolemaic 204 182 112 204 182 204 112 

Mean-Tone 193 193 117 193 193 193 117 

W-Well 192 198 118 192 194 194 118 

The following chart, which is useful to synthesizer players, composers, and programmers, gives the 
"discrepancies" for each note compared to equal-temperament tuning. 

C  D  E  F  G  A  B 
   

Equal 0 0 0 0 0 0 0 

Pythagorean 0 +4 +8 −2 +2 +6 +10 
Ptolemaic 0 +4 −14 −2 +2 −16 −12 

Mean-Tone 0 −7 −14 +3 −4 −11 −18 
W-Well 0 −8 −10 −2 −4 −6 −8 

Finally, the following chart provides the discrepancies from perfect tuning. 

C  D  E  F  G  A  B 
   

Equal 0 –4 +14 +2 −2 +16 +12 

Pythagorean 0 0 +22 0 0 +22 +22 
Ptolemaic 0 0 0 0 0 0 0 

Mean-Tone 0 −11 0 +5 −6 +5 −6 
W-Well 0 −12 +4 0 −6 +10 +4 
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9. Other Seven-Tone Scales 

   So far we have discussed one scale type (or mode) – the major scale.  Although the major scale is 
the most widely used scale in Western music, there are many other scales/modes that have been 
proposed and used over the years.  What characterizes a major scale is the following sequence of seven 
increments. 

whole-step whole-step half-step whole-step whole-step whole-step half-step 

<< << < << << << < 

Needless to say, there are many other sequences consisting of exactly 5 whole-steps and 2 half-steps.  
Mathematically, there are 21 distinct possibilities (laboriously calculated!), so there are 21 
mathematically possible 7-tone scales based on whole-steps and half-steps.  Some of these are not 
musically very pleasing – for example, those scales involving successive half-steps, of which there are 
five.  Let’s get rid of these, which still leaves 16 scales.  These can be judged according to whether they 
include the fundamental ratios 3/2 and 4/3.  9 of the 16 scales include these ratios, which are depicted as 
follows, beginning with the original C-major scale. 

Ionian  C << D << E < F << G << A << B < C′ 
                 

Mixolydian  C << D << E < F << G << A < BÙ << C′ 
                 

?  C << D << E < F << G < AÙ << BÙ << C′ 
                 

?  C << D < EÙ << F << G << A << B < C′ 
                 

Dorian  C << D < EÙ << F << G << A < BÙ << C′ 
                 

Aeolian  C << D < EÙ << F << G < AÙ << BÙ << C′ 
                 

?  C < DÙ << EÙ << F << G << A << B < C′ 
                 

?  C < DÙ << EÙ << F << G << A < BÙ << C′ 
                 

Phrygian  C < DÙ << EÙ << F << G < AÙ << BÙ << C′ 

Some of these have classical Greek names, given to the left, which correspond to Medieval modes.  Note 
that the Aeolian scale corresponds to the modern natural minor scale.  Two other Medieval modes do not 
appear on the above list.  

Lydian  C << D << E << FØ < G << A << B < C′ 
                 

Locrian  C < DÙ << EÙ << F < GÙ << AÙ << BÙ << C′ 

The first one lacks the 4/3 ratio (F), but is still employed.  The second one lacks the 3/2 ratio (G), which 
renders it musically questionable according to some authors.    
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10. Pentatonic Scales 

 All the scales we have thus far considered are predicated on dividing the octave into seven steps.  
Other scales have been considered that deviate from the seven-step rule.  A favorite of mine is the major 
pentatonic scale, which is employed in both traditional Scots-Irish music (e.g., "Amazing Grace") and 
traditional Chinese music.  The scale is obtained from the major scale (Ionian) by deleting the two 
single-step intervals, as follows.    

Pentatonic1  C << D << E <<< G << A <<< C′ 

Here the step-pattern is given as follows. 

whole-step whole-step 3/2-step whole-step 3/2-step 

<< << <<< << <<< 

So one naturally asks what other patterns of << and <<< are mathematically possible.  Supposing we 
prohibit successive 3/2-step intervals, there are four other pentatonic scales based on these intervals, 
given as follows.     

Pentatonic2  C << D <<< F << G <<< BÙ << C′ 
             

Pentatonic3  C <<< EÙ << F << G << A <<< C′ 
             

Pentatonic4  C <<< EÙ << F << G <<< BÙ << C′ 
             

Pentatonic5  C << D <<< F << G << A <<< C′ 

 Pentatonic scales are characterized by the presence of 3/2-step adjacent intervals.  Once we 
consider 3/2-step adjacent intervals, we can go back and reconsider 7-tone scales.  We will not consider 
all the possibilities, but merely remark that the so-called "harmonic minor" scale involves a 3/2-step 
interval between the 6th and 7th notes.     

Harmonic 
Minor 

 C << D < EÙ << F << G < AÙ <<< B < C′ 

Such scales are occasionally employed in Middle Eastern music and Eastern European music. 
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11. Equal-Interval Scales 

 Equal-interval scales are based on dividing each octave into n equal intervals; for each whole 
number n, we have a scale, which we call "nET".  The simplest such scales employ an inegral division 
of 1200 cents; these include 24, 12, 6, and 4 intervals, which are displayed as follows, using C as root.   

24ET  C C+ C# D− D D+ D# E− E E+ F F+ F# G− G G+ G# A− A A+ A# B− B B+ C′ 

 

12ET  C < C# < D < D# < E < F < F# < G < G# < A < A# < B < C′ 

 

6ET  C << D << E << F# << G# << A# << C′ 

 

4ET  C <<< D# <<< F# <<< C′ 

Here, we use a somewhat non-standard notation of plus ‘+’, minus ‘−’, and double-plus ‘#’, which is 
approximately equal to sharp ‘Ø’.  Note that 12ET is intimately related to equal temperament, which we 
have already discussed.20    

1. 31ET 

 Other equal-interval scales have been seriously considered over the years, including divisions of 
the octave into 16, 19, 31, 43, and 53 equal intervals.  After 12ET, the most widely examined equal-
interval scale is 31ET, which has 31 equal intervals of 38.709677 cents each.  It provides a close 
approximation to mean-tone temperament, and there have even been quite a few keyboard instruments 
built with 31 keys per octave, going back at least to the 16th Century.  The following is a picture of an 
antique instrument – called a "archicembalo" – at L'Istituto Comunale di Musica Antica in Italy. 

 

                                                 
20 Twelve-tone equal temperament should be carefully contrasted with 12-tone music, in which all 12 notes of the scale are 
given more or less equal representation. 
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The following is a picture of a more recent such instrument (1943), with its creator Adriaan Daniël 
Fokker (1887-1972).21  

 
 

The following is a diagram of the keyboard layout.  Note that there are semi-flats and semi-sharps.  Also 
note that conventional scales have uniform fingering; for example, C-major has the same fingering 
pattern as D-major. 

 

                                                 
21The remaining pictures come from the archive of the Huygens-Fokker Foundation 
[http://www.xs4all.nl/~huygensf/english/].  The great Dutch physicist Christiaan Huygens (1629-1695), who is most famous 
for originating the wave theory of light, was also a pioneer in music theory and tuning, and wrote on the relation between 31 
ET and mean-tone temperament.   
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Finally, the following is a picture of a 1970 electronic instrument, called an "archiphone".  Notice the 
color coordinated keys – white, black, and gray; there is a method in the madness!     

 
 

2. 53ET 

 My own personal favorite is 53ET, since I (re-)invented it from scratch, in my search for an ET 
that most closely approximates Ptolemaic tuning.22  In particular, in 53ET, each fundamental step is 
22.641509 cents, which provides the following conversions. 

Unit Name Pitch Ratio Cent Value 
Corresponding 

Number of 
53E steps 

Cent Value 

octave 2:1 1200.000000 53 1200.000000 

perfect fifth 3:2 701.955001 31 701.8867925 

perfect fourth 4:3 498.044999 22 498.1132075 

perfect major-third 5:4 386.313714 17 384.9056604 

perfect minor-third 6:5 315.641287 14 316.9811321 

perfect second 9:8 203.910002 9 203.7735849 

The Ptolemaic major scale is then approximated by the following scale in which the numbers refer to 
fundamental 53ET steps (22.64 cents). 

C << D << E < F << G << A << B < C′ 
   

       
9 8 5 9 8 9 5 

 

                                                 
22 My "discovery" of 53ET was anticipated!  There is even a 53-tone guitar called the "Dinarra", built by Eduardo Sabat-
Garibaldi (Uruguay), which has 89 frets!   Check the following address for more info and some music samples.   
http://dinarra.lookscool.com.   


