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1. Introduction 

 In investigating measurement scales, we have so far discussed nominal scales, ordinal scales, and 
interval scales.  That leaves ratio scales, which are also called "additive scales".  By way of review: 

(1) A nominal scale has categories that bear no special relations to each other.  Simple 
examples include classifying individuals according to their (1) political affiliation, (2) 
religious affiliation, (3) ethnic group. 

(2) An ordinal scale  has categories that are linearly ordered, but does not quantify 
differences (a.k.a., intervals) between the categories.  Grades (A,B,C, etc.) are an 
example of an ordinal scale.1  

(3) An interval scale  has categories between which it makes sense to measure differences 
(intervals).  More importantly, perhaps, it makes sense to add intervals, although it does 
not make sense to add the categories themselves.  An example of an interval scale is a 
musical scale (e.g., do, re, mi, fa, so, la, ti, do).  Intervals in music can be meaningfully 
added; for example, a fifth plus a fourth equals an octave.     

(4) A ratio scale  (additive scale) has categories that can be meaningfully added.  Key 
examples of additive scales include the measurement of weight (mass), length, area, and 
duration.  All of these quantities can be meaningfully added. 

                                                 
1 Although academic administrators treat them as more than an ordinal scale, by manufacturing grade-point averages. 



Hardegree, Additive Scales page 2 of 20 

The purpose of this chapter is to examine in detail what it means to add quantities.  Toward this end we 
first review addition in the context of numbers, and then we discuss addition in the context of 
mereology.  Finally, we discuss a particular additive scale – the measurement of weight – and show how 
one empirically and logically demonstrates that weight forms an additive scale.  

2. Numerical Addition 

 The paradigmatic additive scale is set-size.  In particular set-sizes can be added in accordance 
with the following fundamental principle of addition.2 

if 
 no A’s are B’s 
then 
 the number of A’s and B’s 
 = 
 the number of A’s 
 plus 
 the number of B’s  

For example, since no apple is a banana, if we have 5 apples and 7 bananas, then we have 12 apples and 
bananas.   

 The above formula can also be written with special symbols, as follows. 

if A ⊥ B then #(A ∪ B) = #(A) + #(B) 

Here, we use the following special symbols. 

⊥ Ë disjoint 
∪ Ë set union 
# Ë the size of … 
+ Ë addition 

Two sets A and B are said to be disjoint – written A ⊥ B – if they do not share any members in 
common.  Officially: 

A ⊥ B ü ∼∃x { x ∈ A  &  x ∈ B } 

For example, any collection of apples is disjoint from any collection of bananas.  On the other hand, the 
set of attorneys and the set of Bostonians are not disjoint, since there are Bostonian attorneys.     

 The union of two sets is obtained by adding them together.  If we have a set of apples and a set 
of bananas, then together with have a set of apples and bananas.  Officially, set-union is defined as 
follows. 

A ∪ B ü { x : x ∈ A  ∨  x ∈ B } 

                                                 
2 See chapter “Arithmetic”. 
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In other words, an item is a member of A ∪ B if and only if it is a member of A and/or a member of B.  
For example, a person is a member of the set of actors-and-bakers if and only if that person is an actor 
and/or a baker.   

3. Mereology 

 Set union is a special example of mereological union.  Mereology is the study of parts and 
wholes.3  The part-whole concept is fundamental to our grasp of the world.  We naturally think of 
concrete physical objects as having parts; for example, a bicycle has many parts, including two wheels, 
two pedals, a handlebar, a seat, etc.   

 Events also have parts; for example, a war has parts, including most notably battles, and a 
football game is divided into two halves, each of which is divided into two quarters.  Similarly, a 
baseball game is divided into nine innings, each of which is divided into a "top" and "bottom", each of 
which is divided into three or more "at bats".  A tennis match is divided into sets, which are divided into 
games which are divided into points.   

 Mediated material – i.e., content conveyed via media – also often have parts.  For example, a 
book (the message, not the physical medium) is usually divided into chapters, which are divided into 
sections, which are divided into subsections, etc.  Similarly, a play is usually divided into acts, which are 
divided into scenes.  Similarly, a poem is usually divided into stanzas, which are divided into lines, 
which are divided into metrical "feet".   

 In the physical realm, science has pursued the part-whole relation to its extremes.  As a result of 
centuries of astronomical investigation, we now believe that the Earth is part of the Solar System, which 
is part of the Milky Way Galaxy, which is part of the "local cluster" of galaxies, which is part of the 
"local super-cluster" of galactic clusters.4  Going the other direction, as a result of centuries of chemical 
and physical investigation, we now believe that chemicals have molecules as parts, which have atoms as 
parts, which have elementary particles as parts, many of which have quarks as parts.   

 There is evidently a largest object – what philosophers call "the world".5  Every object is a part 
of the world.  As such, the world includes all its "local" parts – the "local world", or what astronomers 
call "the universe" – as well as any non-local parts.  Here, the word ‘local’ means physically accessible.  
It is accordingly very difficult, or even impossible, to empirically confirm any hypotheses about whether 
the world has any non-local parts  – for example, hypotheses concerning matter that "escaped" soon after 
the Big Bang but before the creation of the local space-time manifold, or hypotheses concerning matter 
that existed prior to the Big Bang, or might exist after the Big Crunch.6     

 At one end, we have the world.  What do we have at the other end?  According to the 
philosophical position known as atomism, which was first postulated by Democritus (∼460-∼370 BC), 

                                                 
3   The prefix ‘mer’ comes from the Greek word ‘meros’ which means ‘part’.  Other words with this root include ‘polymer’ 
[many-part] and ‘meridian’ [middle part of the day, as in ante meridian (a.m.) and post meridian (p.m.)].    
4 Even super-cluster is a bit of a reach at the moment. 
5 This is the "big" sense of the word ‘world’ not to be confused with the "small" sense according to which ‘world’ is 
synonymous with ‘the planet earth’.  So the ‘biggest building in the world’ means the biggest building on the planet earth.  
There is yet another use of ‘world’ which uses it to refer to a coherent segment of reality, such as the "world of baseball".    
6 It is presently unknown whether the universe has enough matter that the current expansion of the universe will eventually be 
reversed by gravitation.  But if it does, then the universe would eventually collapse into a super black hole, known as the Big 
Crunch.  This scenario has a beautiful symmetry to it.  It seems aesthetically preferable to endless expansion, in which the 
universe eventually "freezes to death", and thereafter eternally lies dormant.  The universe, however, was not built to satisfy 
our aesthetic criteria. 
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the world divides into ultimate parts – called atoms – which have no further parts.  The word ‘atom’ 
derives from the Greek word ‘atomos’ which combines ‘a’ [not] and ‘tomos’ [cutting].7  The original 
atomic hypothesis concerned matter, but we can consider similar hypotheses about events, space, and 
time.   

 Needless to say, the modern usage of the word ‘atom’ as in ‘hydrogen atom’ derives from this 
usage.  Unfortunately, however, when chemists first discovered the chemical "atom" they were a bit 
hasty in declaring that they had discovered atoms.  For, it wasn’t that much later that these so-called 
"atoms" were discovered to have further parts – including electrons, protons, and neutrons!  
Nevertheless, the word ‘atom’ stuck, in spite of its inappropriateness, and indeed became engraved into 
our collective consciousness soon after the first "atom bombs" were detonated.8 

 This usage is not completely unfortunate, however, since we can use the term ‘atom’ 
contextually, as described in the first entry in American Heritage Dictionary: 

a part or particle considered to be an irreducible constituent of a specified system.  

In other words, we define the relevant system first; then relative to that system we define ‘atom’.  For 
example, "chemical atoms" are the smallest chemicals; chemical atoms have parts, but they are not 
chemicals.9  Logic uses the word ‘atom’ in precisely the same manner; in particular, the word ‘atomic 
sentence’ refers to sentences that do not have other sentences as parts.  Atomic sentences have further 
parts, including subjects and predicates, but these are not sentences.10  Other disciplines posit their own 
special atomic objects.  For example, in linguistics, the smallest phonetic unit is called a "phoneme", and 
the smallest grammatical/morphological unit is called a "morpheme".  On the other hand, in biology the 
smallest genetic unit is called a "gene", and the smallest life-unit is called a "cell".  In making up words 
for the various fundamental units, chemistry struck first, and appropriated the word ‘atom’ for their own 
purposes.  Everyone else has to come up with other words; for example, physicists sometimes talk of 
"fundamental particles".  

4. The Principles of Mereology 

 Can we reduce the part-whole relation to a few fundamental principles that encompass its core 
meaning?  We propose the following formal theory.  First, we propose a special symbol, defined as 
follows. 

a ≺ b Ë a is a part of b   
 or: a is part of b 
 or: b contains a 

We next propose the following fundamental postulates (axioms). 

                                                 
7 A similar word involving cutting is the word ‘anatomy’ which combines ‘ana’ [up] and ‘tomos’ [cutting].  So ‘anatomy’ 
literally means ‘cutting up’.   
8 We are now more sophisticated in our speech, and refer to these devices as "nuclear" bombs, which is more appropriate 
since the processes involved are clearly not atomic (i.e., chemical) but are rather nuclear (i.e., involving protons and 
neutrons).   
9 This is not completely accurate, although it is close.  The problem is that ions count as chemicals, and the hydrogen ion H+ 
is basically a nucleus, consisting of just the proton.   
10 The actual story is a bit more complicated, due to the presence of operators that form noun phrases from sentences, but t his 
simple story works fine as far as introductory logic goes.     
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(p1) a ≺ b → b Ã a [asymmetry] 
(p2) a ≺ b  &  b ≺ c   .→   a ≺ c [transitivity] 
(p3) ∀x {x ≺ a  ↔  x ≺ b}   →  a = b [uniqueness] 
(p4) a ≺ b   →   ∃x { x ≺ b  &  x Ã a  &  x ≠ a } [anti-linearity] 

The first axiom claims that the part-whole relation is asymmetric; in other words: 

if a is a part of b, then b is not a part of a 

or:  if b contains a, then a does not contain b 

For example, since the Solar System contains the Earth, the Earth does not contain the Solar System.   

 The second axiom claims that the part-whole relation is transitive; in other words: 

if a is a part of b, and b is part of c, then a is a part of c. 

For example, the Earth is a part of the Solar System, which is part of the Milky Way Galaxy, so the 
Earth is a part of the Milky Way Galaxy.   

 The third axiom claims that distinct objects cannot have exactly the same parts.   

if a and b have precisely the same parts, then a and b are the same thing 

This is logically equivalent to the following. 

if a and b are distinct,  
then a has a part that b doesn’t have  
or b has a part that a doesn’t have.    

 The fourth axiom is a bit more complicated, but ensures that the part-whole relation is not linear.  
It prohibits systems like the following. 

a 

b 

c 

In this system, there are just three individuals, where a contains b, which contains c.  Although a is 
bigger than b, it doesn’t contain anything over and above b.  Likewise, although b is bigger than c, it 
doesn’t contain anything over and above c.  What Axiom (p4) requires is that in order to build a bigger 
object, one must add extra material.  For example, the following would be an acceptable reconstruction 
of the above diagram.  

 a 

 b d 

 c e 
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In this system one builds a by adding b and d, and one builds b by adding c and e.11      

5. An Aside on Identity 

 The uniqueness postulate (p3) has some interesting ramifications for the problem of identity, and 
accordingly might be controversial.  I offer two examples that might be problematic.   

1. Example 1 

 Suppose we take an automobile A and disassemble it into various parts – muffler, engine, 
wheels, windshield, etc – and suppose we re-assemble these parts into a sculpture S.  It seems that we 
have destroyed the car A, and used its parts to make a new object, the sculpture S.  Common sense tells 
us that there is an object, the sculpture S, which didn’t exist before, but exists now; it also tells us that 
there is an object, the automobile A, which existed before, but no longer exists.  Since these objects 
differ in critical ways, they are distinct – i.e., A ≠ S.  On the other hand, by hypothesis, S and A have 
precisely the same parts, so according to (p3) they are identical; i.e., A = S.   

 This appears to be a counter-example to Axiom (p3).  The most plausible response is to clarify 
our mereological principles so that they are time-dependent.  In particular, we understand (p3) as 
follows. 

(p3*) at any given time, t if an object a exists at t, and an object b exists at t, then if they have 
precisely the same parts at t, then they are identical at t.   

Therefore, since A and S don’t exist at the same time [one is destroyed to make the other], principle 
(p3*) does not apply to them.    

2. Example 2 

 Or next example does not have a temporal component, but does have a heavy-duty metaphysical 
component.  It concerns the relation between persons and their bodies.  We have a number of intuitions 
about this.  In many contexts, statements about a person are easily understood as statements about the 
person’s body; for example, statements about one’s location, height, weight, etc. are basically statements 
about one’s body.  For example, to weigh 170 pounds is for one’s body to weigh 170 pounds.  On the 
other hand, statements about one’s hopes wishes and desires do not seem plausibly to be statements 
about one’s body.  For example, if I say that I yearn for world peace, it would be very strange to 
understand this as saying that my body yearns for world peace.  Similarly, if I say that I decided to have 
pizza for dinner, it would be very strange to understand this as saying that my body decided to have 
pizza for dinner.  Thus, common sense tells us that some attributes apply to persons, but not their bodies.  
Together with logic, this leads to the following principle.   

(i1) no person is identical to his/her body 

 Common sense also tells us that one’s body’s parts are also one’s parts.  For example, there are 
various body parts that I refer to as "my hands", "my stomach", "my blood".12  This leads to the 
following principle. 

                                                 
11 We talk about mereological addition in a later section (8). 
12 Many items inside our body do not qualify as body parts, and are accordingly not "ours".  These include the contents of our 
stomach, and otherwise ingested material, as well as invading organisms.    
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(i2) every part of a person’s body is a part of that person 

We are now in position to make the following argument. 

(1) no person is identical to his/her body (i1) 
(2) every part of a person’s body is a part of that person (i2) 
(3) if two things have the same parts, they are identical (p3) 
(4) every person has some part that his/her body does not have 1-3,logic 
(5) every person has a non-bodily part 4,terminology 

I leave the reader to ponder his or her own response to this reasoning.    

6. Atoms 

 Once we have a part-whole relation, we can define ‘atom’ as follows. 

(d) a is an atom ü ∼∃x { x ≺ a } 

In other words, an atom is an object that has no parts.13   

 Now, the notion of atomism includes at least the following principle.   

(a) ∀x { x is an atom  or  ∃y { y is an atom  &  y ≺ x } }  

In other words, every object is an atom or contains at least one atom.14  This is a weak form of atomism.  
The stronger atomic thesis goes as follows. 

(A) ∀x {x is an atom  →  {x ≺ a  ↔  x ≺ b}}   →  a = b 

Note that this is a logical strengthening of the uniqueness principle (p3).  It says that if items a and b 
have the very same atomic constituents, then a and b are the very same item.  Equivalently, if a and b 
are distinct (i.e., a ≠ b), then one of them must contain an atom the other does not contain. 

 Another formulation of atomism treats it as a strengthening of anti-linearity, as follows. 

(A′)  a ≺ b   →   ∃x { x is an atom  &  x ≺ b  &  x Ã a  &  x ≠ a } 

In other words, if a is a part of b, then b contains at least one atom distinct from a that a doesn’t 
contain.   

7. Disjointness 

 The word ‘two’ is occasionally ambiguous between ‘distinct’ and ‘disjoint’ (or "completely 
distinct").  For example, consider the following well-known saying.  

you can’t be in two places at the same time 

                                                 
13 Here, we understand that we are quantifying over the relevant domain of objects.  For example, material atoms are different 
from temporal atoms, spatial atoms, chemical atoms, phonetic atoms, grammatical atoms, etc.   
14 Given anti-linearity (p4), every non-atom must contain at least two atoms. 



Hardegree, Additive Scales page 8 of 20 

If ‘two’ means ‘distinct’ (≠), then this saying is obviously false.  For one can be in distinct places at the 
same time, since surely one can be in Boston and Massachusetts at the same time, and surely Boston and 
Massachusetts are distinct (i.e., Boston ≠ Massachusetts). 

 However, this is probably not what one "really" means in offering the above platitude.  Rather, 
one probably means that 

you can’t be in two disjoint places at the same time 

The main point is that disjoint pairs are automatically distinct, but not conversely.  For example, Boston 
and Massachusetts are distinct but not disjoint, since in particular Massachusetts contains Boston.  This 
leads to our official definition of ‘disjoint’ in the context of mereology. 

(n) a ⊥ b Ë a and b are disjoint 

(d) a ⊥ b ü ∼∃x { x ≺ a  &  x ≺ b } 

In other words, a and b are disjoint precisely if they have no part in common.  It immediately follows 
(exercise!) that if a and b are disjoint, then neither contains the other. 

(t) a ⊥ b   →.   a Ã b  &  b Ã a 

8. Mereological Sums 

 Disjoint items can be put together, either physically or conceptually, to form a new item.  This 
process is called "(disjoint) mereological summation".  In particular, we can take any two disjoint items 
a and b, and we can abstractly consider the mereological sum a⊕b.15  Some summations make more 
sense than others.  For example, if we take my left hand as a, and my right foot as b, it seems that there 
is no natural (organic) object a⊕b.  Along the same lines, if we take Al Gore as a, and the super red 
giant star Betelgeuse as b, then the object a⊕b seems too absurd to even contemplate.16  On the other 
hand, if we take the Earth as a, and the Moon as b, then the object a⊕b seems like a natural object.  It 
even behaves in a highly predictable manner – the Moon orbits the Earth, and the unit orbits the Sun.  It 
similarly seems reasonable to sum all my cells and all the interstitial "goo" into a biological unit known 
as my body. 

 The following principles apply to mereological sums. 

(s1) a ≺ a⊕b 
 b ≺ a⊕b 
(s2) a ≺ c  &  b ≺ c   .→   a⊕b ≺ c 
(s3) a⊕b   =   b⊕a 
(s4) a ⊥ b  &  a ⊥ c   .→   a ⊥ b⊕c 
(s5) a⊕(b⊕c)   =   (a⊕b)⊕c 
(s6) a⊕b  =  a⊕c   →   b = c 

                                                 
15 In principle, we can also consider summing overlapping objects, but we do not consider this option.  The circle-plus 
operator only applies to disjoint pairs of individuals. 
16 Not thereby implying that the individual objects are too absurd to contemplate. 
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Note carefully that these are abbreviations of much more complicated expressions that clarify the 
dependence of x⊕y on the disjointness of x and y.  For example, (s3) is more properly written as 
follows. 

(s3*) if a ⊥ b, then a⊕b = b⊕a 

9. Mereology and Set Theory 

 Set theory provides a vivid example of a mereological system.  In particular, we consider non-
empty sets, and we take the proper-inclusion relation as the part-whole relation.  Recall that set-
inclusion is defined as follows. 

A ⊆ B ü ∀x { x ∈ A  →  x ∈ B } 

In other words, A is included in B if and only if every member of A is also a member of B.  This is not 
the part-whole relation, since a set is automatically included in itself.  Rather, the part-whole relation 
corresponds to the proper-inclusion relation, defined as follows. 

A ⊂ B ü A ⊆ B  &  A ≠ B 

It is fairly easy to demonstrate that the proper-inclusion relation satisfies all the postulates of mereology, 
including the atomism postulate, provided we exclude the empty set from consideration.  

(p1) A ⊂ B   →   B ⊄ A 
(p2) A ⊂ B   &  B ⊂ C   .→   A ⊂ C 
(p3) ∀X{ X ⊂ A  ↔  X ⊂ B }   →   A = B 
(p4) A ⊂ B   →   ∃X { X ⊂ B  &  X ⊄ A  &  X ≠ A }   

(d) A is an atom ü ∼∃X { X ⊂ A } 
(a)  ∀X { X is an atom  or  ∃Y { Y is an atom  &  Y ⊂ X } } 
(A) ∀X{ X is an atom   →   { X ⊂ A  ↔  X ⊂ B } }   →   A = B 
(A′) A ⊂ B   →   ∃X { X is an atom  &  X ⊂ B  &  X ⊄ A  &  X ≠ A }  

Note that we explicitly exclude the empty set ∅ from consideration in these formulas.  For example, the 
stricter formulation of (d) is as follows. 

(d) A is an atom ü A ≠ ∅  &  ∼∃X { X ≠ ∅  &  X ⊂ A } 

10. Expanding Measurement to A Wider Context 

 Set-size provides the paradigm for measurement, but not all measurements conform to its 
rigorous standards.  Absolute scales conform exactly, but I know of no absolute scale that does not 
reduce to counting individuals.  Below absolute scales in the hierarchy are additive scales.  What makes 
a scale additive?  Well, addition!  But what is addition?  Well, mereological summation – whose exact 
definition depends upon the context.  For example, in set-theory, addition corresponds to disjoint-union.  
In particular, 

A⊕B exists precisely if A⊥B, in which case A⊕B = A ∪ B 

For example, any collection A of apples is disjoint from any collection B of bananas, so the disjoint 
union – apples-and-bananas – is the sum A⊕B. 
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 We can now state the additivity requirement for set sizes as follows. 

#(A ⊕ B)   =   #(A) + #(B) 

This in turn allows us to informally define additive scale as follows. 

 A measurement scale is additive if and only if it "admits" a summation operation ⊕.   

The problem is the vagueness of the term ‘admits’.  So, in the next few sections, we examine a particular 
example of addition, in order to illustrate what we mean. 

11. Weight 

 Probably the most straightforward physical example of an additive measurement scale is 
provided by the measurement of weight.  The measurement of weight probably goes back very far in the 
history of civilization, and played an increasingly important role in commercial transactions.  Most 
commodities had their own special methods of measurement – whether by volume or some other evident 
unit.  But it seems that it would be very difficult to buy and sell metal and gemstones (for the production 
of tools and decorations) without a reliable way of comparing and measuring weights.  And even today, 
many products are sold by weight, not volume.     

 The fundamental device for measuring weight is the balance scale (or beam balance), which is 
graphically depicted as follows. 

 

There are two ways of using a balance scale.  According to the fundamental method, one keeps the 
balance point (the fulcrum) at a fixed location, calibrated so that equal weights exactly balance each 
other.  According to the more sophisticated method, first discovered by Archimedes (a287-212 BC) in 
his study of levers, one adjusts the balance point, and measures the corresponding distances once the two 
weights are exactly balanced.  A variant of this method is used in scales in doctors’ offices.   

 Let us concentrate on the fundamental method.  How do we use a balance scale to construct an 
additive measurement scale for weight?  What is the logic?  First, we must realize that a balance scale 
does not measure weight per se, but only compares weights of various objects placed in the pans.17  Here 
is how it works (for those who have never actually seen an "analog" measuring device work).  In order 
to compare two objects a and b, we place them in separate pans.  Then, according to the way the balance 
tips, we conclude one of the following.   

                                                 
17 The word ‘scale’ as used here comes from the old Norse word sk³l which means ‘bowl’.   
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(1) a>b a is heavier than b if the scale tips toward a 
(2) b>a b is heavier than a if the scale tips toward b 
(3) a≡b a and b are equally-heavy otherwise (i.e., if a and b balance exactly) 

At this point, we need to consider the issue of reliability.  In particular, it is critical that the result we 
obtain – a>b, b>a, a≡b – does not depend upon which pan we place each item in.  So for example, if 
the placement a−b [a left, b right] judges a and b to be equally-heavy, then the opposite placement b−a 
should likewise judge them to be equally-heavy.  This is an issue of mechanical calibration; a 
measurement instrument that is out of calibration will provide misleading results.  Many further issues 
surround this one, but let us for the moment presuppose that our device is reliable in at least this sense. 

 The issue of reliability is actually subordinate to a much bigger issue – whether the logic of the 
terms ‘heavier’ and ‘equally-heavy’ match the empirical facts.  As we saw earlier, the logical principles 
of comparison words like ‘heavier’ and ‘equally-heavy’ reduce to the following four principles.18 

(h1) a and b are equally-heavy   iff   a is not heavier than b and b is not heavier than a 
(h2) if a is heavier than b, then b is not heavier than a 
(h3) if a is heavier than b, and b is heavier than c, then a is heavier than c 
(h4) if a and b are equally-heavy, and b and c are equally-heavy,  

then a and c are equally-heavy  

Notice that, since ‘heavier’ and ‘equally-heavy’ have been operationally defined by reference to our 
balance scale, there is no a priori guarantee that these four principles obtain.  We could certainly 
imagine other operational definitions that would clearly not yield (h1)-(h4).19  Another way to describe 
the logical situation is to say that we have proposed a system for measuring weight, and we have four 
minimal logical criteria – (h1)-(h4) – by which we judge the proposed system. 

 So let us judge our balance-scale system against these four criteria.  We first note that both (h1) 
and (h2) follow logically from the manner in which we have operationally defined ‘heavier’ and 
‘equally-heavy’.  Concerning (h1), on any given occasion, we judge a and b to be equally-heavy 
precisely if the scale does not tip either direction; on each such occasion, we simultaneously judge a is 
not be heavier than b and b is not to be heavier than a.  Concerning (h2), given the manner in which we 
compare a and b, by placing them in opposite pans, if the scale tips toward a, then a fortiori it does not 
tip toward b, and vice versa.  This is built into our understanding of the function of the balance scale. 

 There is a bit of a logical ruse in the above argument.  Principles (h1)-(h4) are disguised 
universally-quantified formulas, which permit us to substitute the same item for two different variables.  
So in particular, the following are logical consequences.   

(h1′) a and a are equally-heavy   iff   a is not heavier than a [and a is not heavier than a] 
(h2′) if a is heavier than a, then a is not heavier than a 

In connection with our operational definition of ‘equally heavy’, (h1) and (h2) logically yield the 
following. 

a balances a  

                                                 
18 Note also that (h3) and (h4) can be replaced by the following: 
 (h3*) if a is not heavier than b, and b is not heavier than c, then a is not heavier than c 
19 For example, in Ancient Rome, we could let the Emperor estimate weights.  In particular, whenever we wish to compare 
two objects, we present them to the Emperor and let him deem which one, if either, is heavier.  Even if the Emperor was not 
insane (as many apparently were!), the resulting scale would most likely fail to meet the logical criteria (h1)-(h4).   
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Now, here is the operational problem.  A balance scale can only compare the weights of two different 
(disjoint) objects; it cannot compare the weight of an object with itself.  This is because, quite simply, 
we cannot place a single object on both pans simultaneously to check whether it balances itself!  So how 
can we empirically confirm that a single object balances itself?   

 There are a couple of approaches to this problem.  According to one approach we simply declare 
by fiat that an object balances itself.  In effect, we imagine balancing the object with an exact duplicate.  
The second approach is to alter the question from “how do we confirm that a single object balances 
itself?” to “how do we refute that a single object balances itself?”.  It seems that we cannot refute this 
claim because we cannot place an object in both pans and observe that it doesn’t balance.  If we take the 
impossibility of refutation as confirmation, then we can confirm the hypothesis that every object 
balances itself.   

 So far, we have verified two principles – (h1) and (h2) – simply by examining the logical 
character of our operational definitions.  This changes when we examine the remaining two principles, 
which do not follow merely from the definition of the terms, and accordingly must be tested empirically.  
The question is whether the following are born out by the facts. 

if we compare a and b, and judge that a>b [a≡b] 
and we compare b and c, and judge that b>c [b≡c], 
then when we compare a and c, we will judge that a>c [a≡c].    

For the sake of argument, let’s suppose that we have hundreds of test-subjects in our laboratory that we 
have inter-compared laboriously (it’s a laboratory, yes?)  Let us further suppose that our observations 
confirm (h3) and (h4), which is to say that we test every possible triple a-b-c, and we discover no 
refutation.20   

 At this point, we have constructed an ordinal classification of our test-subjects, which we can 
picture as follows. 

… W1 < W2 < W3 < W4 < W5 < W6 … 

Each of these categories corresponds to a weight-class, which is simply a collection of items that are all 
equally-heavy.  Thinking of the categories as bins, two items are placed in the same bin precisely when 
they balance each other on the scale.  Furthermore, the bins are arranged left-to-right in ascending order 
according to weight.  For example, W2 is to the right of W1, so every item in W2 outweighs every item in 
W1.     

12. Comparing Mereological Sums 

 Although we now have a perfectly respectable ordinal classification of our test-subjects, we still 
don’t have anything resembling "numbers", which is what we ultimately would like to have.  Towards 
this goal, we must construct an additive scale.  As mentioned earlier, the key to an additive scale is 
having a method of mereological summation.  In our example, mereological summation is completely 
straightforward – we can form the appropriate sum of two objects simply by placing them together in the 
same pan.  Notice that, in this case, the compound object a⊕b need not be a completely natural organic 
unit.   

                                                 
20 This includes the trivial confirmation that if a≡b, then b≡a, so a≡a.    
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 The next step is to perform a number of rather tedious measurements of the following sort.  
Specifically, we go through all our weights and make judgments of the following two forms.   

a > b⊕c  a⊕b > c⊕d 
a < b⊕c  a⊕b < c⊕d 
a ≡ b⊕c  a⊕b ≡ c⊕d 

In the first comparison, we place item a on one pan, and we place items b and c on the other pan, and 
we observe which direction, if either, the balance tips.  In the second comparison, we place items a and 
b on one pan, and we place items c and d on the other pan, and we observe which direction, if either, the 
balance tips.  

 At this point, we must further check empirically whether > and ≡ continue to be transitive.  If 
they are not, we are dead in the water; our attempt to construct an additive scale is already doomed.  
However, let’s suppose the gods of weight and balance continue to smile upon us, and we find no 
experimental refutations of transitivity.     

 Our next step is to examine judgments of the form:  

a  ≡  b⊕c 

These judgments are especially important, because (if all goes well) they will enable us to define 
addition for weight-classes.  In an additive scale, it makes sense to add categories.  In the present 
operational setting, each category is a weight-class, which consists of concrete objects that all balance 
each other on the scale.  So, how do we add weight-classes?   

 This is our proposal – to add two weight-classes W1 and W2 operationally, we take an item a 
from W1, and we take an item b from W2, and we compare the mereological sum a⊕b with all other 
items.  Now, suppose that we observe the following. 

a⊕b  ≡  c 

where c comes from category W3.  We then define weight-class addition so that: 

W1 ⊕ W2  =  W3 

There is a potentially very serious problem with this definition.  Specifically, the following scenario is 
still logically possible.   

we pick a different item from W1, say a′; 
we pick a different item from W2, say b′;  
we judge that a′⊕b′ balances item d, 
BUT d does not balance c, so d is in a different weight-class from c 

In this case, we would have conflicting sums. 

W1 ⊕ W2  =  W3 
W1 ⊕ W2  =  W4 
but 
W3  ≠  W4 

This is contradictory by identity logic, and is therefore unacceptable.   
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 We accordingly must empirically confirm that the imagined scenario does not in fact arise.  This 
amounts to testing the following key principle, which we add to our list of principles.   

 (h5) a1 ≡ a2  &  b1 ≡ b2   .→   a1⊕b1 ≡ a2⊕b2 

The actual experiment is easy to imagine.  We take two items – a1 and a2 – from one bin, and two items 
– b1 and b2 – from another bin, and pair them appropriately in the pans – a1⊕b1 and a2⊕b2 – and 
observe whether the scale balances.    Each time it balances, we have a confirmation of (h5), but each 
time it doesn’t we have a (conclusive) refutation of (h5). 

 As we have done previously, we presume that the weight-gods are smiling on us, and (h5) stands 
up to rigorous testing.   

13. Expanding the Weight Scale 

 The ever alert reader may have noticed in the previous section that it is surely conceivable that 
we discover no equivalences of the form: 

a⊕b ≡ c 

In that case, how do we define addition of weight-classes?   

 So far, we have presumed that the variables in (h1)-(h5) range over unitary test-subjects.  For 
example, in the expression ‘a⊕b’, we have presumed that a and b are unitary objects, and not 
mereological sums.  The next step in our logical construction is to remove this restriction and understand 
(h1)-(h5) as pertaining to arbitrary (disjoint) mereological sums in addition to unitary test-subjects 
(which can be thought of as "unit" sums).  Alternatively stated, our domain of measurement now 
includes all the original test-subjects (in effect, the atoms of this context, since we are not sub-dividing 
them) as well as all their disjoint sums.21 

 We next construct a database recording all comparisons of the following forms.   

a1⊕…⊕am > b1⊕…⊕bn 
a1⊕…⊕am < b1⊕…⊕bn 
a1⊕…⊕am ≡ b1⊕…⊕bn 

As before, this provides an ordinal scale of weight-classes.  The key change is that we are considering a 
much wider class of test-subjects which includes all the original test-subjects and additionally all the 
mereological compounds.  We can no longer picture this by way of bins, since the various compounds 
will share many atoms in common, which cannot accordingly be placed in two different bins.  We can 
still make a simple database, a tiny fragment of which might look like the following.    

                                                 
21 There is an immediate practical problem – we might not be physically able to place all the test-subjects on the pans of our 
balance scale, because there are too many!  However, let’s pretend we can.  Either the test-subjects are very small or the 
balance scale is very big.   
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 simple compound 
W1 a b   
W2 c  a⊕b  
W3   a⊕c b⊕c 
W4   a⊕b⊕c 
… … … … … 

In this table are listed four weight-classes, one of which only has a single member.  The columns are 
subdivided into atomic/simple and molecular/compound items.  For example, weight-class W1 consists 
of two simple items a and b and no compound items, and weight-class W2 consists of one simple item c 
and one compound item a⊕b.  Notice also that some compounds are equivalent to atoms, and some are 
not.   

14. Ratios 

 The next task is to introduce ratios.  Suppose that we observe the following. 

a ∈ W1 
b ∈ W2 
c ∈ W2  
a ≡ b⊕c 

Thus, b and c are equally-heavy and together balance a.  From what we have learned so far, we can 
deduce the following.   

for any x, y, z:  if  x ∈ W1,  and y, z ∈ W2,  then x ≡ y⊕z.   

This can be described as follows. 

any one item from W1 is equal-in-weight to any two items from W2  

We can even go so far as to say that: 

any item from W1 is twice as heavy as any item from W2  

The word ‘twice’ is a ratio word; other ratio words include: 

two times three times … 
one-half one-third … 
three-halves four-thirds … 
two-thirds three-fourths … 

Ratio words appear in comparison statements such as: 

there are twice as many apples as bananas 
there are half as many bananas as apples 
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Ratio words denote special set-relations called "ratios", which correspond to the positive rational 
numbers.22   

 We can construct a whole host of ratios from our laboratory items by comparing arbitrary 
mereological sums, including the following. 

a1 ≡ b1⊕b2 a1  ≡  b1⊕b2⊕b3 a1  ≡  b1⊕b2⊕b3⊕b4 … 

a1⊕a2  ≡  b1⊕b2⊕b3 a1⊕a2  ≡  b1⊕b2⊕b3⊕b4 … … 

a1⊕a2⊕a3  ≡   b1⊕b2⊕b3 a1⊕a2⊕a3  ≡  b1⊕b2⊕b3⊕b4 … … 

 
Here, items named by the same letter are presumed to be equivalent [e.g., a1 ≡ a2, b2 ≡ b3].   

 This investigation will produce a database that can be tabulated as follows. 

 a1 a2 a3 a4 … 

a1 R11 R12 R13 R14 … 

a2 R21 R22 R23 R24 … 

a3 R31 R32 R33 R34 … 

a4 R41 R42 R43 R44 … 

… … … … … … 

Here the test-subjects are enumerated – a1, a2, … – and the weight-ratios are double-enumerated – R11, 
R12, …  For example, R34 is the ratio of a3 to a4.     

 An investigation of the database will suggest that it contains a lot of redundant information.  For 
example, the operational definition of weight-ratios implies that the ratio of a to b will automatically be 
the inverse of the ratio of b to a.  For example, if a is twice as heavy as b, then b is half as heavy as a.  
More generally, if a is m/n as heavy as b, then b is n/m as heavy as a.  This has a further consequence 
that all the diagonal elements are 1/1 – every object is 1/1 times as heavy as itself.  That means we can 
compress the table of ratios as follows. 

 a1 a2 a3 a4 … 

a1  R12 R13 R14 … 

a2   R23 R24 … 

a3    R34 … 

a4     … 

… … … … … … 

                                                 
22 See chapter “Other Numbers”. 
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15. The Archimedean Balance Scale 

 Earlier we mentioned that a balance scale has a fundamental method, and a more sophisticated 
method, for comparing weights.  According to the fundamental method, the balance point is fixed, so 
when we compare two items (simple or compound), all we can judge is whether the balance tips toward 
one of the items.  According to the more sophisticated method, originally discovered by Archimedes, 
and in principle employed in official medical scales in doctors’ offices, one adjusts the balance point.  
The adjusted picture is as follows.  

   

A             F             B 
 

   

In this apparatus, the balance point (fulcrum) F can be adjusted in location until the scale achieves 
balance, at which point one compares the distance between A and F, with the distance between F and B.  
The weight-ratio is then operationally defined as follows.   

weight-ratio(a/b)  =  distance(F, B) / distance(A, F) 

The advantage of this type of scale is that it allows us to compute weight-ratios very quickly; the 
disadvantage is that its precision is limited by our ability to make precise movements of F, and to make 
correspondingly precise measurements of distance.   

 In any case, it is still a purely empirical matter whether an Archimedean balance scale agrees in 
its weight judgments with the conventional balance scale.  Let us presume that, in principle, the two 
devices can be adjusted so that they are in complete agreement.   

16. Deflection Scales23 

 The common bathroom scale is built on different physical principles – that a spring is deflected 
(squeezed or stretched) by a specifiable amount as a function of the force applied to it.  To measure the 
weight of something, one measures the deflection of the spring.   Although most bathroom scales are 
neither very precise nor very accurate (because they don’t need to be!), the general method of 
deflection, according to which a change in applied force results in a specifiable alteration ("deflection") 

                                                 
23 As far as I know, the term ‘deflection scale’ is my own invention.  I have been unable to find a general term for these kinds 
of scales.    
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in a physical system, applies to all manner of modern weight scales, some of which are astonishingly 
precise and accurate.24       

 Let us concentrate on scientific instruments.  The chief difference between a balance scale and a 
deflection scale is that the latter must be calibrated on site before it can be properly used.  There is 
simply no way that a manufacturer can know exactly what the force of gravity is at the site in question.  
Accordingly, standard weights must be sent along with the device.  One weighs the standard masses, and 
adjusts the scale until the read-out gives the correct values.25  But we are getting ahead of ourselves, 
since we still haven’t officially discussed either "values" or "standard weights".  For this we need some 
further logical machinery. 

17. Units 

 The next step in the construction of a genuine ratio-scale is to test the following hypothesis 
against the data.   

if a is mm -times as big as b,  
and b is nn -times as big as c,  
then a is mm××nn -times as big as c 

Here, we introduce ratio-multiplication in the standard manner.26  The following is a simple and natural 
example of ratio-multiplication. 

if a is twice as big as b,  
and b is twice as big as c,  
then a is four-times as big as c 

Supposing this hypothesis stands up to scrutiny, we can compress our database by eliminating all but 
one row from the original table.  For example, we can summarize our data as follows. 

 a1 a2 a3 a4 … 

a1 R11 R12 R13 R14 … 

Or, we can equally well summarize our data by any of the following single-row tables. 

 a1 a2 a3 a4 … 

a2 R21 R22 R23 R24 … 

 

                                                 
24 One such scale, invented by Setra Systems (Boxborough, Mass), measures capacitance across ceramic beams, which 
changes as a function of the strain on them.  See http://www.setra.com/wei/tec/tec.htm. 
25 This is because we are usually interested in an object’s mass, rather than it’s weight, which is proportional to it’s mass 
(unless the object is weightless!)  For example, a dieter would not qualify as losing "weight" if he/she merely goes to the 
Moon, where the force of gravity is considerably less than on the Earth.  But even across the Earth, the force of gravity varies 
enough that scientifically exact measurements of mass often must take this into account.       
26 For example, two-thirds multiplied by three-fifths is two-fifths.   
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 a1 a2 a3 a4 … 

a3 R31 R32 R33 R34 … 

 

 a1 a2 a3 a4 … 

a4 R41 R42 R43 R44 … 

 … 

Logically speaking, which row we choose is completely arbitrary.  Practically speaking, selecting a 
particular row amounts to selecting a "standard" object – either a1, or a2, or a3, or … – and stating all 
weight information by reference to this standard.   

 For example, suppose we select a standard object, and name it "Libby",27 which we derive from 
‘Libra’ which is Latin for balance scale.  We can then summarize all weight information by reference to 
Libby.  For example: 

a weighs twice as much as Libby 
b weighs half as much as Libby 
c weighs six times as much as Libby 
d weighs two-thirds as much as Libby 

We can abbreviate this information as follows.   

weight(a)  =  2 © 
weight(b)  =  1/2 © 
weight(c)  =  6 © 
weight(d)  =  2/3 © 

The critical point is that if we know how two objects compare to Libby, we can deduce how they 
compare to each other.  For example, since a is twice ©, and b is half ©, we can deduce that a is four-
times b, and accordingly b is one-fourth a. 

18. Standardized Units 

 At this point we have introduced a measurement unit into our weighing – the "Libby".  At the 
moment, its role is primarily to simplify bookkeeping; in particular, a single row of data is far preferable 
to a correspondingly large matrix of data.  Also, granting scientific induction, we can surmise that to 
measure the weight of a new test-subject, we do not have to compare it to all the existing test-subjects; 
rather, we only need to compare it to our standard test subject Libby, which we now keep handy for this 
purpose.    

 The next step in the development of weight measurement arises from the need to communicate 
our measurement results to other people (or even to ourselves at a later time!).  For intra-laboratory 
comparisons, an intra-laboratory standard – Libby – is all we need.  But for extra-laboratory 

                                                 
27 The actual name is largely irrelevant.  We can also call our standard object "Jack" or "Jill" or "Graham" or "Lucilla" or 
whatever!   
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comparisons, we need a transmittable standard, over space and over time.  If a later investigator reads 
that my sample weighed 20 Libbys, that investigator must be able to ascertain what a Libby is!   If I 
somehow transmit a copy of Libby to the investigator, then this problem is solved.28 

 If we want to communicate our measurements to a wide range of people, then a more publicly 
available standard must be used.  Various standards have been adopted over the centuries.  It was not 
until the rise of science that international standards became important for the communication of 
scientific results.  The need for standards was later seen to be equally critical to industrial development 
and international commerce.  The so-called "metric" system was first officially proposed in France soon 
after the French Revolution (1791), based on these concerns, and it was disseminated to the rest of 
Europe during the 19th Century (partly aided by Napoleon’s conquest of Europe).  The International 
Bureau of Weights and Measures still resides in France.      

 Standards have changed over the years.  The meter was originally defined to be 1/10,000,000 of 
a quadrant of a great circle of the Earth,29 an absurdly difficult distance to measure.  Once this distance 
was actually measured, in 1798, a standard prototype meter platinum meter stick was constructed and 
installed at the Archives of the Republic, in Paris.  Later (1889), a new prototype object was constructed, 
and the meter was defined by explicit reference to this concrete object.  More recently (1983), the 
standard has been changed so that a meter is defined to be the distance light travels (through a vacuum) 
in 1/299,792,458 second.  The second, in turn, is currently defined by reference to atomic clocks.30   

 Most measurement standards are defined in terms of reproducible types of physical phenomena, 
such as atomic resonance and the transmission of light through a vacuum.  The notable exception is 
weight, which continues to be measured against a unique concrete object (prototype), currently housed 
at the International Bureau of Weights and Measures, in Sèvres, near Paris.31  At present, I am unable to 
locate a picture of the "Paris kilogram", so well-hidden is it, but secondary standards also exist around 
the world, which are copies of the Paris kilogram.32  The following is a picture of the standard kilogram 
in the U.K.,33 which (like all the others) is a Platinum-Iridium cylinder housed in a specially sealed 
container. 

 

 
                                                 
28 Mostly!   A number of issues arise.  For example, does the standard change weight over time?  Also, does it weight 
different amounts in different places.   
29 In particular, the great circle passing through the North Pole and Paris.   
30 A second is officially defined as “the duration of 9,192,631,770 periods of the radiation corresponding to the transition 
between the two hyperfine levels of the ground state of the cesium-133 atom.” 
31 Bureau International des Poids et Mesures (BIPM). 
32 The production of a standard is largely arbitrary, but the production of a copy is an incredibly difficult process, since in 
principle there is absolutely no room for error.  This level of exactness can of course never be achieved.   
33 This picture comes from http://www.dti.gov.uk/NMD/nmspu.htm. 


