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1. Introduction 

 So far, by number we have meant natural number (in its cardinal form, rather than its ordinal 
form).  As we have proposed, a natural number is a quantity, specifically a set size, more specifically a 
finite set size.1  As every survivor of grade school (K-12) is aware, there are many other kinds of 
mathematical objects that go by the name ‘numbers’.  In particular, in addition to the natural numbers 
there are also "artificial" numbers, which include the following. 

(1) negative integers {−1, −2, −3, …} 
(2) fractions {1/2, 3/2, 2/3, 3/4, 4/3, …} 
(3) irrational numbers {√2, √3, e, π, …}  
(4) imaginary numbers {√−1, √−2, …} 

We then have various number systems, which include the following. 

                                                 
1 The size of an infinite set is not a natural number, but an infinite cardinal number, what is sometimes called an "aleph".  See 
chapter on infinite sets and infinite sizes. 
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(1) natural numbers {0, 1, 2, 3, …} 
(2) integers natural numbers plus negative integers 
(3) rational numbers fractions plus negative-fractions  
(4) real numbers rational numbers plus irrational numbers 
(5) complex numbers real numbers plus imaginary numbers plus 

 sums of these 

Also, according to the usual understanding, the above systems are increasingly inclusive.  In particular: 

every natural number is an integer 
every integer is a rational number 
every rational number is a real number 
every real number is a complex number 

 The obvious philosophical question is – what exactly are these things?  For example, we 
maintain that the word ‘two’ denotes a property of sets, a property that applies to a set precisely when it 
is double-membered.2  By comparison, what does the word ‘minus-two’ denote?  What does the word 
‘two-thirds’ denote?   

 Another philosophical question comes to mind.  In particular, we maintain that the numbers were 
discovered, although the various numerals and numeration systems were invented.  Can we say the same 
thing about the non-natural numbers?  Did we discover the non-natural numbers, or did we invent 
them?3  If we invented them, would we expect other comparably advanced cultures (e.g., on other 
planets) to invent very similar devices? 

 In what follows we briefly discuss the most important non-natural numbers – the integers, the 
fractions, the rational numbers, and the real numbers.   

2. The Integers – The Usual Presentation 

1. Subtraction 

 We will begin by describing the non-natural numbers as inventions, since that is the manner in 
which they are usually presented.  Later, we consider whether there are "naturalistic" accounts of at least 
some of the non-natural numbers. 

 We begin with the integers, which officially comprise the non-negative integers (alias natural 
numbers) and the "new kids on the block" – the negative integers.  Where do the negative integers come 
from?  There are two inter-related answers to this question.  In grade school, in addition to addition and 
multiplication, we learn about subtraction and division.  Let us concentrate on subtraction for the 
moment.  First subtraction is a two-place function sign, written between its arguments (infix notation), 
where: 

a − b Ë a minus b 

which may be defined as follows. 

                                                 
2 Remember, this appears to be circular, but it isn’t since ‘double-membered’ can be defined without reference to the word 
‘two’ or any related word like ‘double’ or ‘twin’.    
3 In this connection, we recall Kronecker’s famous dictum – “God made the natural numbers; all else is the work of man”.  
He obviously thought that the non-natural numbers are human inventions.  



Hardegree, Other Numbers page 3 of 21 

a − b ü the number x such that b + x = a 

The definiens involves what is known as a definite description.  Definite descriptions are complex noun 
phrases involving the word ‘the’.  On the other hand, not every use of ‘the’ is descriptive; indeed, there 
are at least six different ways in ‘the’ is used in English, listed as follows, along with examples. 

‘the’ used to construct a: examples: 

proper noun 
the U.S. 
the Eiffel Tower 

function sign 
the square root of x 
the sum of x and y 

quasi-pronoun 
if a man respects a woman,  
then it is likely that the woman respects the man 

quasi-demonstrative the word ‘dog’ has three letters 

generic name  
the dodo is now extinct 
what do you give the man who has everything 

description 
the woman standing next to the window 
the phrase directly above 

Descriptions basically involve a ‘the’ followed by a predicate, which may be simple or complex.  For 
example, in the descriptive phrase 

the woman standing next to the window 

the complex predicate is: 

x is a woman who is standing next to the window 
or: 

x is a woman  and  x is standing next to the window 

 Now, the key fact about definite descriptions is that 

definite descriptions may fail to refer (to anything) 

Although a description may have a well-defined meaning, it need not denote an actual object.4  For 
example, we understand what ‘the golden mountain’ means; indeed, based on this understanding, we are 
pretty confident that this phrase doesn’t refer to anything.   

 The fundamental principle about descriptive reference is given as follows.  

if there is exactly one individual with property Ã,  
then the description ‘the Ã’ refers to that individual. 
 

otherwise, ‘the Ã’ doesn’t refer to anything! 

If a description succeeds in picking out a unique referent, then we say that the description is proper; 
otherwise, we say that the description is improper.   

                                                 
4 Analogously, a sentence has a meaning in virtue of which we can decide whether it is true or false. 
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Note that there are two ways that a description ‘the Ã’ can be improper (i.e., fail to refer): 

(1) there are two or more individuals with property Ã; 
(2) there are no individuals with property Ã; 

 So, let us go back now and restate the definition of subtraction. 

a − b ü the number x such that b + x = a 

The property in question is: 

x is a number   and   b + x = a 

First, we observe the following important theorem, without which subtraction would be completely 
bogus. 

if  a Ô b,  then   there is exactly one natural number x such that a + x = b 

This basically follows from the Law of Cancellation:  

w + x  =  z   &   w + y  =  z   .→  x = y 

which is logically equivalent to the following. 

the equation ‘a + x  =  b’ has at most one solution. 

On the other hand, we have the following further theorem.   

if  b < a,  then there is no natural number x such that a + x = b 

Accordingly, all the following descriptions are ill-formed in the arithmetic of natural numbers.   

1 − 2 1 − 3 1 − 4 … 
2 − 3 2 − 4 2 − 5 … 
3 − 4 3 − 5 3 − 6 … 
… 

2. Augmenting the Natural Numbers to form the Integers 

 The proposed answer to the above problem is to augment the natural numbers with some "new 
numbers" that serve as the denotations of the above infinite array of ill-defined expressions.  These are 
the negative integers.  First, let us define positive integer as follows. 

a is a positive integer ü a is a natural number  &  a ≠ 0 

Next, for each positive integer, we posit a corresponding negative integer; in particular: 

−m Ë the negative integer corresponding to m [where m Õ 1] 

For example, the expression ‘−2’ is read “minus two” or “negative two”.  The former reading is the 
more common, although it makes for potential confusion with the use of ‘minus’ for subtraction.  We 
further postulate that no negative integer is a natural number. 

∼∃x { x ∈ Á  &  −m = x } 
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Thus, the negative integers are genuinely new mathematical objects.  Notice that this is sensible, since 
minus-one, minus-two, etc., cannot be answers to a how-many question.5  

 We further postulate that the negative integers provide referents for all the heretofore ill-defined 
subtractions [1 − 2, 2 − 3, etc.].  In other words: 

if  a < b,  then  a − b  is a negative integer 

Finally, we propose that the system of integers consists of the following items. 

(1) zero 0 
(2) the positive integers 1, 2, 3, … 
(3) the negative integers −1, −2, −3, … 

and nothing else! 

 We have already declared that a negative integer is not a "how many".  So, what is it?  The 
"standard" answer usually offered by mathematicians is the following.   

negative integers are inventions intended to serve as solutions to equations of the form 
 a + x = b where a > b 

And in particular: 

if a > b, then there is a positive number m such that a = b + m; 
the corresponding negative integer, −m, is defined so that: 
 a + –m  =  b ↔ a  =  b + m 

3. The Key Mathematical Issue 

 The mathematical issue is not so much whether we can postulate a new kind of number (the 
negative numbers), or a new class of numbers (the integers).  Rather, the  question is whether the 
proposed entities behave in a mathematically "reasonable" manner.  The reasonableness of the integers 
boils down to whether we can add and multiply them in a manner that makes sense.  This requires that 
we propose both an addition table and a multiplication table, which means we have to propose answers 
to the following questions.   

2 + –3 =  ? 
2 × –3 =  ? 
–2 + –3 =  ? 
–2 × –3 =  ? 
etc. 

Are mathematicians permitted simply to make up answers to these questions, which the rest of us simply 
accept based on their authority.  Or, are there strict criteria that restrict what counts as a legitimate 
addition table and multiplication table?  It seems that there are numerous criteria that must be satisfied 
by the proposed addition and multiplication tables.  We propose the following three criteria.   

                                                 
5 There is a story about the mathematical physicist Paul Dirac (1902-1984; Nobel Prize in Physics, 1933).  In grade school, he 
was given the following sort of word problem to solve:  what is the least number of fish that a fisherman can catch that 
satisfies the following conditions – blah blah blah…?  His answer was “minus two”!  Later this oddness of thought served 
him well in propounding the theory of anti-matter.   
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(c1) Criterion of Extension: 
addition and multiplication over the class of integers must be an extension of these 
operations as they apply to natural numbers; in other words, when we add or multiply 
non-negative integers (i.e., natural numbers), the results are the same as before. 

(c2) Criterion of Solution: 
the negative integers must provide solutions to all equations of the form: 
 a + x = b 
where a and b are arbitrary natural numbers, and a > b. 

(c3) Criterion of Conservation: 
the following fundamental laws of arithmetic must be satisfied by all integers: 

(a1) x + 0  =  x [law of identity] 
(a2) (x + y) + z  =  x + (y + z) [law of associativity] 
(a3) x + y  =  y + x [law of commutativity] 
(a4) x + y  =  x + z   →   y = z [law of cancellation] 
(a5) x × 0  =  0 [law of zero] 
(a6) x × 1  =  x [law of identity] 
(a7) (x × y) × z  =  x × (y × z) [law of associativity] 
(a8) x × y  =  y × x [law of commutativity] 
(a9) x × y = x × z   &   x ≠ 0   .→   y = z [law of cancellation] 
(a10) x × (y + z)  =  (x × y) + (x × z) [law of distribution] 

 Having established certain criteria, the next obvious question is whether the criteria are 
sufficiently restrictive that they uniquely determine the addition and multiplication tables.  As it turns 
out, these criteria succeed in picking out a mathematical system; in particular, they uniquely determine 
the addition and multiplication tables, which are partly presented as follows.6     

+ … −3 −2 −1 0 1 2 3 …  × … −3 −2 −1 0 1 2 3 … 
… … … … … … … … … …  … … … … … … … … … … 

−3 … −6 −5 −4 −3 −2 −1 0 …  −3 … 9 6 3 0 −3 −6 −9 … 

−2 … −5 −4 −3 −2 −1 0 1 …  −2 … 6 4 2 0  −2 −4 −6 … 

−1 … −4 −3 −2 −1 0 1 2 …  −1 … 3 2 1 0  −1  −2 −3 … 

0 … −3 −2 −1 0 1 2 3 …  0 … 0 0 0 0 0 0 0 … 

1 … −2 −1 0 1 2 3 4 …  1 … −3 −2 −1 0 1 2 3 … 

2 … −1 0 1 2 3 4 5 …  2 … −6 −4 −2 0 2 4 6 … 

3 … 0 1 2 3 4 5 6 …  3 … −9 −6 −3 0 3 6 9 … 

… … … … … … … … … …  … … … … … … … … … … 

 

                                                 
6 See Section 10 for a detailed discussion. 
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3. Integers – An Axiomatic Account 

 In a previous chapter, we examined the Peano axiomatization of the arithmetic of natural 
numbers, which is based on three primitive concepts, and five primitive postulates.  Can we do the same 
thing for the arithmetic of integers.  The answer is affirmative.   In this section, we briefly examine a 
Peano-style axiomatization of the arithmetic of integers. 

1. Primitive Concepts 

 First, the primitive concepts are: 

(1) integer ¼[α] Ë α is an integer 
(2) positive integer Ã[α] Ë α is a positive integer 
(3) negative integer Á[α] Ë α is a negative integer 
(2) zero 0 Ë zero 
(3) predecessor p(α) Ë the predecessor of α  
(4) successor s(α) Ë the successor of α 

2. Primitive Postulates (Axioms) 

 The primitive postulates are given as follows. 

(a1) zero is an integer; 
the successor of any integer is an integer; 
the predecessor of any integer is an integer; 
nothing else is an integer. 

 (a2) the predecessor of zero is a negative integer; 
the predecessor of any negative integer is a negative integer; 
nothing else is a negative integer. 

(a3) the successor of zero is a positive integer; 
the successor of any positive integer is a positive integer; 
nothing else is a positive integer. 

(a4) zero is not a positive integer; 
zero is not a negative integer. 

(a5) no two things have the same successor; 
no two things have the same predecessor; 

(a6) the successor of the predecessor of any integer is that integer; 
the predecessor of the successor of any integer is that integer; 

3. Definitions 

positive integers: 

(d1.1) 1 ü s(0) 
(d1.2) 2 ü s(1) 
(d1.3) 3 ü s(2) 
 etc. 
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negative integers: 

(d2.1) −1 ü p(0) 
(d2.2) −2 ü p(−1) 
(d2.3) −3 ü p(−2) 
 etc. 

addition: 

(d3.1) m + 0 ü m 
(d3.2) m + s(n) ü s(m + n) 
(d3.3) m + p(n) ü p(m + n) 

subtraction: 

(d4.1) m − 0 ü m 
(d4.2) m − s(n) ü p(m − n) 
(d4.3) m − p(n) ü s(m − n) 

multiplication: 

(d4.1) m × 0 ü 0 
(d4.2) m × s(n) ü (m × n) + m 
(d4.3) m × p(n) ü (m × n) − m 

order relations: 

(d5) m Ô n ü ∃x { m + x  =  n } 
(d6) m < n ü m Ô n  &  m ≠ n  

4. Examples of Theorems 

(t1) 3 + −2  =  1 

(1) ­: 3 + −2  =  1 7-13,IL 
(2) |3 =  s(2) d1.3 
(3) | =  ss(1) d1.2+IL 
(4) | =  sss(0) d1.1+IL 
(5) |−2 =  p(−1) d2.2 
(6) | =  pp(0) d2.1+IL 
(7) |3 + −2 =  sss(0) + pp(0) 4,6,IL 
(8) | =  p[sss(0) + p(0)] d3.3 
(9) | =  pp[sss(0) + 0] d3.3+IL 
(10) | =  ppsss(0) d3.1+IL 
(11) | =  pss(0) a6b+IL 
(12) | =  s(0) a6b+IL 
(13) | =  1 d1.1 

(t2) 2 − 3  =  −1 
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(1) ­: 2 − 3  =  −1 4-11,IL 
(2) |2  =  ss(0) d1.1,d1.2,IL 
(3) |3  =  sss(0) d1.1,d1.2,d1.3,IL 
(4) |2 − 3 =  ss(0) − sss(0)  2,3,IL 
(5) | =  p[ss(0) − ss(0)] d4.2 
(6) | =  pp[ss(0) − s(0)] d4.2,IL 
(7) | =  ppp[ss(0) − 0] d4.2,IL 
(8) | =  pppss(0) d4.1,IL 
(9) | =  pps(0) a6b+IL 
(10) | =  p(0) a6b+IL 
(11) | =  −1 d2.1 

4. Integers – A Philosophical Account 

  In the previous sections, we have examined a purely mathematical account of the integers.  They 
are postulated to be abstract mathematical objects that satisfy certain principles.  Just as there is a 
philosophical account of the natural numbers, according to which they are sizes of sets, there is also a 
philosophical account of integers, according to which they are size-differences between sets. In 
particular, we propose the following account of integers. 

an integer is a set size-difference 

We already have a qualitative size-comparison for sets; we can already say that one set is bigger than 
another.  The proposed notion is a corresponding quantitative notion.  Whereas a natural number (in its 
cardinal guise) is a size [ a "how-big"] an integer is a size-comparison [a "how-much-bigger"].  Whereas 
a natural number is a monadic property of sets, expressed by a one-place predicate, an integer is a dyadic 
relation among sets, expressed by a two-place predicate.  It is nevertheless just as objective, just as real, 
although of course it is also just as abstract.   

 In an earlier chapter, we introduced the numerical one-place predicates ‘one-membered’, ‘two-
membered’, etc., which correspond to the adjectival number-words, as in ‘I have two brothers’.  We now 
introduce corresponding two-place predicates as follows. 

m[A,B] Ë A is m-"bigger" than B 

The possible values of m are: 0, +1, −1, +2, −2, etc.  In particular, each numerical relation has a sign – 
positive (+), negative (−), or neutral (0).  This in turn explains why the word ‘bigger’ is scare-quoted 
above.  This is because its exact meaning varies according to the sign of the integer m.  For example: 

−2[A,B] Ë A is 2-smaller than B 
0[A,B] Ë A is equally big as B 
+2[A,B] Ë A is 2-bigger than B 

 We can also relate these new two-place predicates to our original one-place predicates in the 
following way. 

m[A] ↔ +m[A,∅] 

In other words, A is m-membered if and only if A is +m–bigger than the empty set.  For example: 
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1[A] ↔ +1[A,∅] 
2[A] ↔ +2[A,∅] 
etc. 

1. Are the Natural Numbers Integers? 

 According to the standard intuitive account of numbers, every natural number is also an integer.  
On the other hand, according to the proposed account of integers, whereas a natural number [e.g., 2] is a 
property of sets, an integer [e.g., +2] is a relation between sets.  Syntactically speaking, 2 is expressed 
by a one-place predicate, whereas +2 is expressed by a two-place predicate.  Accordingly, technically 
speaking, no natural number is an integer!  In particular: 

1 ≠ +1 
2 ≠ +2 
etc.   

Nevertheless, every natural number has an obvious integer-counterpart.  Indeed, given the integers, we 
can define the natural numbers as follows. 

m[A] ü +m[A,∅] 

For example, 

A is 1-membered iff A is +1-bigger than ∅ 
A is 2-membered iff A is +2-bigger than ∅ 
etc. 

5. Fractions – The Usual Presentation 

1. Division 

 The inverse of addition is subtraction.  In order to define subtraction for every pair of natural 
numbers, we must augment our number system with negative integers, which serve as referents of the 
otherwise ill-defined descriptions.  Alternatively stated, the negative integers arise as proposed solutions 
to equations of the form: 

a + x  =  b where a > b 

 This leaves a bit of an asymmetry.  What about multiplication?  Well, the inverse of 
multiplication is division, which may be defined as follows. 

a ÷ b ü the unique number x such that b × x  =  a 

The definite description presents numerous problems.  The first concerns division by zero. 

0 ÷ 0 ü the unique number x such that 0 × x  =  0 
1 ÷ 0 ü the unique number x such that 0 × x  =  1 
2 ÷ 0 ü the unique number x such that 0 × x  =  2 
etc. 

The problem with the first description is that every number has the property, given the law of zero.   
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0 × x  =  0 

The problem with the remaining descriptions is that no number has the property, once again in virtue of 
the law of zero and the law of commutation (x × y = y × x). 

 The second problem is that "most" pairs of natural numbers produce ill-defined descriptions, 
including the following for example. 

1 ÷ 2 ü the unique number x such that 2 × x  =  1 
2 ÷ 3 ü the unique number x such that 3 × x  =  2 
3 ÷ 2 ü the unique number x such that 2 × x  =  3 

2. The Fractions 

 The mathematical solution is to augment the class of natural numbers with special numbers, 
which are usually called ‘fractions’.   Most natural languages provide special names for these objects; 
for example, English provides the following. 

one-half two-halves three-halves etc. 
one-third two-thirds three-thirds etc. 
one-fourth two-fourths three-fourths etc. 
etc. 

Mathematics also provides a standard collection of fractional numerals, as follows. 

0/1 0/2 0/3 … 
1/1 1/2 1/3 … 
2/1 2/2 2/3 … 
3/1 3/2 3/3 … 
… 

In general, we have the following. 

for any natural number m and any natural number n greater than 0, m/n is a fraction.   

Note carefully, however, that there are many duplicate names in the above list.  For example: 

0 = 0/1 = 0/2 = … 
1 = 2/2 = 3/3 = … 
2 = 2/1 = 4/2 = … 
etc. 
1/2 = 2/4 = 3/6 = … 
1/3 = 2/6 = 3/9 = … 
etc. 

Finally, we have the following definition. 

a fraction m/n is proper ü ∼∃x { x ∈ Á  &  m/n } 
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3. Adding and Multiplying Fractions 

 As with the integers, the key mathematical question is whether we can add and multiply fractions 
in a reasonable manner.  The answer is affirmative.  Without going into the details, we simply note the 
following rules of addition and multiplication of fractions.   

(f1) (a / b) × (c / d)   =   (a × c) / (b × d) b ≠ 0, d ≠ 0 
(f2) (a / b) + (c / d)   =   [(a × d) + (b × c)] / (b × d) b ≠ 0, d ≠ 0 

For example: 

1/2 × 3/4   =   (1 × 3) / (2 × 4)   =   3/8 
1/2 + 3/4   =    [(1 × 4) + (2 × 3)] / (2 × 4)   =   10/8   =  5/4 

 Next, just as the integers enable us to define subtraction, the fractions enable us to define 
division, so that the following principle obtains. 

a ÷ b  =  c ↔ a  =  b × c provided b ≠ 0 

Indeed, one can prove the following "big" theorem about the relation between fractions and division. 

a ÷ b   =   a / b 
E.g.: 

2 ÷ 3  =  2/3 
two divided by three   =   two-thirds 

In other words, fractions seem like they were "designed" to be the answers to division questions.  In fact, 
it is customary to write division using the fraction notation, which obscures the distinction. 

6. Fractions – A Philosophical Account 

 In the philosophical treatment of numbers, fractions are defined very much like the integers are 
defined, as size comparisons among sets.  However, the difference is that the size comparison is based 
on a ratio, not on a difference.7   

a fraction is a size-ratio. 

In particular, we give the official definition as follows. 

m[A,B] Ë A is m as big as B 

Just as with the integers, there are special values for m, given as follows.8 

                                                 
7 Sportscasters can’t seem to master the difference between a ratio and a difference.  For example, in football, they often refer 
to a team’s "turnover ratio", when they mean ‘turnover differential’ or ‘turnover difference’.  The goal of a team is to have a 
negative turnover differential – i.e., fewer turnovers than the other team.   
8 I have hyphenated all these terms, not to indicate ordinary usage, but simply to indicate that the expressions are words 
morphologically-speaking.  They play a role in number-word morphology just like the cardinal number-words ‘one’, ‘two’, 
etc., and the ordinal number-words ‘first’, ‘second’, etc. 
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numeral alternative 
corresponding 
number-word alternative 

1/2  one-half half 
1/3  one-third  
1/4  one-fourth  
2/3  two-thirds  
4/3  four-thirds  
2/1 ×2 two-times twice 
3/1 ×3 three-times  
4/1 ×4 four-times  
etc.    

The following are examples. 

1/2[A,B] Ë A is (one-)half as big as B 
×2[A,B] Ë A is two-times (twice) as big as B 
1/3[A,B] Ë A is one-third as big as B 
×3[A,B] Ë A is three-times as big as B 

 What is the relation between the natural numbers and the fractions?  This is given by the 
following principle. 

m[A] ↔ ×m[A,{∅}] 

In other words: 

A has m members ↔ A is m times as big as {∅} 

Note that the set {∅} has exactly one member.   

 This principle can be combined with our earlier principle about the relation between integers and 
natural numbers to obtain the following. 

+m[A,∅] ↔ ×m[A,{∅}] 

Thus, we have the following equivalent sentences, for example. 

2[A] 
+2[A,∅] 
×2[A,{∅}] 

7. The Rational Numbers 

 In order to perform subtraction on any pair of natural numbers, we must augment the natural 
numbers with the negative integers.  In order to perform division on any pair of natural numbers,9 we 
must augment the natural numbers with the proper fractions.  If we wish to subtract fractions and divide 
integers, we must construct a system of numbers that contains negative numbers as well as proper 
fractions.  The resulting system of numbers is customarily called the rational numbers.  A rational 

                                                 
9 Where the denominator is not zero. 
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number is one that can be expressed as a ratio of two integers m/n (n≠0).   Alternatively, the rational 
numbers – denoted Ä, for quotient – can be constructed so that each rational numeral is a pair of items,  

a numerator (any integer) 
a denominator (any natural number other than zero) 

The following are examples. 

+1 / 2 −1 / 2 +1 / 3 −1 / 3 etc. 
+2 / 3 −2 / 3 +2 / 5 −2 / 5 etc. 
etc. 

The key to making this work mathematically is a logically adequate account of multiplication and 
addition.  Without going into the details how they are achieved, these two operations are given by the 
following rules, where a and b are any integers, and p and q are any natural numbers other than 0.   

(q1) a / p × b / q   =  a × b / p × q 

(q2) a / p + b / q   =   (a × q) + (b × p) / p × q 

For example: 

−1/2 × +3/4   =  − (1 × 3) / (2 × 4)   =   −3/8 
−1/2 + −3/4   =    (−1 × 4) + (−3 × 2) / (2 × 4)   =   −10/8   =  −5/4 

8. Irrational Numbers 

1. Square Roots  

 The rational numbers provide a system that enables us to perform addition, subtraction, 
multiplication, and division.  However, it does not enable us to solve all algebraic equations, including 
the following seemingly innocuous equation. 

x2  =  2 

Here, x2 – which is read “x squared” – is defined in the customary manner. 

x2 ü x × x 

In this connection, the notion of square-root is defined as follows. 

√m̄ ü the unique positive number x such that x2 = m 

For example, the equation 

x2  =  4 

has two solutions – namely: 

x = +2 
x = −2 

Accordingly: 
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√4̄ = +2 

What is the square root of 2?  Is it rational?  As we have seen in a previous chapter, √2̄ is not rational! 

2. The Algebraic Numbers 

 The case of square roots is a special case of a more general class of equations, which have the 
following general form.   

c1xk1 + c2xk2 + … + cmx
km  =  a 

where a, c1, …, cm, k1, …km, are integers.  Notice that if a = 2, c1 = 1, c2 = … = cm = 0, and k1 = 2, then 
this reduces to 

x2   =  2 

The numbers that provide solutions to all these equations are called algebraic numbers.  The problem is 
that the algebraic numbers are countable, and the irrational numbers are uncountable.  This means that 
most irrational numbers are not algebraic; these numbers are called transcendental.  The best-known 
example of a transcendental number is π (pi).   

 How do we come up with all those extra numbers? 

9. The Real Numbers 

 The real numbers (as they are called) include the rational numbers and the irrational numbers.  
How are they defined?  This is very tricky, since they are not defined by reference to equations, as are 
the integers, fractions, rational numbers, and algebraic numbers.  Rather, they are defined by reference 
to infinite sums.  This is puzzling in itself.  How can one add together infinitely-many numbers and 
obtain anything other than infinity?  For example, the following sequence 

1 + 1 + 1 + 1 + … 

sums to infinity.  Similarly, the sequence 

1/2 + 1/2 + 1/2 + 1/2 + … 

sums to infinity.  In general, no matter how small n is, so long as it is not 0, the sequence 

n + n + n + n + … 

sums to infinity, or to minus-infinity.10   

 But what happens if we add an infinite sequence of numbers that are decreasing in size?  For 
example, what happens if we add the following sequence? 

1/2 + 1/4 + 1/8 + 1/16 + … 

The answer is: 1! 

                                                 
10 In this context, infinity and minus-infinity are pseudo-concepts.  We should more properly say that the sums do not 
properly exist; they have the exact same status as 1/0, 2/0, etc.   
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 Similarly, if we add 

9/10 + 9/100 + 9/1000 + 9/10000 + … 
.9 + .09 + .009 + .0009 + … 

we get 1! 

 What about the following sequence? 

1/2 + 1/8 + 1/32 + 1/128 + … 

The sum is:  2/3! 

What about: 

6/10 + 6/100 + 6/1000 + 6/10000 + … 
.6 + .06 + .006 + .0006 + … 

Again, the sum is:  2/3! 

 Note however that some decreasing sequences do not sum; the following is an example. 

1/2 + 1/3 + 1/4 + 1/5 + … 

 Probably the simplest way to think of real numbers is by way of their decimal encodings, the 
following being some examples.11   

1/2 0.500000000000000… 
1/3 0.333333333333333… 
1/4 0.250000000000000… 
2/3 0.666666666666666… 
3/4 0.750000000000000… 
7/22 0.318181818181818… 
1/π 0.318309886183791…? 
1/√2̄ 0.707106781186547…?  

Some of the sequences "terminate", which means that at some point the remaining digits are all 0’s.  
When a sequence terminates with an infinite sequence of zero’s, we of course omit them in the 
pronunciation – for example we say "point five", not "point five zero zero zero …".12   Other sequences 
do not terminate, but are nevertheless completely regular, in the sense that the digits eventually group 
into repeating units, as in the encodings of 1/3, 2/3, and 7/22.   Still others are "helter-skelter", like 1/π 
1/√2, which have no obviously discernable pattern.  These, basically, are the irrational fractions.   

                                                 
11 Note that the algorithm does not automatically produce a unique encoding for each fraction.  The problem is that "point 
five" is identical to "point four nine nine nine …"!  This can be seen by subtracting the latter from the former and noticing 
that the result is zero.  In our encoding, we mean to stringently exclude the goofy ones; in particular, we do not count as 
admissible any encoding that has a sub-sequence of endlessly repeating 9’s.   
12 Unless we are trying to make a point about precision, which pertains to measurement, which is not a part of pure 
mathematics, but of applied mathematics. 
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10. Appendix – There is only one Way to Implement Addition and 
Multiplication for the Integers 

 Earlier we proposed the following criteria for assessing the adequacy of proposed addition and 
multiplication tables.   

(c1) Criterion of Extension: 
addition and multiplication over the class of integers must be an extension of these 
operations as they apply to natural numbers; in other words, when we add or multiply 
non-negative integers (i.e., natural numbers), the results are the same as before. 

(c2) Criterion of Solution: 
the negative integers must provide solutions to all equations of the form: 
 a + x = b 
where a and b are arbitrary natural numbers, and a > b. 

(c3) Criterion of Conservation: 
the following fundamental laws of arithmetic must be satisfied by all integers: 

(a1) x + 0  =  x [law of identity] 
(a2) (x + y) + z  =  x + (y + z) [law of associativity] 
(a3) x + y  =  y + x [law of commutativity] 
(a4) x + y  =  x + z   →   y = z [law of cancellation] 
(a5) x × 0  =  0 [law of zero] 
(a6) x × 1  =  x [law of identity] 
(a7) (x × y) × z  =  x × (y × z) [law of associativity] 
(a8) x × y  =  y × x [law of commutativity] 
(a9) x × y = x × z   &   x ≠ 0   .→   y = z [law of cancellation] 
(a10) x × (y + z)  =  (x × y) + (x × z) [law of distribution] 

In this appendix, we examine how these criteria uniquely determine the addition and multiplication 
tables.  To see this, we consider the various criteria in turn, to see what restrictions they place on the 
addition and multiplication tables.  We first concentrate on addition, and we start by considering 
criterion (c1).  This forces the following entries. 

+ … −3 −2 −1 0 1 2 3 … 
… … … … … … … … … … 

−3 …        … 

−2 …        … 

−1 …        … 

0 …    0 1 2 3 … 

1 …    1 2 3 4 … 

2 …    2 3 4 5 … 

3 …    3 4 5 6 … 

… … … … … … … … … … 

 
We next consider criterion (c2), which maintains that the negative integers are solutions to equations of 
the form:   

a + x  =  b where a,b ∈ Á  &  a > b 
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As stated earlier, every negative integer has the form −m where m is a positive integer.  What does it 
mean for −m to be a solution to the above equation?  It amounts to the following biconditional being 
true. 

(LN) if  a,b,m ∈ Á  &  a > b, 
then  a + –m  =  b ↔ a  =  m + b [law of negation] 

 We can immediately deduce the following important corollary to the law of negation. 

(t1) m + −m  =  0 [simple law of negation] 

To see that (t1) follows from (LN), set a=m, and b=0.  Then we have:  

m + –m  =  0 ↔ m  =  m + 0 

But the second constituent is simply the law of identity (a1), which we already know is satisfied by the 
natural numbers. 

 Finally, we consider criterion (c3), which requires that addition and multiplication satisfy the 
laws (a1)-(a10).  Based on this, we can deduce the following corollary to (LN). 

(t2) –(m + n)  =  −m + −n [law of negative-distribution] 

To see that (t2) follows from (t1) and hence (LN), we consider the following proof.  First we note that 
by (t1), we have: 

(1) (m + n) + −(m + n)  =  0 

So by a3, we have: 

 (2) −(m + n) + (m + n)  =  0 

Adding −n to both sides yields: 

 (3) [−(m + n) + (m + n)] + −n  =  0 + −n 

By a combination of a2 and t1, the left item is: 

  −(m +n) +m 

By a1 and a3, the right item is: 

  −n 

So: (4) −(m +n) +m  =  −n 

Adding −m to both sides yields: 

 (5) [−(m +n) +m]  + −m  =  −n + −m 

By a combination of a2 and t1, the left item is: 

  −(m +n) 

By a3, the right item is: 

  −m + −n 

Thus:  −(m +n)  =  −m + −n 

Once we have (t2), we can fill in the following entries. 
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+ … −3 −2 −1 0 1 2 3 … 
… … … … … … … … … … 

−3 … −6 −5 −4     … 

−2 … −5 −4 −3     … 

−1 … −4 −3 −2     … 

0 …    0 1 2 3 … 

1 …    1 2 3 4 … 

2 …    2 3 4 5 … 

3 …    3 4 5 6 … 

… … … … … … … … … … 

 Next, the law of identity (a1) forces us to fill in the following entries. 

+ … −3 −2 −1 0 1 2 3 … 
… … … … … … … … … … 

−3 … −6 −5 −4 −3    … 

−2 … −5 −4 −3 −2    … 

−1 … −4 −3 −2 −1    … 

0 … −3 −2 −1 0 1 2 3 … 

1 …    1 2 3 4 … 

2 …    2 3 4 5 … 

3 …    3 4 5 6 … 

… … … … … … … … … … 

Next, the law of negation forces the following lower left entries, and subsequently the law of 
commutation (a3) forces the following upper right entries.   

+ … −3 −2 −1 0 1 2 3 … 
… … … … … … … … … … 

−3 … −6 −5 −4 −3   0 … 

−2 … −5 −4 −3 −2  0 1 … 

−1 … −4 −3 −2 −1 0 1 2 … 

0 … −3 −2 −1 0 1 2 3 … 

1 …   0 1 2 3 4 … 

2 …  0 1 2 3 4 5 … 

3 … 0 1 2 3 4 5 6 … 

… … … … … … … … … … 

The remaining entries can be computed one by one using a number of principles and earlier results.  For 
example, to compute −3+1, we reason as follows. 

By an earlier result (et),  

 −3 = −2 + −1 

Adding 1 to both sides yields: 

 −3 + 1  =  (−2 + −1) + 1 
But: 
 (−2 + −1) + 1  =(a2)=  −2 + (−1 + 1)  =(et)=  −2 + 0  =(a1)=  −2 
Thus: 



Hardegree, Other Numbers page 20 of 21 

 −3 + 1  =  −2 

Similar reasoning allows us to fill in the remainder of the table, as follows. 

+ … −3 −2 −1 0 1 2 3 … 
… … … … … … … … … … 

−3 … −6 −5 −4 −3 −2 −1 0 … 

−2 … −5 −4 −3 −2 −1 0 1 … 

−1 … −4 −3 −2 −1 0 1 2 … 

0 … −3 −2 −1 0 1 2 3 … 

1 … −2 −1 0 1 2 3 4 … 

2 … −1 0 1 2 3 4 5 … 

3 … 0 1 2 3 4 5 6 … 

… … … … … … … … … … 

  
 This takes care of addition; we still need to construct a corresponding table for multiplication.  
The key to the construction is proving the following theorems.   

–m × n  =  −(m × n) 
−m × −n  =  m × n 

The first one can be proved by induction, as follows. 

(1) ­: −m × 1  =  −m a6+c3 
(2) −m × n  =  −(m × n) As 
(3) ­: −m × (n+1)  =  −(m × (n+1)) 4-7 
(4) |−m × (n+1)  =  (−m × n) + (−m × 1) a10+c3 
(5) |= −(m × n) + −m 1,2,IL 
(6) |=  –[(m × n) + m] t2 
(7) |=  −[m × (n + 1)] ET about Á 

 
The second one can be shown directly, as follows. 

(1) −m × 0  =  0 a5 
(2) n + −n  =  0 t1 
(3) −m × (n + −n)  =  0 1,2IL 
(4) (−m × n) + (−m × −n)  =  0 3,a10 
(5) −m × n  =  −(m × n) ET 
(6) –(m × n)  + (−m × −n)  =  0 4,5,IL 
(7) –(m × n)  + (m × n)  =  0 t1+a3 
(8) −m × −n  =  m × n 6,7,a4 

Given the law of zero (a5) and the law of identity (a6), once we have these two theorems, the entries in 
the multiplication table are completely determined, as follows. 
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× … −3 −2 −1 0 1 2 3 … 
… … … … … … … … … … 

−3 … 9 6 3 0 −3 −6 −9 … 

−2 … 6 4 2 0  −2 −4 −6 … 

−1 … 3 2 1 0  −1  −2 −3 … 

0 … 0 0 0 0 0 0 0 … 

1 … −3 −2 −1 0 1 2 3 … 

2 … −6 −4 −2 0 2 4 6 … 

3 … −9 −6 −3 0 3 6 9 … 

… … … … … … … … … … 

 


