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1. Introduction 

 So far we have concentrated on numbers and counting.  But as we all know, there is a lot more to 
arithmetic than simply counting; there is also adding, subtracting, multiplying, and dividing.   In this 
chapter, we examine the arithmetic of natural numbers (i.e., the numbers 0, 1, 2, etc.)  At the 
culmination of this chapter, we briefly examine the most famous theory of arithmetic, which was 
originally propounded in the 19th Century by Dedekind and Peano.   

 The word ‘arithmetic’ derives from the Greek words arithmos [number] and tekhn¶ [art].  
Arithmetic is accordingly the art of counting, and over the centuries humans have developed more and 
more sophisticated techniques (remember the word tekhn¶) to accomplish the task of counting.  Among 
these techniques are, most prominently, the techniques of addition and multiplication. 

2. Addition 

1. The Basic Idea 

 As we learn in elementary school, addition provides a labor-saving technique for counting sub-
divided sets.  For example, suppose we have a collection C of apples and bananas.  Suppose there are 
five apples and seven bananas.  Then, how big is our collection C?  Alternatively, how many apples-
and-bananas do we have?  The answer of course is twelve, which is obtained by adding the number of 
apples (five) and the number of bananas (seven).   
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 More generally, if we know the number of apples, and we know the number of bananas, we can 
calculate the number of apples-and-bananas by adding these two numbers together.1  In particular, 

the number of apples-and-bananas = the number of apples plus the number of bananas 

or symbolically: 

#(A’s and B’s) = #(A’s)  +  #(B’s) 

Here, the special symbol ‘#’2 is short for ‘the number of’, and the special symbol ‘+’ is the familiar 
abbreviation for the English word ‘plus’. 

 In order to see that there is a hidden presupposition in the above calculation, let us do a different 
example.  Suppose we have a collection C of actors and bakers.3  Suppose there are 100 actors, and 
suppose there are 200 bakers.  How big is collection C?  How many actors-and-bakers are there?  
Unlike the previous example, in this example we cannot say exactly how big C is, although we can 
deduce that it has at least 200 members and at most 300 members.  How do we reach this conclusion?   

 Actually, we reach this conclusion the very same way we reached the earlier conclusion about 
the number of apples and bananas.  In both cases, we appeal to the following general principle. 

#(A’s and B’s) = #(A’s)  +  #(B’s)   −   #(A’s who are B’s) 

In our calculation about apples and bananas, we further presume that no apple is a banana, which is a 
very plausible assumption.  In that case, the number of apples who4 are bananas is zero.  So 

#(apples and bananas) =   #(apples)  +  #(bananas)   −   #(apples who are bananas) 
 =   5  +  7  −  0 
 =   12 

 On the other hand, in the case of actors and bakers, we cannot simply presume that there are no 
actors who are also bakers, so our calculation is considerably more complicated. 

#(actors and bakers) =   #(actors)  +  #(bakers)   −   #(actors who are bakers) 
 =   100  +  200  −  x 

There are limits on the value of x.  For example, the minimum possible value of x is 0, which 
corresponds to the scenario in which no one is both an actor and a baker; this gives us:   

                                                 
1 This observation surely refutes the saying “you cannot add apples and oranges”, which must be one of the most inane 
sayings on this planet.   
2 The symbol ‘#’, which appears on every telephone, is often called the ‘pound sign’, in reference to the unit of weight, not in 
reference to the unit of currency,  which is symbolized ‘£’.  It is also called the ‘number sign’ as used in ‘#1’, ‘#2’, etc.  
Evidently, beginning in the mid-1960’s, telephone engineers started calling ‘#’ an ‘octotherp’ and later ‘octothorp’, in 
reference to its eight points.  No one however, is quite certain what a "therp" or "thorp" is!  At least they got the ‘octo’ right.   
3 Here, we include amateur actors and bakers, as well as professional actors and bakers.  So, if you occasionally bake bread, 
and you occasionally perform in the local drama company, then you are both an actor and a baker.  Also, by ‘actor’ I mean to 
include both men and women.  As do many people in the drama business, I believe there is no more reason to grammatically 
distinguish thespians by gender than to distinguish physicians by gender (as in “doctors and doctresses").  Nevertheless, I do 
accept the classifications in the Academy Awards ("Oscars") – “best actor” versus “best actress”.      
4 I am "personifying" the apples and bananas, by using ‘who’, merely for the sake of grammatical simplicity. 
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#(actors and bakers) =   100  +  200  −  0 
 =   300 

This sets the upper limit on the number of actors and bakers – there are at most 300 actors and bakers.  
In order to set the lower limit, we need to calculate the maximum possible value for x.  In order to 
calculate this, we notice that every member of the set actors-who-are-bakers is an actor, but there are 
exactly 100 actors, so the number of actors who are bakers is at most 100.5  This in turn provides the 
lower limit for the number of actors and bakers, which is calculated as follows. 

#(actors and bakers) =   100  +  200  −  100 
 =   200 

Putting these two calculations together, we conclude that the number of actors and bakers is at least 200 
and at most 300.  In other words: 

200   Ô   #(actors and bakers)   Ô   300 

2. Set-Theoretic Notation 

 We can formulate our addition principles more succinctly if we use set-theoretic notation.  When 
we are considering A’s and B’s, there are several sets worth considering, including the following. 

A the set of A’s [e.g., actors] 
B the set of B’s [e.g., bakers] 
A∪B the set of A’s and B’s [e.g., actors and bakers] 
A∩B the set of A’s who are B’s [e.g., actors who are bakers] 

The symbol ‘∪’ is a variant of the letter ‘U’; it is the symbol for set-union, which is defined so that: 

x ∈ A∪B   ↔.   x ∈ A  ∨  x ∈ B 

Here, the wedge symbol ‘∨’ is a variant of the letter ‘v’, which is short for the Latin word ‘vel’, which 
means ‘and/or’.6   

 Now, the upside-down counterpart7 of set-union is set-intersection, which is defined so that: 

x ∈ A∩B   ↔.   x ∈ A  ∧  x ∈ B 

Here, ‘∩’ is the upside-down counterpart of ‘∪’, and ‘∧’ is the upside-down counterpart of ‘∨’, which 
turns out to be logical conjunction.  Although the notation ‘∧’ for conjunction is visually elegant, and 
many authors employ it, we do not generally adopt the symbol ‘∧’ for conjunction, since the modern 
alphabet already provides a perfectly good symbol for ‘and’ – namely ‘&’.  We accordingly prefer to 
write: 

x ∈ A∩B   ↔.   x ∈ A  &  x ∈ B 

                                                 
5 By parallel reasoning, every actor who is a baker is a also baker; therefore, since there are exactly 200 bakers, there are at 
most 200 actors who are bakers.  But this information is implied by the earlier information, since ‘x Ô 100’ implies ‘x Ô 
200’.  
6 Logicians call this the inclusive-or, which is contrasted with the exclusive-or, for which Latin has the word ‘aut’.   
7 What mathematicians and logicians call the ‘dual’. 
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    Next, we note that to be a member of the set of A’s and B’s (e.g., actors and bakers) is the be an 
A (actor) and/or a B (baker).  On the other hand, to be an A who is a B is to be both an A and a B.  The 
set that consists of all actors and bakers is not (generally) the same as the set of actors who are bakers.8   

 We can now state the general rule of addition as follows. 

(RA) #(A∪B)    =    #(A)  +  #(B)  −  #(A∩B) 

3. The Fundamental Principle of Addition; The Definition of Addition 

 The general rule of addition (RA) logically depends upon having the notions of addition and 
subtraction already in hand.  It does not define addition or subtraction.  For this reason, we back up and 
formulate a more fundamental principle – the Principle of Addition. 

(PA) if no A’s are B’s 
then the number of A’s and B’s  is  the number of A’s  plus  the number of B’s  

or using set-notation: 

(PA) if A∩B = ∅ 
then #(A∪B)   =   #(A)  +  #(B) 

 First notice that (PA) follows from (RA) once we have a number of further principles about 
addition and subtraction.   Recall that we have already employed this mode of reasoning when we 
calculated the number of apples-and-bananas.  On the other hand, (RA) can also be deduced from (PA) 
using even fewer principles about addition.  Indeed, we can reverse-engineer (PA) to to obtain a 
definition of addition, as follows. 

m + n ü #(A∪B) where: #(A) = m 
    #(B) = n 
    A∩B = ∅ 

What this definition says is the following. 

Suppose you have two numbers – m and n.  Find any set A whose size is m, and find 
any set B whose size is n, subject to the further restriction that A and B are disjoint.  
Then m+n is, by definition, the size of the set A∪B. 

 Before continuing, we note that the notion of size (#) must also be logically defined.  This is 
accomplished by the following infinite list. 

#(A) = 0 ü 0[A] i.e., A is memberless 
#(A) = 1 ü 1[A] i.e., A is single-membered 
#(A) = 2 ü 2[A] i.e., A is double-membered 
etc. 

                                                 
8 A∪B = A∩B  if and only if  A = B.   



Hardegree, Arithmetic page 5 of 12 

Here, the numerical adjectives – 0, 1, 2, etc. – are officially defined as in an earlier chapter.  For 
example: 

2[A] ü ∃x∃y { x≠y  &  A = {x,y} } 

4. Addition Facts 

 So far we have some theoretical knowledge about addition.  But this knowledge is of absolutely 
no practical value unless we also work out some facts about addition.  If we count eight apples and nine 
bananas, then we know that we have eight-plus-nine apples-and-bananas, but this is useless unless we 
also know exactly what eight-plus-nine is.  The relevant arithmetic fact of course is: 

eight plus nine   is   seventeen 

The latter fact was discovered at some point in the dark recesses of human history; indeed, it was 
probably repeatedly discovered.  But eventually, it got added to the collective knowledge of our species, 
along with myriads of other such facts, including: 

one plus one is two 
two plus two is four 
four plus four is eight 
… 

5. A Rudimentary "Theory" of Addition 

 At some point early in civilization, these myriad addition facts got summarized into an addition 
table, which children of the ruling classes were then obliged to learn (since knowledge is power).  The 
following is a translation into modern notation of a fragment of such a table.   

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 10 

2 2 3 4 5 6 7 8 9 10 11 

3 3 4 5 6 7 8 9 10 11 12 

4 4 5 6 7 8 9 10 11 12 13 

5 5 6 7 8 9 10 11 12 13 14 

6 6 7 8 9 10 11 12 13 14 15 

7 7 8 9 10 11 12 13 14 15 16 

8 8 9 10 11 12 13 14 15 16 17 

9 9 10 11 12 13 14 15 16 17 18 

The table is read in the familiar way – row-plus-column.  For example, taking row-8 and column-9, we 
read off the following: eight plus nine is seventeen.   

 Notice that an addition-table qualifies as a rudimentary theory, inasmuch as it organizes and 
systematizes a body of knowledge about a specified domain.  One might wonder whether an addition-
table provides an explanation of the addition facts.  I think, at first glance, it does not.  On the other 
hand, it seems that studying this table does help one better understand how addition works.  We do use 
the expression ‘explain how something works’.   
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6. Addition Laws 

 The addition-facts are nice, especially if you need to govern an ancient civilization in 
Mesopotamia or the Nile Valley, but there seems to be something important missing, which turns the art 
of counting into the science of counting – namely, laws of arithmetic!   

 The study of the laws of arithmetic is usually called algebra, the invention of which is credited to 
al-Khowarizmi, who in AD 825 in Baghdad (Mesopotamia again!) published the book Hidab al-jabr 
wal-muqubala.  In one act, we got two modern words – the word ‘algebra’ traces to ‘al-jabr’, and the 
word ‘algorithm’ traces to ‘al-Khowarizmi’.  In al-Khowarizmi’s scheme, ‘al-jabr’ referred to the act of 
"re-unifying"; for example, in the formula ‘x−2=3’ the number x can be "re-unified" to obtain ‘x=5’.9   

 Fast-forwarding to the present, among the laws of addition, the following are the most 
prominent.10 

x + 0  =  x [law of identity] 
(x + y) + z  =  x + (y + z) [law of associativity] 
x + y  =  y + x [law of commutativity] 
x + y  =  x + z   →   y = z [law of cancellation] 

These can be used as axioms, on the basis of which all the laws of addition can be deduced, including 
the following, for example. 

0 + x  =  x 
x + y = x  →  y = 0 

However, as we see in a later section, there is an even more sparse reduction of the laws of arithmetic to 
fundamental principles. 

3. Multiplication 

1. Basic Definition 

 After addition, comes multiplication, which is a further technique to aid in counting.  The basic 
concept is quite simple.  Suppose you have four baskets of apples, and suppose that each basket has 
three apples in it.  How many apples do you have total?  The answer, of course, is that you have twelve 
apples, this number being obtained by multiplying four times three.  The underlying idea in this 
calculation may be expressed as follows. 

four baskets  times  three apples per basket  equals  twelve apples 

                                                 
9 The word ‘al’ is Arabic for ‘the’.  Compare this with ‘el’ in Spanish, and ‘il’ in Italian.  It is worth noting that Latin – which 
is the common ancestor of Spanish and Italian – does not have a definite article, although the Latin word ‘ille’ means 
something like ‘this’.  We note that Spain was conquered by the Moors in the 8 th Century AD.  Curiously, the word ‘al-jabr’ 
entered Spain at this time, and meant ‘bone-setting’, and bone-setters were called algebristas!  The use of words similar to 
‘algebra’ to mean bone-setting also appears in precursors of English. In this connection, keep in mind that the original 
meaning is ‘re-unify’.   
10 As in earlier chapters, we omit universal quantifiers for the sake of conciseness.  For example, the first one is short for: 
 ∀x [ x + 0 = x ] 



Hardegree, Arithmetic page 7 of 12 

Notice that you are not required to employ multiplication to solve this problem; you could instead 
calculate the total number of apples by using addition – 3+3+3+3 = 12.  For that matter, you don’t have 
to use addition either; you could simply assess the total number of apples by counting all of them 
individually!  But, if you have addition and/or multiplication, you can spare yourself the trouble.   

 Let us make the problem a little more abstract.  Suppose you have four sets: 

A1, A2, A3, A4 

Furthermore, suppose that each of these sets has exactly three members; i.e.: 

#(A1)  =  #(A2)  =  #(A3)  =  #(A4)  =  3 

Now consider lumping all these sets together into one big collection C, which is their union; i.e.: 

C   =  A1 ∪ A2 ∪ A3  ∪ A4 

How big is C?  If you say “12”, you have jumped to a conclusion.  You have assumed something about 
the situation that I have not explicitly told you.  For example, the following sets satisfy the conditions. 

A1 = {1,2,3} 
A2 = {1,3,4} 
A3 = {2,3,4} 
A4 = {1,2,4} 

In particular, there are four (distinct) sets, and each set has three (distinct) members, but  

C  =  A1 ∪ A2 ∪ A3 ∪ A4   =   {1,2,3,4} 
so: 

#(C)   =   4 

 How does this situation differ from the apples situation?  Well, in the apples situation we have a 
further tacit piece of information – that no apple can occupy more than one basket.  But sets of apples 
are not entirely like baskets of apples; the same apple can occupy many different sets, just as a person 
can belong to many different clubs.   

 In order to formulate a set-theoretic rule of multiplication, we need to make explicit the 
presuppositions involved in the apples situation.  In particular, we presume that no apple can occupy 
more than one basket, which is tantamount to presuming that the corresponding sets of apples do not 
overlap – that they are mutually disjoint.   This notion has already been employed in connection with 
addition.  Now we make it explicit, as follows. 

A and B are disjoint ü A ∩ B = ∅ 
alt: 

A and B are disjoint ü ∼∃x { x ∈ A  &  x ∈ B } 

Next, to say that sets A1, …, Ak are pairwise disjoint is simply to say that each of the sets is disjoint 
from every other set in the collection.     

 We can now state the Rule of Multiplication.   
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 suppose: #{A1, …, Ak} = k; 
suppose: #(A1) = m, …, #(Ak) = m; 
suppose: A1, …, Ak are pairwise disjoint; 
 

then: #(A1 ∪ … ∪ Ak) = m×k 

 The Rule of Multiplication can also be reverse-engineered to define multiplication, as follows. 

m × n ü #(A1 ∪ … ∪ Am) where: 

    #{A1, …, Am} = m 
    A1, …, Am are pairwise disjoint 
    #(A1) = n … #(Am) = n 

What this definition says: 

Suppose you have two numbers – m and n.  Find m-many pairwise disjoint sets – A1, …, 
Am – each one of which has n-many members.  Then m×n is, by definition, the size of 
the set A1 ∪…∪ Am. 

 The most practical application of multiplication involves counting arrays of objects.  For 
example, suppose we have a corn field, with 200 rows, and suppose each row has 250 corn plants; then 
it is a routine matter to calculate the total number of corn plants, which is 200×250 = 50,000.   If we 
assume further that each corn plant has 5 ears of corn on it, then we can calculate that there are a total of 
250,000 ears of corn.  If we further assume that each ear of corn has 250 kernels, we can calculate that 
there are 62,500,000 kernels of corn! 

2. Multiplication Facts 

 As with addition, the principle of multiplication can be of no practical use unless we have at our 
command many multiplication facts (as they are called in elementary school).  As with addition, the 
most convenient summary of these facts consists in a table – a multiplication table – a fragment of which 
is presented as follows.  

× 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8 10 12 14 16 18 

3 0 3 6 9 12 15 18 21 24 27 

4 0 4 8 12 16 20 24 28 32 36 

5 0 5 10 15 20 25 30 35 40 45 

6 0 6 12 18 24 30 36 42 48 54 

7 0 7 14 21 28 35 42 49 56 63 

8 0 8 16 24 32 40 48 56 64 72 

9 0 9 18 27 36 45 54 63 72 81 

The table is read in the familiar way – row-plus-column.  For example, taking row-8 and column-9, we 
read off the following: eight times nine is seventy-two.   
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3. Multiplication Laws 

 Earlier we listed some of the well-known laws of addition.  There are also laws of multiplication, 
and laws of multiplication-addition, a few of which we list as follows. 

x × 0  =  0 [law of zero] 
x × 1  =  x [law of identity] 
(x × y) × z  =  x × (y × z) [law of associativity] 
x × y  =  y × x [law of commutativity] 
x × y = x × z   &   x ≠ 0   .→   y = z [law of cancellation] 
x × (y + z)  =  (x × y) + (x × z) [law of distribution] 

4. The Modern Theory of Arithmetic 

1. Basic Ideas 

 Let us begin by reviewing our simple picture of science, which divides the scientific "world" into  

(1) data 
(2) laws 
(3) theories 

This demarcation is fairly easy to understood in connection with arithmetic and counting.  First, the data 
of arithmetic include the following sorts of propositions, what we called ‘arithmetic facts’ in earlier 
sections. 

(1) 2+3 = 5 
(2) 3×4 = 12    
(2) 4 > 2 

Second, the laws of arithmetic include the following sorts of propositions. 

(1) x + y  =  y + x 
(2) x × (y + z)  =  (x × y) + (x × z) 
(3) x + y  =  x + z   →   y = z 

 The third step – to theories – leads us from discovery to invention.  Once again, we recite the 
fundamental principle in our explanatory framework. 

laws are discovered; 
theories are invented. 

For the sake of comparison, mankind discovered copper and iron, but invented bronze and steel.  Of 
course, numerous discoveries are involved in any given invention – for example, discovering that bronze 
can be cast to form statues, and  discovering that steel can be forged into components that can be 
assembled into great bridges.  Along the same lines, mankind discovered the numbers and the laws that 
govern them, but mankind invented numeration systems (the art of counting).  Along similar but more 
abstract lines, mankind has also attempted to understand the laws of arithmetic theoretically, by 
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inventing conceptual schemes (alias theories) that seek to systematize, organize, and (hopefully!) make 
sense of the myriad propositions of arithmetic.   

2. Peano Arithmetic 

 Probably the most famous theory of arithmetic is generally credited to the Italian mathematician 
Giuseppe Peano (1858-1932),11 although Peano’s theory was anticipated by the work of Richard 
Dedekind (1831-1916).12  In a brilliant maneuver, reminiscent of Euclid, Peano was able to reduce all of 
arithmetic to just three primitive concepts and just five postulates (axioms), known as the Peano 
Postulates.  The primitive concepts are: 

number 
zero 
successor 

which can be syntactically implemented by the following expressions. 

zero [proper name] 
…is a number [one-place predicate] 
the successor of … [one-place function-sign] 

Note that the successor of a number is simply the number that directly follows it; for example, the 
successor of zero is one, and the successor of one is two, etc.  Next, Peano’s postulates are given as 
follows. 

(p1) zero is a number; 
(p2) the successor of any number is a number; 
(p3) zero is not the successor of any number; 
(p4) no two numbers have the same successor; 
(p5) if zero has a property, and the successor of a number has that property whenever the 

number has that property, then every number has that property. 

These are stated in ordinary English, and are accordingly somewhat difficult to manipulate logically.  
For this reason, it is useful to translate them into modern symbolic logic, which we do as follows. 

 0 Ë zero 
 N[α] Ë α is a number 
 s(α) Ë the successor of α 

(p1) N[0] 
(p2) ∀x { N[x]  →  N[s(x)] } 
(p3) ∼∃x { N[x]  &  0 = s(x) } 
(p4) ∼∃x∃y { N[x] & N[y] & x ≠ y  &  s(x) = s(y) } 
(p5) Ã[0]  &  ∀x{ N[x] & Ã[x]  .→  Ã[s(x)] }   .→  ∀x{ N[x] → Ã[x] } 

                                                 
11 Peano, Arithmetics principia (1889). (tr: “Principles of Arithmetic”) 
12 Dedekind, “Über die Theorie der ganzen algebraischen Zahlen” (1879).  (tr: “on the theory of all the algebraic numbers”) 
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 It is amazing that all of arithmetic can be distilled down to the ideas expressed in the above box.  
All the rest is simply a matter of logic.13  Peano’s technique had a profound effect on Bertrand Russell, 
probably the greatest philosopher of the 20th Century.  For example, in his autobiography, Russell writes 
of his encounter with Peano at the 1900 International Congress of Philosophy. 

The Congress was the turning point of my intellectual life, because there I met Peano. I 
already knew him by name and had seen some of his work, but had not taken the trouble 
to master his notation. In discussions at the Congress I observed that he was always more 
precise than anyone else, and that he invariably got the better of any argument on which 
he embarked. As the days went by, I decided that this must be owing to his mathematical 
logic. … It became clear to me that his notation afforded an instrument of logical analysis 
such as I had been seeking for years …  

Unfortunately, this may have also marked a turning point in Peano’s career.  Subsequently, Peano 
launched a number of projects that were less fruitful.  For example, he became very interested in the 
international language movement, and devoted much effort to this endeavor.  For example, he designed 
a novel language called ‘Latino Sine Flexione’ (LSF – Latin without inflections).14  Notwithstanding its 
numerous advantages over naturally-evolved languages (Latin, Italian, English, etc.), and over rival 
constructed languages like Esperanto, Peano’s language gained very few adherents, let alone speakers or 
writers.  The only major work written in LSF is the last edition of Peano’s magnum opus Formulario 
Mathematico. 

3. Definitions in Peano Arithmetic 

 One cannot deduce very much from Peano’s postulates unless one appends definitions of all the 
familiar arithmetical terms, including ‘one’, ‘two’, etc., ‘plus’, ‘times’, and ‘less than or equal to’.  
These are accomplished as follows. 

(d1) 1 ü s(0) 
2 ü s(1) 
3 ü s(2) 
etc. 

(d2) m + 0 ü m 
m + s(n) ü s(m + n) 

(d3) m × 0 ü 0 
m × s(n) ü (m × n) + n 

(d4) m Ô n ü ∃k{ m + k = n }  

                                                 
13 Note carefully, however, that Peano Arithmetic does not tell us what the numbers are.  For a theory of this, the reader is 
directed to the earlier chapter “A Theory of  Numbers”.  Rather, Peano Arithmetic only provides a means of deducing the 
various arithmetic facts about them; it only tells us how the numbers are inter-related.     
14 The term ‘Latino sine flexione’ comes from the title of his 1903 work De Latino sine Flexione, Lingua Auxiliare 
Internationale.  Curiously, this work begins in classical Latin and gradually morphs into the very language Peano is 
proposing.  Check this website for a description: [http://www.homunculus.com/babel/alsf] 
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4. Some Proofs in Peano Arithmetic 

 In this section, we present three theorems in Peano Arithmetic.  The first one proves the (not 
entirely surprising) result that two plus two is four!   

(1) ­: 2+2 = 4 identity logic 
(2) |2+2 =   s(1) + s(1) d1.2 (twice) 
(3) | =   s(s(0)) + s(s(0)) d1.1 (twice) 
(4) | =   s( s(s(0)) + s(0) ) d2.2 
(5) | =   s( s( s(s(0)) + 0 ) ) d2.2 
(6) | =   s( s( s(s(0)) ) ) d2.1 
(7) | =   s( s( s(1) ) d1.1 
(8) | =   s( s( 2 ) ) d1.2 
(9) | =   s( 3 ) d1.3 
(10) | =   4 d1.4 

Next, we prove the Associative Law, which is quite complicated (although not as complicated as the 
proof of the Commutative Law!)  Note that, for the sake of conciseness, we write ‘ x+ ’ in place of 
‘ s(x) ’. 

 (1) �: ∀x∀y∀z[(x+y)+z = x+(y+z)] UD×2 
 (2) | �: ∀z[(a+b)+z = a+(b+z)] 3,8, postulate p5 
 (3) || �: (a+b)+0 = a+(b+0) DD 
 (4) ||| (a+b)+0 = a+b  d2.1 
 (5) ||| b+0 = b   d2.1 
 (6) ||| a+(b+0) = a+b  5,IL 
 (7) ||| (a+b)+0 = a+(b+0) 4,6,IL 
 (8) || �: ∀x { (a+b)+x = a+(b+x) 
  ||| → (a+b)+x+ = a+(b+x+) } UCD 
 (9) ||| (a+b)+m = a+(b+m) As 
 (10) ||| �: (a+b)+m+ = a+(b+m+) DD 
 (11) |||| (a+b)+m+ = [(a+b)+m]+ d2.2 
 (12) |||| = [a+(b+m)]+ 9,IL 
 (13) |||| b+m+ = (b+m)+ d2.2 
 (14) |||| a+(b+m+) = a+(b+m)+ 13,IL 
 (15) |||| = [a+(b+m)]+ d2.2 
 (16) |||| (a+b)+m+ = a+(b+m+) 12,15,IL 

Finally, we prove that the Ô relation, as defined by d4, is transitive.  Notice that we appeal to the 
Associative Law.   

(1) ­: ∀xyz{ x Ô y  &  y Ô z  .→  x Ô z } U3CD 
(2) |a Ô b As(a) 
(3) |b Ô c As(b) 
(4) |­: a Ô c DD 
(5) ||∃x { a + x = b } 2,d4 
(6) ||∃x { b + x = c } 3,d4 
(7) ||a + m = b 5,∃O 
(8) ||b + n = c 6,∃O 
(9) ||(a + m) + n  =  c 7,8,IL 
(10) ||(a + m) + n  =  a + (m + n) Associative Law 
(11) ||a + (m + n)  =  c 9,10,IL 
(12) ||∃x { a + x  =  c } 11,∃I 
(13) ||a Ô c 12,d4 


