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1. Introduction – The Euclidian Paradigm 

 As mentioned in the previous chapter, Euclid’s Elements provides a paradigm for what a theory 
should be.  Recall that the Euclidean paradigm may be summarized as follows. 

(1) a given realm of phenomena (the data)  

(2) a set of laws/generalizations gleaned from (1)  

(3) a proposed theory to explain, systematize, organize, and/or codify (2), which includes: 

 (a) a proposed set of primitive concepts 
 (b) a proposed set of primitive postulates (axioms) 
 (c) a proposed set of common notions (logical and notational machinery) 
 (d) a proposed set of definitions 
 (e) a demonstration of how (a)-(d) codifies (2) 

2. A Simple Example – A Generic Theory of Size 

1. Generic Size 

 By way of illustrating the Euclidean paradigm in a small carefully-confined environment, we 
consider a simple theory – which we call ‘Generic Size Theory’ (GST).  In particular, the notion of size 
we are considering is generic, and includes what is common to all specific notions of size.  In particular 
we can measure and compare the sizes of things based on many different criteria.  Consider the 
following examples. 
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India is bigger than Australia (in population) 
Australia is bigger than India (in area) 
The Pacific Ocean is bigger than the Atlantic Ocean (in area, and in volume) 
The Eiffel Tower is bigger than the Great Pyramid (in height)1 
The Great Pyramid is bigger than the Eiffel Tower (in weight) 
Hulk Hogan is bigger than Paul Hogan (in height and weight) 
A year is bigger than a month (in length of time) 
Plato is bigger than Thales (in “stature”) 
Thanksgiving is bigger than Ground Hog Day (in “importance”) 
Killing a person is bigger than killing a fly (in moral seriousness) 

We are considering what can be said about “size in general”.  Also, please bear in mind that the 
proposed theory is not intended to say everything there is to say about size, but only to systematize the 
most prominent “laws of size”. 

2. Laws of Size 

 The laws of size, generically understood, include the following among others.     

(1) if x > y, and y > z, then x > z 
if x < y, and y < z, then x < z 

(2) if x ≯ y, and y ≯ z, then x ≯ z 
if x ≮ y, and y ≮ z, then x ≮ z 

(3) if x Õ y, and y Õ z, then x Õ z 
if x Ô y, and y Ô z, then x Ô z 

(4) if x > y, then y ≯ x 
if x < y, then y ≮ x 

(5) x ≯ x 
x ≮ x 

(6) x Ô x 
x Õ x 

(7) x ≡ x 

(8) if x ≡ y, then y ≡ x 

(9) if x ≡ y, and y ≡ z, then x ≡ z 

(10) if x > y, and y ≡ z, then x > z 

(11) if x ≡ y, and y > z, then x > z 

(12) x > y, or y > x, or x ≡ y 

These statements involve two logical devices, one fairly trivial, the other fairly profound. 

(1) (symbolic) abbreviations of key concepts; 

For example, in this context, the special symbol ‘>’ is an abbreviation of ‘is bigger than’, and the special 
symbol ‘≯’ is an abbreviation of ‘is not bigger than’.  See next section for more details. 

                                                 
1 The Eiffel Tower tops the list of the “greatest hits in architecture” –  http://www.greatbuildings.com/greatest_hits.html. 
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(2) the use of variables – e.g., ‘x’, ‘y’, ‘z’ – together with the understanding that these 
variables are (implicitly) attached to universal quantifiers. 

As the intro logic student is aware, variables play a role in logic and mathematics similar to the role 
played in ordinary language by pronouns and pronoun-like "devices".  For example, the sentence 

if x is bigger than y, then y is not bigger than x 

is understood as short for the more proper 

for any x, for any y: if x is bigger than y, then y is not bigger than x  

which may be translated into ordinary English as follows. 

for any individual x, (and) for any individual y, 
if the first individual (i.e., x) is bigger than the second individual (i.e., y), 
then the second individual (i.e., y) is not bigger than the first individual (i.e., x). 

 If we abbreviate the theoretical words,  and we also abbreviate the logical words, then we can 
render the above sentence very compactly as follows. 

∀x ∀y { x > y  →  y ≯ x } 

3. Some Notational Shortcuts 

 As already noted, in the statement of the laws of size, we adopt a number of notational 
abbreviations, which we now list more fully.2 

N1: x > y Ë x is bigger than y 
N2: x < y Ë x is smaller than y 
N3: x Õ y Ë x is bigger than or equal in size to y 
N4: x Ô y Ë x is smaller than or equal in size to y 
N5: x ≡ y Ë x is equal in size to y 

In addition to these, there are several other abbreviations that we adopt, including the following. 

N6: x ≯ y Ë ∼[x > y]  
N7: x ≮ y Ë ∼[x < y] 
N8: x ≠ y Ë ∼[x = y] 
N9: ∀x Φ Ë for any individual x Φ 
N10: ∃x Φ Ë there is an individual x such that Φ 
N11: ∼ Φ Ë it is not the case that Φ 
N12: Φ1 & Φ2  Ë Φ1 and Φ2 
N13: Φ1 ∨ Φ2  Ë Φ1 or Φ2 
N14: Φ1 → Φ2 Ë if Φ1 then Φ2  
N15: Φ1 ↔ Φ2 Ë Φ1 if and only if Φ2  
N14: x = y Ë x is (identical to) y 

                                                 
2 It is common practice to introduce special symbols for important theoretical concepts.  For example, in arithmetic, one does 
not insist on writing ‘one’, ‘two’, ‘three’, ‘plus’, ‘times’, but instead writes ‘1’, ‘2’, ‘3’, ‘+’, ‘×’.  There is nothing magical in 
these symbols; they are merely labor-saving devices. 
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4. A Proposed Size Theory 

 Now, on the Euclidean paradigm, a theory of size constitutes an attempt on our part to unify and 
systematize all the laws of size.  The theory we propose – GST – is formulated in terms of one primitive 
concept – “is bigger than”, and two primitive postulates (axioms) given as follows.   

Primitive Concept: “is bigger than” 

Axiom 1: for any three things, if the first is not bigger than the second, and the second 
is not bigger than the third, then the first is not bigger than the third 

Axiom 2: for any two things:  if the first is bigger than the second, then the second is 
not bigger than the first 

Using the above notational shortcuts, and using notation from elementary logic, we can formulate the 
axioms as follows. 

A1: ∀x∀y∀z { (x ≯ y  &  y ≯ z)  →  x ≯ z } 

A2: ∀x∀y { x > y  →  y ≯ x } 

These can be further abbreviated as follows.3 

A1: ∀xyz { x ≯ y  &  y ≯ z  .→  x ≯ z } 

A2: ∀xy { x > y  →  y ≯ x } 

5. Some Definitions from Logic (Common Notions) 

 Before we proceed, it will be useful to introduce some basic terminology from logic, which 
provide some of the common notions of our theory of size. 

C1: A relation R is said to be transitive exactly if the following obtains: 
∀xyz { Rxy  &  Ryz .→ Rxz } 

C2: A relation R is said to be symmetric exactly if the following obtains: 
∀xy { Rxy  → Ryx } 

C3: A relation R is said to be asymmetric exactly if the following obtains: 
∀xy { Rxy  →  ∼Ryx } 

C4: A relation R is said to be reflexive exactly if the following obtains: 

∀x { Rxx } 

                                                 
3 The multiple-quantifier ‘∀xy’ is short for ‘∀x∀y’; ‘∀xyz’ is short for ‘∀x∀y∀z’; etc.   The use of dots adjacent to  
connectives enables one to reduce the number of parentheses required to punctuate a formula.  A dot basically marks (1) the 
dominant connective, (2) a missing parenthesis, and (3) a logical pause (just like a comma in ordinary language). 
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C5 A relation R is said to be irreflexive exactly if the following obtains: 
∼∃x { Rxx } 

C6: A relation R is said to be connexive exactly if the following obtains: 

∀xy { Rxy  ∨  Ryx } 

 
These definitions may be abbreviated as follows. 

C1: R is transitive =df ∀xyz{ Rxy & Ryz .→ Rxz } 

C2: R is symmetric =df ∀xy{ Rxy  →  Ryx } 

C3: R is asymmetric =df  ∀xy{ Rxy  →  ∼Ryx } 

C4: R is reflexive =df ∀x { Rxx } 

C5: R is irreflexive =df ∼∃x { Rxx } 

C6: R is connexive =df ∀xy { Rxy  ∨  Ryx } 

The special symbol ‘=df’ – which is read “equals by definition” – basically means that the expression on 
the left, called the definiendum, is defined to mean the same thing as the expression on the right, called 
the definiens. 

There are a number of further concepts that be defined in terms of these notions 

C7: R is an ordering relation =df  R is asymmetric and transitive 

C8: R is a quasi-ordering relation =df  R is reflexive and transitive 

C9: R is a pre-linear-ordering relation =df  R is connexive and transitive 

C10: R is an equivalence relation =df  R is reflexive, symmetric, and transitive 

6. Theorems 

 Closely related to the term ‘theory’ is the associated term ‘theorem’; Every theory has theorems, 
which are precisely all those statements that can be logically derived (deduced) from the axioms of the 
theory, together with the definitions and common notions.     

 Let ¡ be a theory with axioms A1, …, Ak, and definitions D1, …, Dm, and 
common notions C1, …, Cn.  Then a theorem of ¡ is, by definition, any statement 
that can be logically deduced from the set {A1, …, Ak, D1, …, Dm, C1, …, Cn} 
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Since the definitions and common notions are often taken for granted in many discussions, it is common 
to simplify the above description by saying that the theorems of ¡ are the statements that logically 
follow from the axioms.  This is not strictly speaking correct, but it is convenient shorthand. 

 Next, notice that the above definition has the following trivial consequence. 

 Every axiom of ¡ is also a theorem of ¡. 

Now, the fundamental idea is that, in proposing a theory to systematize a body of knowledge – for 
example, the laws of size – one strives to deduce all the laws from the axioms, definitions, and common 
notions.  In other words, it is hoped that every law of size is a theorem of the proposed theory of size. 

 We will not explicitly cite the two axioms as theorems; nor will we cite all the theorems, since 
there are infinitely-many!  Rather, we will cite a few prominent ones.  The first two such theorems 
restate the axioms using the logical notions defined in Section 5.  In the language of Euclid, the 
definitions from Section 5 count as “common notions”, and may be freely employed in the development 
of a theory.4 

T1: ≯ is transitive 
T2: > is asymmetric 

Although these derivations are “trivial”, involving simply the application of the definitions, for the sake 
of illustration of how one employs axioms, definitions, and common notions in proofs, we offer the 
following proofs. 

(1) ­: ≯ is transitive DD 
(2) |∀xyz {x ≯ y  &  y ≯ z  .→  x ≯ z } A1 
(3) |≯ is transitive 2,C1 

(1) ­: > is asymmetric DD 
(2) |∀xy {x > y  →  y ≯ x } A2 
(3) |∀xy {x > y  →  ∼[y > x] } 2,N6 
(4) |> is asymmetric 3,C3 

 
The Rules of constructing proofs of theorems includes the usual rules from intro logic, plus the 
following further principles. 

(p1) At any point in a proof, one is entitled to write down any axiom. 

(p2) At any point in a proof, one can apply a definition (=df) or shortcut (Ë) to an 
available line just like a rule of inference.     

Notice in both of the above proofs, line (2) applies (p1).  The other lines apply (p2), treating C1, C3, and 
N6 as rules.5 

                                                 
4 In the sense intended, the development of a theory is like the development of a theme or motif in a musical piece, for 
example, a sonata.  One uncovers hidden material implicit in the theme.   
5 Moreover, unlike rules of inference, shortcut rules can be applied to parts of lines, which gives them more power. 
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 The next theorem is not quite so straightforward. 

T3: ∼∃x{ x > x } 

Or in ordinary English: 

nothing is bigger than itself! 

By way of showing that T3 is a theorem of GST, we offer the following proof. 

(1) ­: ∼∃x{ x>x } ID 
(2) |∃x{ x>x } As 
(3) |­:  ̧ DD 
(4) ||a>a 2,∃O 
(5) ||∀xy{ x>y → y≯x } A2 
(6) ||a>a → a≯a 5,∀O×2 
(7) ||a≯a 6,7,→O 
(8) ||∼[a>a] 7,N6 
(9) ||¸ 4,8,¸I 

 The following are immediate corollaries6 of T3. 

T4: ∀x { x ≯ x } 
T5: ≯ is reflexive 
T6: > is irreflexive 

From A1 and T5, we have the following as an immediate corollary. 

T7: ≯ is a quasi-ordering relation 

We know that ≯ is transitive (A1), but we don’t yet know whether > is transitive.  But the following 
can be shown (exercise!). 

T8: ∀xyz { x>y  &  y>z  .→  x>z } 
T9: > is transitive 
T10: > is an ordering relation 

We can also prove the following theorems. 

T11: ∀xy { x≯y  or  y≯x } 
T12: ≯ is connexive 
T13: ≯ is a linear-ordering 

                                                 
6 The word ‘corollary’ means “a proposition that follows with little or no proof required from one already proven.”  
Usually a corollary is something that follows rather directly; however, a certain vagueness accompanies the word, since 
directness is a matter of degree.   
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7. Definitions 

 In his theory of geometry, Euclid employs (1) common notions, (2) definitions, and (3) 
postulates (axioms).  The proposed theory of size – GST – also employs these three items.  In addition, 
we employ notational abbreviations in the presentation of GST. 

 A key component of an axiomatic reduction involves defining all the relevant concepts in terms 
of a few primitive concepts plus logic.  The theory GST employs exactly one primitive concept – “is 
bigger than”, which is represented by the symbol ‘>’.  Since the laws of size involve a number of other 
concepts, these concepts must all be logically reduced to ‘>’, which is to say that GST must provide 
definitions of all the size concepts in terms of ‘>’.  We introduce these definitions gradually.  The first 
one is obvious, but must be officially stated nevertheless. 

D1: x<y =df y>x 

In other words, 

as a matter of definition:  
x is smaller than y if and only if y is bigger than x 

As a result of adding this new concept, we can deduce a few more theorems, which parallel our earlier 
theorems.   

(T9) ∀xyz { x<y  &  y<z  .→  x<z } [< is transitive] 
(T10) ∀xy { x<y  →  y≮x } [< is asymmetric] 
(T11) ∼∃x { x<x } [< is irreflexive] 

By way of illustration, we offer a proof of (T10). 

(1) ­: ∀xy { x<y  →  y≮x } UD×2 
(2) ­: a<b  →  b≮a CD 
(3) |a<b As 
(4) |­: b≮a 5,N6 
(5) |­: ∼[b<a] ID 
(6) ||b<a As 
(7) ||­:  ̧ DD 
(8) |||b>a 3,D1 
(9) |||a>b 6,D1 
(10) |||∀xy { x>y → y≯x } A2 
(11) |||b>a → a≯b 10,∀O×2 
(12) |||a≯b 8,11,→O 
(13) |||∼[a>b] 12,N6 
(14) |||¸ 9,13,¸I 

The next two definitions basically amount to introducing alternative notation, but they turn out to be 
very convenient.   

D2: x Ô y =df x ≯ y 
D3: x Õ y =df x ≮ y 

D11: The following are some immediate theorems about Ô and Õ. 
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(T12) ∀xyz { xÔy  &  yÔz  .→  xÔz } [Ô is transitive] 
(T13) ∀x { xÔx } [Ô is reflexive] 
(T14) ∀xy { xÔy  ∨  yÔx } [Ô is connexive] 
(T15) Ô is a linear ordering 

(T16) ∀xyz { xÕy  &  yÕz  .→  xÕz } [Õ is transitive] 
(T17) ∀x { xÕx } [Õ is reflexive] 
(T18) ∀xy { xÕy  ∨  yÕx } [Õ is connexive] 
(T19) Õ is a pre-linear ordering 

 The next concept is a little more robust – the concept of “equally big” or “sameness of size”.  
Can one define this concept in terms of the initial concept of “is bigger than”?  The answer is a definite 
affirmative.  The following is the official definition. 

D4: x ≡ y =df xÔy & yÔx 

Alternatively stated, x and y are equally big precisely if neither is bigger than the other (check this out 
yourself).  With this definition, we can prove some further theorems, given as follows.   

(T20) ∀x { x ≡ x } [≡ is reflexive] 
(T21) ∀xy { x ≡ y  → y ≡ x } [≡ is symmetric] 
(T22) ∀xyz { x ≡ y  & y ≡ z  .→  x ≡ z } [≡ is transitive] 

(T23) ≡ is an equivalence relation 

The world is full of relations of this kind.  Most of them can be formulated using the word ‘equally’ or 
‘same’.  The following are a few examples.   

equally tall, equally heavy, equally wealthy, equally smart, … 

same height, same weight, same wealth, same intelligence, … 

The reader is invited to supply his/her own examples as well, including ones that don’t overtly involve 
the words ‘equally’ or ‘same’. 

 We conclude by noting a few remaining theorems of GST, which are laws of size. 

(T24) ∀xy { x>y  ∨  y>x  ∨  x ≡ y } 
(T25) ∀xyz { x>y  &  y ≡ z  .→  x>z } 
(T26) ∀xyz { x ≡ y  &  y>z  .→  x>z } 

 


