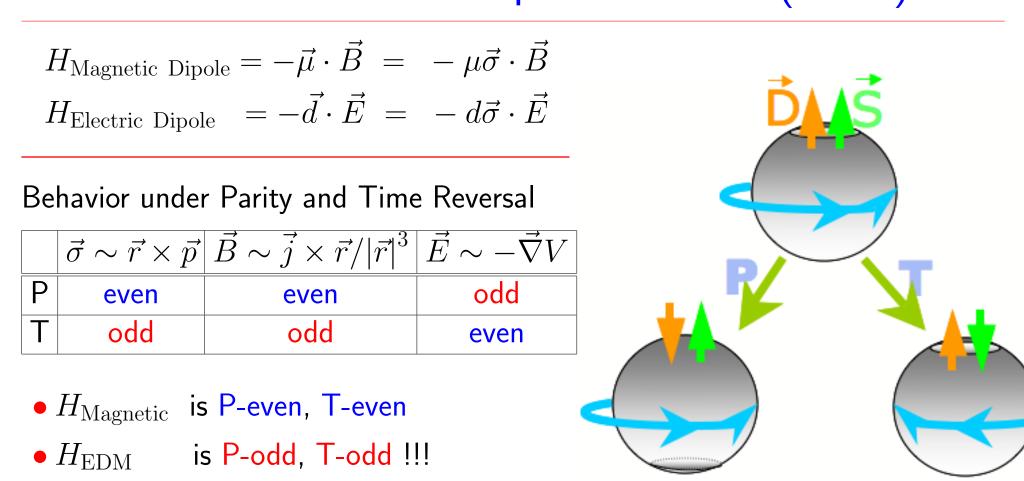
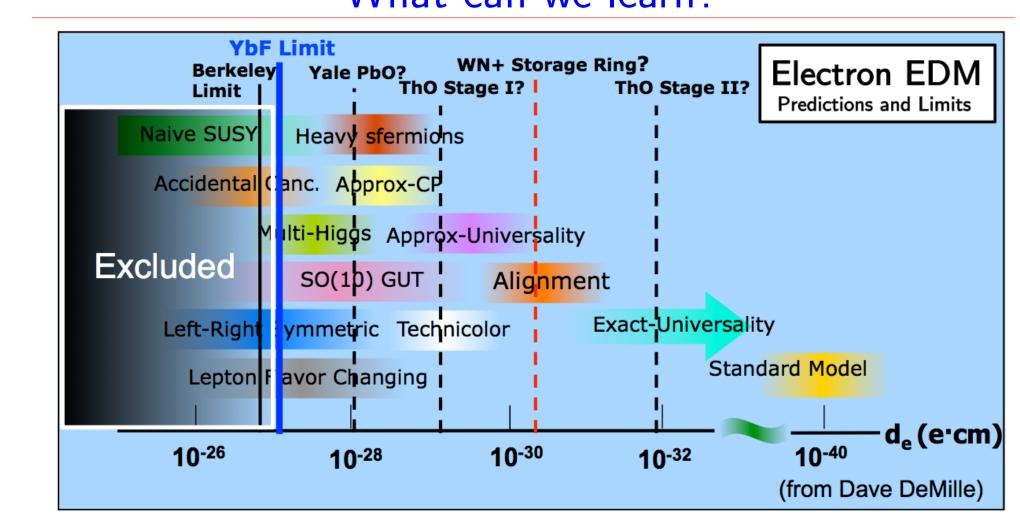
Possible search for the electron EDM in an electrostatic storage ring


David Kawall, Department of Physics, University of Massachusetts Amherst, 01003

Introduction

Overview

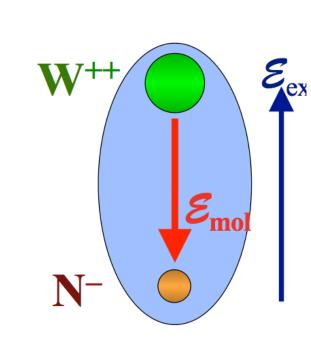

- Electric dipole moments violate P, T, and CP symmetries
- Current electron limit : $|d_e| \le 1.0 \times 10^{-27} \ e \cdot \text{cm}$
- Physics beyond Standard Model can make EDMs non-zero
- Improving limits on EDMs ⇒ stricter limits on new physics
- ullet Propose using WN $^+$ ions in storage ring to measure d_e
- Maybe factor 1000 improvement possible : $|d_e| \leq 10^{-30}~e \cdot \text{cm}$
- ullet Advantage from long coherence time of stored ions, $au \geq 0.1$ s
- Systematics appear under control at level of $10^{-31}~e\cdot \text{cm}$

What is an Electric Dipole Moment (EDM)?

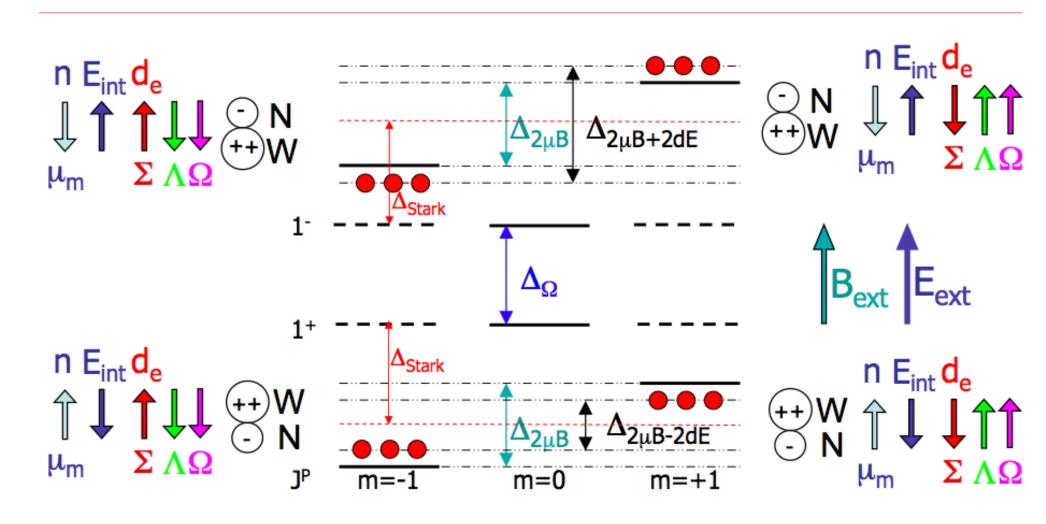
- ⇒ For particle to have an EDM, P and T must be violated
- ⇒ EDMs from new physics, with new sources of CP violation

What can we learn?

- Current limit $d_e \le 1.0 \times 10^{-27} \ e \cdot cm$ (YbF, Ed Hinds, 2011)
- \bullet d_e searches probe new physics, at scale of 10s of TeV
- Null results can exclude new physics beyond Standard Model


Proposed Experimental Technique

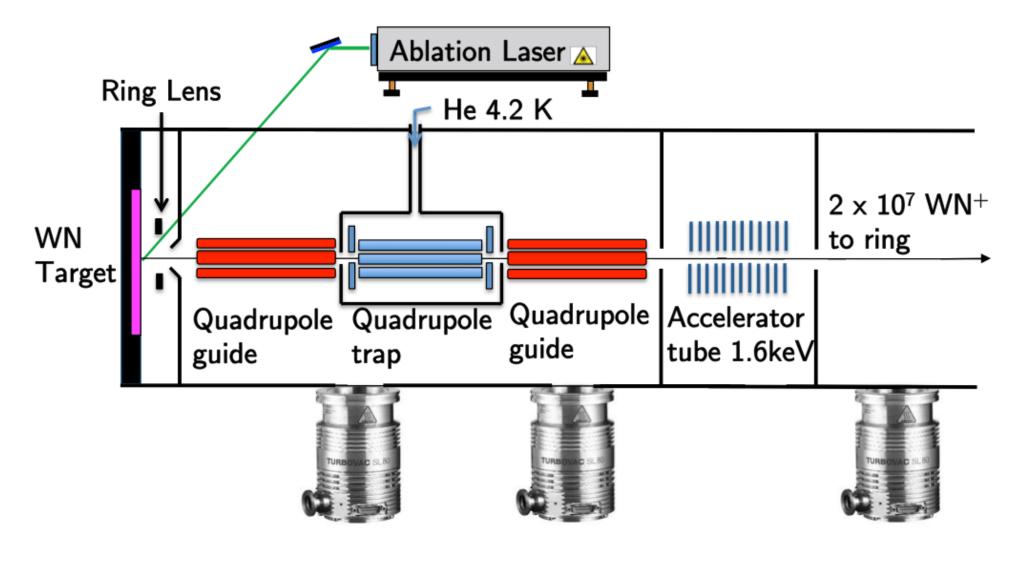
Paramagnetic polar molecules for eEDM searches


- Use heavy polar molecules with unpaired electron spin
- ullet Can have large internal electric fields $E_{
 m mol}$, easily polarized
- ullet Bohn & Meyer : field of tungsten carbide WC $E_{
 m mol} pprox$ 54 GV/cm, $E(\text{WN}^+) \approx 45 \text{ GV/cm} \approx E(\text{WC})$ since isoelectronic
- \Rightarrow Approach : polarize \vec{E}_{mol} along \vec{E}_{ext}
- ullet Polarize unpaired e^- parallel/antiparallel to $\dot{E}_{
 m mol}$
- Look for $\Delta E = d_e E_{\mathrm{int}}$: $d_e = 1 \times 10^{-29} \text{ e·cm} \Leftrightarrow 120 \ \mu\text{Hz}$

HfF⁺, ThO, WC, and WN⁺

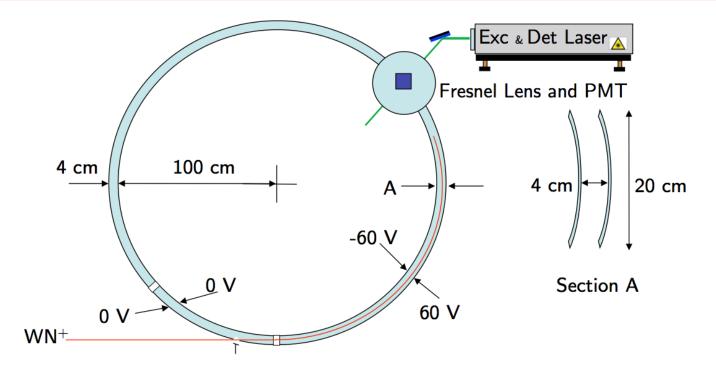
 $d_e = 1 \times 10^{-31} \text{ e-cm} \Leftrightarrow 1.2 \ \mu\text{Hz}$ Motivates searches in PbO, YbF,

Energy Levels and Measurement Scheme in WN⁺


- ullet Calculations suggest ground state of WN⁺ is $^3\Delta_1$
- Observe EDM precession of $M=\pm 1$ superposition state (•)
- ullet Energy shifts by $4d_eE_{
 m mol}$ between upper and lower Ω -doublets

Overview of experimental approach

- Ablate tungsten nitride (WN) target
- Trap few $\times 10^8$ WN⁺ ions in linear quadrupole trap
- Cool with He buffer gas to 4.2 K
- Inject 2×10^7 ions from trap into electrostatic storage ring, accelerating by 1.6 keV to $v = 4 \times 10^4$ m/s
- Pump with \hat{x} -polarized laser, leaves dark state : $|\psi(0)\rangle = \frac{1}{\sqrt{2}}[|J=1, M=-1, N\rangle\rangle - |J=1, M=+1, N\rangle\rangle]$
- ullet After aupprox100 ms, EDM-phase shift $\phi_{
 m EDM}=d_eE_{
 m mol} au/\hbar$: $|\psi(\tau)> = \frac{1}{\sqrt{2}} \left[e^{i\phi_{\text{EDM}}} | J = 1, M = -1, N \rangle - e^{-i\phi_{\text{EDM}}} | J = 1, M = +1, N \rangle \right]$
- Pump with \hat{x} then \hat{y} polarized light, detect fluorescence $F_{x,y}$, determines $\phi_{\rm EDM} = (F_x - F_y)/(F_x + F_y)$
- ullet Repeat with other doublet $N=\pm 1$ to reverse $\phi_{
 m EDM}$


Experimental Technique and Coherence Time

Tungsten Nitride WN⁺ Ion Source

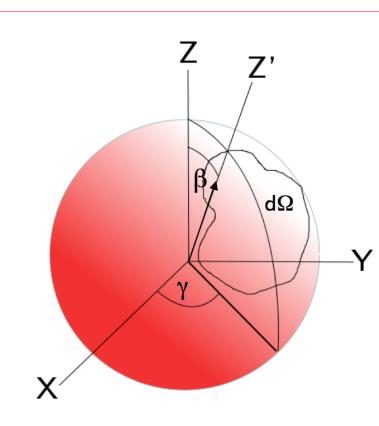
Roughly 15% of WN⁺ ions in ground rotational state

How are the WN⁺ ions stored?

- Ring of ITO-coated glass: conductive, transparent
- Radial E field \approx -33 V/cm, curved for vertical focusing
- ullet Turn off pprox 1/8th of ring, inject ions along tangent, turn on
- ullet Need $|ec{E}_r|$ so Stark splitting larger than transverse Doppler width to resolve Ω —doublets

Coherence time and ion-ion interactions

• At 10^{-9} Torr in ring, mean free path ≈ 40 km, $\tau{=}1$ s


Vertical tune
$$Q_v = \sqrt{\frac{q}{m_{\rm ion}} \frac{dE_y}{dy} \left(\frac{R}{v}\right)^2} = 0.87$$

Laslett tune shift $\delta Q_v = -\frac{1}{2Q_v} \frac{R^2}{m_{\rm ion} v^2} \frac{Nq^2}{2\pi\epsilon_0 2\pi R 2\sigma_v^2} \approx -0.0003$

 $\Rightarrow 2 \times 10^7$ ions/2000 cm³, space-charge effects not significant

- What about ion-ion effects on coherence time?
- $\frac{1}{r} \approx n\sigma v_{\rm rel}, \ \sigma = \pi r^2, r \approx 10^{-6} \ {\rm cm so} \ |\vec{E}_{ion-ion}| \approx 0.5 |\vec{E}_r|$ $\approx \frac{2 \times 10^7 \text{ ions}}{2000 \text{ cm}^3} \times (3 \times 10^{-8} \text{cm}^2) \times (2 \times 10^4 \text{ cm/s})$ $\approx 6 \text{ s}^{-1} \Rightarrow \text{Coherence times of } 150 \text{ ms achievable}$

Systematics, Sensitivity Estimates, and Summary

Systematic Effects: Geometric Phases

- ullet Betatron oscillations \Rightarrow $ar{E}$ oscillates, rotating $H \Rightarrow$ phase shifts
- Let $d\Omega$ =solid angle enclosed by angular momentum vector
- ullet Get phase shifts : $d\phi_{
 m geom}pprox e^{iMd\Omega}$
- ullet Opposite shift for $M=\pm 1$
- \Rightarrow looks like false EDM
- ullet But : $d\phi_{
 m geom}$ same for upper and lower Ω -doublets ⇒ phase shift cancels in comparison, eliminates false EDM
- ullet Spin follows \dot{E} field adiabatically : cyclotron frequency $u_{cyc} pprox \dot{\nu}_{cyc}$ $7~\mathrm{kHz} < \Delta_\mathrm{Stark} \approx 40~\mathrm{MHz}$; spins don't decohere

Statistical Sensitivity

- ullet EDM-induced shift in energy : $h\Delta
 u_{
 m EDM} pprox 2d_e E_{
 m mol}$
- Uncertainty in frequency shift : $\delta(\Delta\nu_{\rm EDM}) = 1/2\pi\tau\sqrt{N}$
- $\delta d_e \approx \frac{1}{4\pi E_{\text{mol}} \times \tau \times \sqrt{\text{Rep. Rate} \times N_{\text{stored ions}} \times f_{\text{excited}} \times f_{\text{detected}}}}$ $6.626 \times 10^{-34} J \cdot s$ $4\pi \cdot 45 \text{GV/cm} \cdot 1.6 \cdot 10^{-19} \ J/eV \cdot 0.1 \ s \cdot \sqrt{10 \text{Hz} \cdot 3 \times 10^6 \cdot 0.1 \cdot 0.01}$

 $\delta d_e \approx 4.2 \times 10^{-28} \ e \cdot \text{cm} / \sqrt{\text{Hz}}$ $\approx 2.0 \times 10^{-30} \ e \cdot \text{cm} / \sqrt{\text{day}} \ (50\% \text{ efficiency})$

- $f_{
 m detected} = d\Omega imes {\sf Bandpass} imes {\sf QE} = 0.15 imes 0.33 imes 0.2 = 0.01$
- Systematics limit : $\text{few} \times 10^{-31} \text{ e-cm}$ (under investigation).
- Improvements: select J=1 with \vec{E} gradient, increase τ , ...

Overcoming Systematic Effects and Summary

- Experiment lacks an E field reversal with B field fixed
- Does have B field reversal : reverses sign of EDM
- Can switch to other Ω doublet to reverse EDM effect
- Inject ions in opposite direction: geometric phase effects reverse sign, as do motional B field effects
- Known problem : g-factors of Ω -doublets are slightly different, $\delta g < 10^{-4}$, looks like EDM shift
- Can measure δg and $|ec{B}|$ well enough for $pprox 10^{-31}$ e cm
- $^{\circ}$ WN $^{+}$ comes has 3 main isotopes : 182 WN (26%), 184 WN (31%), ^{186}WN (28%) : can make 3 simultaneous measurements with different signs of the EDM

 \Rightarrow Limit on $|d_e| \le 10^{-30} \ e \cdot \text{cm}$ seems possible