
An Improved Clocking Methodology for Energy Efficient Low
Area AES Architectures using Register Renaming

Siva Nishok Dhanuskodi and Daniel Holcomb

Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, USA
sdhanusk@umass.edu, holcomb@engin.umass.edu

Abstract—Sub-round implementations of AES have been ex-
plored as an area and energy efficient solution to encrypt data in
resource constrained applications such as the Internet of Things.
Symmetry in AES operations across bytes and words allows the
datapath to be scaled down to 8 bits resulting in very compact
designs. However, such designs incur an area penalty to store
intermediate results or energy penalty to shift data through
registers without performing useful computation. We propose
a smart clocking scheme and rename registers to minimize data
movement and clock loading, and also avoid storing a duplicate
copy of the system state. In comparison to the most efficient
8-bit implementation from literature, we save 45% energy per
encryption and reduce clock energy by 70% at a reasonable area
cost.

I. INTRODUCTION

Efficiency of block cipher implementations is a significant
concern in low power secure systems. Most such systems use
a block cipher such as AES as a building block for encryption
and decryption modes or even hashing. In the era of IoT and
ubiquitous computing, the collection and communication of
sensitive data is increasingly being handled by lightweight
devices. Furthermore, even in larger SoC systems, the required
encryption throughput is often low, and therefore lightweight
solutions may be preferred to high-performance ones.

AES (Advanced Encryption Standard) is the dominant block
cipher in use today, and implementations of AES have received
significant attention in literature, from high performance to
low power. Because the algorithm is fully specified and not
especially flexible, most existing designs tend to utilize similar
microarchitectures, with clever circuit-level or component-level
power optimizations.

In this work, we give a general technique that modifies the
microarchitecture of sub-round AES implementations using
register renaming. Our work notably avoids two inefficiencies
of existing 8-bit architectures. Firstly, it avoids using additional
state registers for temporary storage of round outputs during
the round computation. Secondly, it conserves clock and data
power by clocking and moving data around only when needed
by the algorithm.

The significant contributions of this paper are as follows:
• Presenting a microarchitectural technique for register

renaming that allows complexity to be shifted from the
datapath to the control logic where its cost is lower.

• Demonstrating in technology-independent terms that,
relative to the best 8-bit implementation from literature,
the proposed technique improves energy-per-operation,
power, and clock switching, at a modest area cost.

II. BACKGROUND AND RELATED WORK

A. The AES Algorithm
The Advanced Encryption Standard (AES) is a ubiquitous

block cipher. We review here a few relevant details of AES
and refer interested readers to its documentation for more

depth [11]. The AES algorithm uses a 128-bit block size and,
for the 128-bit key size variant, performs 10 iterations of its
round function. Each round operates on 128-bit state with a
128-bit round key to produce 128-bit state that serves as the
input for the next round. The round function (Fig. 1) comprises
a SubBytes operation where the same byte-wise substitution
function is applied to each of the 16 bytes, then ShiftRows and
MixColumns operations combine data from different 4-byte
words, and finally the round key is added to the output of
MixColumns to create the next state that will be used as the
input to the next round. The 128-bit round keys are expanded
from a single key input.

In a straightforward round-based AES implementation, the
entire round function is performed combinationally in one
clock cycle. Hardware modules are instantiated for each of the
functional blocks shown in Fig. 1. In such an implementation,
area is dominated by the 16 S-box instances. A comparison
of S-box styles by Tillich et al. [12] shows that the most
compact S-box designs have an area of around 300 NAND
gate equivalents, but the more energy-efficient and shorter
critical path S-boxes are several times larger. Previous works
have looked at unrolled implementations of block ciphers but
they are not necessarily energy efficient [2], [5]. Sub-round
implementations perform a fraction of a round in each clock
cycle, and this allows a smaller number of S-boxes to be reused
across clock cycles thereby saving area.

B. 8-bit architectures in literature

The most compact AES implementations use 8-bit data
paths. In such a design, a single S-box is reused 16 times per
round, and therefore each round requires at least 16 cycles
to complete. 8-bit implementations of AES are less energy-
efficient than full-round implementations, and the inefficiency
is mainly in the control and data movement. Among the
computations performed in a round, SubBytes operates on 8
bits, and AddRoundKey is a bitwise XOR; only MixColumns
is natively performed on 32-bit inputs, but is known to have
an efficient serialization [7] that takes 8-bit inputs in four
consecutive cycles. Since computation itself can scale down
to an 8-bit datapath, the inefficiency of 8-bit architectures
arises from the costs of moving data around and avoiding
hazards. Two dominant techniques for moving data through
the computation are RAM and shift register-based schemes.

Early 8-bit AES designs [6], [9] used small RAM blocks to
hold state, and control logic to generate addresses to read and
write the RAM. Because data can be written to, and read from,
arbitrary addresses, these techniques make it easy to avoid data
hazards without increasing the amount of storage available.
The latency is high in these techniques (534 and 1016 cycles
per block respectively) as very little useful work is performed
in each cycle. RAM-based techniques can be low in power,



B0	

S	

B1	

S	

B2	

S	

B3	

S	

B4	

S	

B5	

S	

B6	

S	

B7	

S	

B8	

S	

B9	

S	

B10	

S	

B11	

S	

B12	

S	

B13	

S	

B14	

S	

B15	

S	

B0	

S	
B0	

S	

Mix	Cols	 Mix	Cols	 Mix	Cols	 Mix	Cols	

B0’	 B1’	 B2’	 B3’	 B4’	 B5’	 B6’	 B7’	 B8’	 B9’	 B10’	 B11’	 B12’	 B13’	 B14’	 B15’	

+	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	

Fig. 1: Structure of AES round. From top to bottom, the 16
data bytes go through SubBytes, ShiftRows, MixColumns, and
AddRoundKey. The round outputs are the inputs for the next
round.

but relatively higher in energy because of the energy cost of
reading and writing data to and from RAM in each cycle.

Shift register-based datapaths improve on RAM-based dat-
apaths and are the most compact way to orchestrate data
movement in 8-bit AES. Most of the control complexity is
handled implicitly by the wiring, and data bytes proceed in
lockstep through the S-box and MixColumns at appropriate
times. This shift register-based approach is employed by recent
low power implementations [7][13][10] and shown to perform
well. Note that the shift-register implementation style causes
every byte of the state to move at least 16 times per round
(e.g. 20 shifts per round in [7]), and this can have significant
energy cost. The total latency of a shift register-based 8-bit
AES can be as low as 160 cycles[13], which is a significant
improvement over the RAM-based scheme.

C. Shift Rows operation
A complicating factor in sub-round AES implementations is

that the round computation produces output bytes in an order
that differs from their input order. For example, as shown in
Fig. 1, the first quarter of the round computation uses bytes
B0, B5, B10,B15 and produces output values that will become
bytes B′0, B

′
1, B

′
2,B′3 for the next round. The round output bytes

are produced in sequential order if the input bytes are read
in the order (B0,B5,B10,B15, B4,B9,B14,B3, B8,B13,B2,B7,
B12,B1,B6,B11); we denote this ordering as Shift Rows Order
(SRO). The reordering of bytes by the computation causes a
Write After Read (WAR) hazard. As the first Mix Column
outputs B′0,B′1,B′2,B′3 are produced, they must be written to a
location that will not overwrite the current values of B1,B2,B3

which have not yet been used in the current round.

III. METHODOLOGY

In this section, we describe a clocking methodology that
improves energy efficiency of sub-round AES implementations.
8-bit architectures proposed in literature ([10], [13]) spend a
lot of energy in data movement. These architectures move
data through at least 16 registers per AES round. Our scheme
uses register renaming to avoid data hazards without having to
store a duplicate copy of the state register. Further, movement
of each data byte is limited to 5 registers per round, thereby
saving clock and data energy.

A. Improved clocking
In sub-round implementations of AES, care should be taken

that the state register is not corrupted by WAR hazard discussed
in Sec. II-C. Adding a shadow register file [10] to store
intermediate results solves the problem but doubles the area

128-bit state register

Shift Rows Mux

Enable 
Generator

(Fig. 5)

enB[15:0]

Mix Column

Key Expansion
(Fig. 7)

enW[15:0]

enK[15:0]

8

8

32

32

32

128

Round Function (Fig. 6)

S-box

Fig. 2: Proposed 8-bit architecture

of state registers. Shift register based schemes [7], [13] avoid
this area penalty by storing the duplicate copy in the shifting
behavior of the datapath. However, such an approach has energy
inefficiencies due to data movement and clock load. Consider
the architecture shown in Fig. 2 which has a state register whose
bytes are individually clocked into and out of the registers using
enable signals with a timing as shown in Fig. 3. The register
outputs are tri-stated and the byte in physical register Pi is
passed through the Shift Rows Mux (tri-state) to the S-Box
when enB[i] is active. The register enable signals enB[i] are
generated such that bytes are read out in Shift Rows Order,
and the round function operates on one byte per cycle. The
computed results are written back to the state register on the
negative edge of the word enable signal enW [i]. In this scheme,
each byte in the state register is clocked once per round as
opposed to 16 times/round in other schemes [13]. Further,
data moves through 1 state register and 4 registers in the Mix
Column block which is again fewer than the 16 or more moves
needed in shift register based schemes. One may notice that
the proposed architecture (Fig. 2) does not contain any shadow
registers. That is because a duplicate copy of the system state is
not stored. WAR hazards are addressed in the following manner.
Let byte Bi be read from register Pj for computation. Once
the resulting output byte has been computed, it can be written
back to register Pj as Bi is no longer required. However, the
resulting byte is no longer byte Bi, so now the register Pj is
logically renamed to ensure correct functionality.

B. Register Renaming
Let P0, P1, . . . , P15 be 16 8-bit physical registers that

store the 128-bit data. Similarly, let B0, B1, . . . , B15 be 16
8-bit logical registers, which also correspond to data bytes.
The physical registers store the AES state, and the logical
registers describe what byte is stored in each register. The
correspondence between physical registers and logical registers
changes over time, and a logical register may be found in
different physical locations in different rounds of AES. At first
appearance, this might seem to greatly complicate control flow,
because a logical register required for the AES algorithm may



enB[0]	
enB[5]	
enB[10]	
enB[15]	

enW[0]	
enW[5]	
enW[10]	
enW[15]	

Read	state	
as	bytes	

Write	back	
as	words	

Fig. 3: Timing of control signals for a quarter of one round.
enB signals enable bytes to be read from physical registers
into the datapath S-Box, and enW signals allow round outputs
to be written back to physical registers on falling edge.

need to be accessed from different physical registers across
rounds. However, periodicity in register renaming results in a
much simpler control logic as discussed below.

We first present the schedule of reading and writing registers
used in our scheme, but we do not yet address the design of
the control logic that generates the enable signals to realize
this schedule. Once we’ve established here which physical
addresses should be enabled in each cycle, we come back to
the question of control logic in Sec. IV-A.

Fig. 4 illustrates our scheme of logically renaming registers
to avoid the WAR hazards (Sec. II-C); each column in the
figure corresponds to a physical address, and the markings
in the squares denote the logical addresses contained therein
during each cycle. Initially, the logical registers are mapped to
the corresponding physical registers, that is Bi = Pi for all i.
The black squares in the figure indicate when data is read from
each physical register, and the labels on those squares indicate
which byte is stored in that register at the time of the read. The
blue squares indicate cycles in which bytes of round output
are written to physical registers, and the labels on the squares
denote which bytes are being written to each register. Grey
squares show the time between writing a byte to a physical
register and subsequently reading out that same byte. White
squares indicate that the byte stored in the physical register has
been read, but nothing has yet been written back. For example,
in cycle 2 byte B5 is read from register P5, computed on for
two cycles and the resulting byte (B1) is written back to P5 in
cycle 5, causing the register to be renamed accordingly. Round
boundaries are indicated by thick lines (e.g. after cycle 16).
Note that four bytes are written concurrently on every fourth
cycle (i.e. in cycles 5,9,13,17 and so on). By the end of four
entire rounds (64 cycles), all bytes are returned to the same
physical registers in which they started, and the pattern repeats.

Note several very important details of Fig. 4. First, in each
round, the bytes are read in Shift Rows Order (B0,B5,B10. . . ),
although the pattern of reading from physical addresses that
realizes this order changes across rounds due to the renaming.
Second, in each round, the bytes are written in order with
B0,B1,B2,B3 written first, then the next 4 bytes 4 cycles later,
and so on. This means that, aside from the control logic that
governs when each register is read and written, the remainder of
the AES computation is entirely decoupled from the renaming
and clocking scheme. The job of the control logic is then to
read each of the physical registers at the times indicated by
the black squares, and to write each of the physical registers
at the times indicated by the blue squares.

At the beginning of the second round (cycles 17-21) bytes
B0,B5,B10,B15, processed in Shift Rows Order, are read
from physical registers P0,P9,P2,P11. The enable signals that

Cycle P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
- B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
1 B0
2 B5
3 B10
4 B15
5 B0 B4 B1 B2 B3
6 B9
7 B14
8 B3
9 B7 B4 B8 B5 B6

10 B13
11 B2
12 B7
13 B10 B11 B8 B12 B9
14 B1
15 B6
16 B11
17 B0 B13 B14 B15 B12
18 B5
19 B10
20 B15
21 B0 B2 B4 B1 B3
22 B9
23 B14
24 B3
25 B4 B6 B8 B5 B7
26 B13
27 B2
28 B7
29 B9 B11 B8 B10 B12
30 B1
31 B6
32 B11
33 B0 B13 B15 B12 B14
34 B5
35 B10
36 B15
37 B0 B4 B3 B2 B1
38 B9
39 B14
40 B3
41 B5 B4 B8 B7 B6
42 B13
43 B2
44 B7
45 B10 B9 B8 B12 B11
46 B1
47 B6
48 B11
49 B0 B15 B14 B13 B12
50 B5
51 B10
52 B15
53 B0 B1 B2 B3 B4
54 B9
55 B14
56 B3
57 B4 B5 B6 B7 B8
58 B13
59 B2
60 B7
61 B8 B9 B10 B11 B12
62 B1
63 B6
64 B11
- B12 B13 B14 B15

Cycle P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

 R
ou

nd
s 1

, 5
, 9

R
ou

nd
s 2

, 6
, 1

0
R

ou
nd

s 3
, 7

R
ou

nd
s 4

, 8

Fig. 4: Illustration of register renaming

control reading (writing) from (to) these physical registers are
orchestrated by a control unit (Enable Generator in Fig. 2) that
is aware of renaming and tracks bytes across physical registers.
In the general case, in our scheme byte Bj , in round k, is
mapped to physical register Pi, where i is as shown in Eqn. 1.

i = (j + 12k(j mod 4)) mod 16 (1)

IV. IMPLEMENTATION

In this section, we describe the implementation details of
the architecture shown in Fig. 2. An AES round operation
consists of Shift Rows (permute bytes from different words),
substitution operation (S-box), followed by Mix Column (mix
bytes from different words) and addition of round key. All these
operations operate on bytes except the Mix Column which



TABLE I: Physical registers to be enabled in each clock cycle
Round Cycle +0 +1 +2 +3

1 P0 P5 P10 P15
5 P4 P9 P14 P3
9 P8 P13 P2 P7

1,5,9
13 P12 P1 P6 P11
17 P0 P9 P2 P11
21 P4 P13 P6 P15
25 P8 P1 P10 P3

2,6,10
29 P12 P5 P14 P7
33 P0 P13 P10 P7
37 P4 P1 P14 P11
41 P8 P5 P2 P15

3,7
45 P12 P9 P6 P3
49 P0 P1 P2 P3
53 P4 P5 P6 P7
57 P8 P9 P10 P11

0,4,8
61 P12 P13 P14 P15

operates on words. The Enable Generator produces byte enable
signals (enB in Fig. 2) for registers that cause the AES state to
be passed through the Shift Rows MUX in Shift Rows Order
during every round of encryption. The data then goes through
the S-box, and gets mixed with three other bytes in the Mix
Column block. Finally, 32 bits of the round key are added to
the data and written back to the state register. As described in
the previous section, data is written back to the register it was
read from, and renaming ensures no data hazards occur.

A. Enable Generation
Our enable generation logic allows bytes to be processed

in appropriate order without the typical 8-bit architectural
approach of shifting data through several flip-flops and mul-
tiplexers [8]. In our design, the outputs of the state register
are multiplexed (by the Shift Rows Multiplexer - SRM) as
shown in Fig. 2. We implement the 16:1 SRM using tri-state
buffers enabled by the one-hot enB signals produced by the
enable generator. To preserve Shift Rows Ordering, the control
circuitry generating enB needs to enable the physical registers
in each cycle as listed in Tab. I. The physical registers listed
in the table correspond to the location of the black squares
in Fig. 4 across four rounds. Note that each column in Tab. I
can be described as a repeating pattern with a circular shift
at round boundaries. The four columns have circular shifts of
0, 1, 2, and 3 positions at the round boundaries, respectively.
This observation enables us to generate the 64 cycle pattern of
control signals required for datapath orchestration and register
renaming at the cost of just 23 single-bit registers, as discussed
below.

Fig. 5 shows the Enable Generator. It consists of a single
byte-select shift register and four word-select shift registers.
As the name implies, the Word Select registers collectively
enable a word (32 bits) that the Mix Column block operates
on over 4 cycles. The Byte Select unit enables one byte of
this word per clock cycle to pass through SRM and to use the
datapath S-box (Fig. 2) before entering MixColumns. Each
Word Select register shifts around a single 1 value and the
current position of the 1 value determines which register is
enabled in the current word. The position of the 1 within each
word select register only changes on every fourth clock cycle
(when shift is asserted). For example, the state of the Word
Select registers shown in Fig. 5 causes enable signals enW [0],
enW [5], enW [10] and enW [15] to be asserted for the next
four cycles. This corresponds to the start of round 1 of AES, in
which the first 4 bytes are read from registers P0, P5, P10, P15.
The Byte Select unit sequences the enB signals for these
registers to allow one of the 4 bytes byte per cycle to proceed

through SRM through the S-Box and into Mix Columns. Note
that this sequence of enable signals across four cycles is the
case shown in the waveforms of Fig. 3. At the end of the 4th
cycle rotate is asserted, the Word Select shift registers all
advance by one position, and the next word (P4, P9, P14, P3)
is processed. Once a round of AES is completed at the end
of 16 cycles, the control input to the multiplexers in the Word
Select shift registers causes them to rotate, and P0, P9, P2, P11

becomes the first word processed in the second round. This shift
at the round boundary accounts for the register renaming, as
these registers are the ones that contain bytes B0,B5,B10,B15

(see cycles 17-20 of Fig. 4).
In this way, despite the apparent complexity of the control

signals, the enable generation circuitry comprises only 23 flops.
Effectively, the scheme works because the control logic is
mimicing the AES shift rows structure, but doing so in the
control logic to avoid moving entire bytes around the datapath.
Note that the flops in the Word Select shift registers are clocked
by the system clock an not a divided clock, even though they
only shift every fourth cycle. This is done to avoid having an
additional clk-to-q delay on the critical path, as would occur
if the shift register used a derived clock.

The enable signals for the Key Expansion unit (enK) are
computed by treating Word Select register WSA and Byte
Select register in Fig. 5 as word address and byte address
respectively. enK selects each of the 16 key registers (Fig. 7)
one per clock cycle in sequential order.

B. Round Function
The schematic of the round function is shown in Fig. 6. All

registers and data wires in the figure are 8-bits wide. The state
registers are shown in red, and are organized in four groups
{P0, P4, P8, P12}, {P1, P5, P9, P13}, {P2, P6, P10, P14} and
{P3, P7, P11, P15}. The inputs of all registers in a group are
tied together, but since register Pi is clocked by negative edge
of enW [i] signal, a byte is always written to one register in a
group and is ignored by the other three in the group because
their clocks do not switch. The outputs of all 16 Pi registers
are connected to the S-Box input via tri-state buffers with
enB[i] as the respective byte enables.

During a regular round computation, a four-byte word is
selected by asserting four enW signals (Sec. IV-A) for a quarter
of a round. enB signal then enables one byte of the word per
cycle to pass through to the S-Box. We choose Decode Switch
Encode S-box which performs one hot encoding to eliminate
glitches and reduce energy consumption [3]. However, our
architecture is agnostic to the choice of S-box and one can
choose area efficient alternatives [10], [4] if desired. The S-
box operation is followed by Mix Column operation which is
performed over 4 clock cycles operating on the enabled word.
We adopt the Mix Column design from [7] except that we
do not pipeline the output. Instead, 32-bits are read out of
MixColumns, XORed with 32 bits of round key and written
into state at once; this decision prevents stalls, saves three
register moves, and reduces clock loading. Given that enW is
serving as the clock to the 128 bits of AES state, the registers
in our design switch only once per round as opposed to once
per cycle in conventional 8-bit architectures [7].

In AES with 128-bit key size, rounds 0 and 10 operate
differently than the other rounds. In our scheme, rounds 0 and
10 work as follows. In round 0, plaintext bytes (Data in) are
read sequentially and XORed with corresponding input key
bytes (Key in). To match the “word write” of the regular
round, we use three registers to pipeline the data. These registers



1	 0	 0	 0	clk	
Byte		
Select	

b[0]	
clk	

shi,	

enB[8]	b[0]	

enW[8]	
s 0

enB[12]	b[0]	

enW[12]	
s 0

enB[4]	b[0]	

enW[4]	
s 0

enB[0]	b[0]	

enW[0]	
s 1

WSA	

b[2]	
clk	

shi,	
rotate	

enB[2]	b[2]	

enW[2]	

enW[6]	
s
r	

0

enB[6]	b[2]	

enW[6]	

enW[10]	
s
r	

0

enB[14]	b[2]	

enW[14]	

enW[2]	
s
r	

0

enB[10]	b[2]	

enW[10]	

enW[14]	
s
r	

1
WSC	

b[1]	
clk	

shi,	
rotate	

enB[13]	b[1]	

enW[13]	

enW[5]	
s
r	

0

enB[1]	b[1]	

enW[1]	

enW[9]	
s
r	

0

enB[9]	b[1]	

enW[9]	

enW[1]	
s
r	

0

enB[5]	b[1]	

enW[5]	

enW[13]	
s
r	

1
WSB	

b[3]	
clk	

shi,	
rotate	

enB[7]	b[3]	

enW[7]	

enW[7]	
s
r	

0

enB[11]	b[3]	

enW[11]	

enW[11]	
s
r	

0

enB[3]	b[3]	

enW[3]	

enW[3]	
s
r	

0

enB[15]	b[3]	

enW[15]	

enW[15]	
s
r	

1
WSD	

Fig. 5: Enable Generator

can be clock gated after round 0 to save energy. For round 10,
Mix Column operation is not required and we XOR the S-Box
output with 8-bits of round key to output an encrypted byte
Data out (Fig. 6). Note that since AES operation is decoupled
from renaming, encrypted bytes are output in correct sequential
order.

Each round of AES is completed in 16 cycles, leading to
a latency of 160 cycles to encrypt a block. Among all the
registers in our design, only the Enable Generation and the
32 bits of MixColumn state switch every clock cycle, which
is a small percentage of the overall registers in the design.
The state registers switch once per round thereby reducing
clock load significantly. When considering that each data byte
will be clocked through the state once and clocked 4 times
through MixColumns, this adds up to only 5 register moves
per byte per round, as opposed to approximately 20 moves in
conventional 8-bit architectures [7], [10].

C. Key Expansion
The schematic of Key Expansion is shown in Fig. 7. The

functionality of key expansion is straightforward (register
read/write is sequential) and interested readers can refer to [11]
for more detail. The enable signals for the key registers (enK)
are generated by the Enable Generator. These signals enable
registers K0 through K15 in the same sequence one register
per cycle. The key registers are similar to data registers in that
their outputs are tri-stated and they sample data on the negative
edge of enK, once per round. The enable for the tristates are
slightly different as shown in Fig. 7. Each byte i from words
Ka,Kb and Kc is enabled twice, once while computing round
key, and once more while being XORed with corresponding
byte in the next successive word. Bytes from word Kd are
also enabled twice - for computing g-function and round key.

V. RESULTS

In this section, we present results using our clocking
methodology. The RTL for the 8-bit datapath is written by
us and validated against an online tool. We use Synopsys
Design Compiler for synthesis, and Synopsys HSIM for circuit
simulation with NCSU 45nm PDK [1]. We use the nominal
voltage (1.1V) for our experiments. Tab. II compares the energy
per encryption (pJ/bit) of our scheme with two references
designs which we implement ourselves for fair comparison. The
128-bit datapath, as expected, is the most energy efficient design

S 
box

{03} {02}

enMc

Ka Kb Kc Kd

clkclk clk clk

Data_in

clkfirstRound

Key_in

P{i}
enW[i]

Q D
88

enB[i]

Key_out

Data_out

enMc enMc enMc
P12

P8

P4

P0

P13

P9

P5

P1

P14

P10

P6

P2

P15

P11

P7

P3

State 
Registers Mix 

Column

Add Key

Add Key
 (Rnd. 10)

D-FF with tristated O/P

Add Key
(Rnd. 0)

DinDout

Fig. 6: Schematic of Round Function

Key_in

K0 K1 K2 K3 K8 K9 K4 K5 K6 K7

S

Ka KbKc Kd

round_const enK[0]

enK[0:3]

enK[12:15]enK[4:7] +
enK[8:11]

enK[0:3] +
enK[4:7]

enK[8:11] +
enK[12:15]

Key_out

firstWord

K{i}

enK[i]

D

Q

8

8

g-function

K15K10 K11 K12 K13 K14

Fig. 7: Schematic of Key Expansion



TABLE II: Comparison of energy per encryption (pJ/bit)
breakdown of our scheme with 128-bit and 8-bit reference
designs implemented by us

128-bit Ref. Our 8-bit 8-bit Ref. [13]
Shift Rows – – 0.29
S-box (data&key) 1.33 0.58 1.10
Mix Column 0.44 0.61 0.66
Key Expansion 0.15 0.12 0.18
Flip-flops 0.39 1.48 6.18
Tristates – 0.81 –
CLK 0.07 0.36 1.19
Control – 0.81 N/A
Other 0.54 1.70 0.73
Energy 2.92 5.66 10.33

TABLE III: Comparison of area breakdown of our scheme
with 128-bit and 8-bit reference designs implemented by us

128-bit Ref. Our 8-bit 8-bit Ref. [13]
Shift Rows – – 78.2
S-box (data&key) 10395.4 1045.9 1039.5
Mix Column 223.4 109.1 108.0
Key Expansion 1038.8 85.9 110.6
Flip-flops 1157.6 1410.9 1338.5
Tristates – 902.3 –
Control – 277.4 N/A
Other 984.3 178.0 87.3
Area 13799.6 4009.4 2762.1

at 2.92 pJ/bit energy consumption because it incurs minimal
data movement overhead. Our implementation of the reference
8-bit design [13] consumes 10.33pJ/bit for an encryption. Our
design achieves a 45% improvement at 5.66pJ/bit. The energy
numbers reported in [13] are different than our implementation
of their scheme, due to several factors such as S-box design,
65nm technology and voltage scaling.

The energy numbers shown in Tab. II demonstrate the
specific benefits of using our clocking methodology. From table
in comparison to 8-bit reference [13], our design consumes 4x
less flip-flop energy because data moves through 5 flops per
round instead of 20. Further, our design spends 70% less clock
energy. This is because all 296 flops in the reference design
switch every clock cycle. In our design 61 flops involved in Mix
Column operation and enable generation switch every cycle,
while the rest (280) of the flops holding data and key switch
once per round. By optimizing the individual components in
the design (like the S-box) one could potentially improve the
overall energy efficiency of all designs listed in Tab. II.

An area comparison is presented in Tab. III. The 128-bit
design is obviously the most expensive in terms of area.
Our design incurs a 45% area penalty compared to our
implementation of the reference 8-bit design [13], consuming
an extra 1250µm2. This area penalty comes mainly from
tristates which are used to MUX data, and the control logic for
generating enable signals. The tristates in NCSU 45nm PDK
can be redesigned to reduce area penalty. Finally, our scheme
is competitive in performance with [13] as seen in Tab. IV
with a 20% degradation of fmax due to addition of tristates
and control signals in the critical path. Running at fmax, our
scheme consumes 2.3 mW of power.

TABLE IV: Comparison of performance
128-bit Ref. Our 8-bit 8-bit Ref. [13]

fmax (MHz) 636 510 636
Latency (cycles) 10 160 160
Throughput (Mbps) 8141 408 504

VI. CONCLUSION

In this work, we presented a microarchitectural technique to
improve energy efficiency of 8-bit implementation of AES. Our
improved clocking methodology greatly reduces activity of data
and key registers to a single update per round, which is at least
16x smaller than conventional 8-bit implementations. Register
renaming eliminates the need for additional state registers
to store intermediate results and minimizes data movement
through registers, thereby saving energy. In comparison to the
most efficient 8-bit implementations, we consume 45% lower
energy for an encryption operation with a 70% reduction in
clock energy, while paying a 45% area cost. Our methodology
can be extended to other sub-round implementations of AES
like 32-bit which we will explore as part of future work. For a
32-bit implementation, energy inefficiencies in data movement
and clocking are smaller and so would be the energy savings
using our scheme. In conclusion, the proposed 8-bit AES
architecture presents a new energy-efficient implementation
style that is attractive for low-power designs such as mobile
SoCs.

ACKNOWLEDGMENTS

This research was supported through the STARSS program
by National Science Foundation Grant CNS-1619558 and
Semiconductor Research Corporation Task 2685.001.

REFERENCES

[1] NCSU Free PDK 45. http://www.eda.ncsu.edu/wiki/FreePDK45:Contents.
[2] BANIK, S., BOGDANOV, A., REGAZZONI, F., ISOBE, T., HIWATARI, H.,

AND AKISHITA, T. Round gating for low energy block ciphers. In 2016
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST) (May 2016), pp. 55–60.

[3] BERTONI, G., MACCHETTI, M., NEGRI, L., AND FRAGNETO, P. Power-
efficient ASIC Synthesis of Cryptographic Sboxes. In Proceedings of
the 14th ACM Great Lakes Symposium on VLSI (New York, NY, USA,
2004), GLSVLSI ’04, ACM, pp. 277–281.

[4] CANRIGHT, D. A very compact S-box for AES. In International
Workshop on Cryptographic Hardware and Embedded Systems (2005),
Springer, pp. 441–455.

[5] DHANUSKODI, S. N., AND HOLCOMB, D. Energy optimization of
unrolled block ciphers using combinational checkpointing. In RFIDSec
2016: 12th Workshop on RFID and IoT Security, 2016 (Dec 2016).

[6] FELDHOFER, M., DOMINIKUS, S., AND WOLKERSTORFER, J. Strong
authentication for RFID systems using the AES algorithm. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems
(2004), Springer, pp. 357–370.

[7] HAMALAINEN, P., ALHO, T., HANNIKAINEN, M., AND HAMALAINEN,
T. D. Design and Implementation of Low-Area and Low-Power AES
Encryption Hardware Core. In 9th EUROMICRO Conference on Digital
System Design (DSD’06) (2006), pp. 577–583.

[8] JARVINEN, T., SALMELA, P., HAMALAINEN, P., AND TAKALA, J.
Efficient byte permutation realizations for compact AES implementations.
In 2005 13th European Signal Processing Conference (Sept 2005), pp. 1–
4.

[9] KAPS, J.-P., AND SUNAR, B. Energy comparison of AES and SHA-1
for ubiquitous computing. In International Conference on Embedded
and Ubiquitous Computing (2006), Springer, pp. 372–381.

[10] MATHEW, S., SATPATHY, S., SURESH, V., ANDERS, M., KAUL, H.,
AGARWAL, A., HSU, S., CHEN, G., AND KRISHNAMURTHY, R. 340
mV;1.1 V, 289 Gbps/W, 2090-Gate NanoAES Hardware Accelerator
With Area-Optimized Encrypt/Decrypt GF(2 4 ) 2 Polynomials in 22
nm Tri-Gate CMOS. IEEE Journal of Solid-State Circuits 50, 4 (April
2015), 1048–1058.

[11] PUB, N. F. 197: Advanced encryption standard AES. Federal Information
Processing Standards Publication 197 (2001), 441–0311.

[12] TILLICH, S., FELDHOFER, M., AND GROSSSCHÄDL, J. Area, delay, and
power characteristics of standard-cell implementations of the AES S-
box. In International Workshop on Embedded Computer Systems (2006),
Springer, pp. 457–466.

[13] ZHAO, W., HA, Y., AND ALIOTO, M. AES architectures for minimum-
energy operation and silicon demonstration in 65nm with lowest energy
per encryption. In 2015 IEEE International Symposium on Circuits and
Systems (ISCAS) (May 2015), pp. 2349–2352.


