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1. Introduction

BFIT is a part of the Verification-Guided Error Resilience (VGER) project at UC Berkeley. BFIT is a tool designed for analyzing
the neutron FIT (failure-in-time, per 109 hours) contribution of each combinational gate in a sequential circuit.

The input is a combinational circuit netlist, and the output is the FIT of each gate in that netlist, broken down according to
the various set of latches that can be upset. The generic netlist is internally mapped onto gates from the Nangate 45nm open cell
library1 for analysis2.

The vectors applied to the circuit can randomly generated, or provided as a text file. The output of BFIT is a text file showing
the FIT contribution of every gate in the circuit, with the FIT of each gate down broken down according to what set of latches it
upsets. BFIT can quickly analyze thousands of input vectors on circuits exceeding 20,000 gates.

BFIT can be used as part of a methodology for efficient hardening of sequential circuits [20].

2. FIT Calculation

The FIT of any specified event is given by Eq. 1; an event is a strike to a particular gate causing an upset in some exact set of
one or more latches.

FIT =
failures

109hours
= avg

(
failures

cycle

)
× cycles

109hrs
(1)

Failures per cycle is based on knowing which strikes can cause that event, and knowing what the probability of those strikes
occurring. Any neutron strike to the node can be described by a collected charge q and a time t; the space of all possible strikes to
a node is then q × t. A boolean valued function N(q, t) takes the value 1 for strikes that cause a specified error, and 0 otherwise;
different subscripts will be applied to N(q, t) to denote various events. A real-valued function R(q, t) represents the probability
that a strike of exactly charge q will occur at exactly time t of the clock cycle. Numerically integrating over all q, t yields failures
per cycle (Eq. 2) 3.

failures

cycle
=
∫ ∞
q=0

∫ tcycle

t=0

R(q, t)N(q, t) dt dq (2)

Strike Model. A Neutron strike frees charge that can be collected into some circuit node through drift. It is modeled as a current
injection of the form of Eq. 3, as proposed by Freeman [7] and adopted in subsequent work [9, 17, 24].

Different magnitudes of strikes are modeled by scaling the injected current. The total collected charge q of a strike is the integral
of the injected current. A strike to an NMOS diffusion will collect electrons (creating a negative voltage glitch), and the P-type
diffusion of PMOS devices will collect holes (creating a positive voltage glitch)4. Technology-dependent parameter τ is the time
constant of the injected current; τ is set to 20ps for both PMOS and NMOS devices in this work, as is extrapolated to be appropriate
for sub-100nm technology by Hazucha et al. [9].

I (t) ∝ 1
τ

√
t

τ
exp

(
−t
τ

)
(3)

2.1. R(q, t) - the probability of observing different charges at different times.

Different magnitudes of strikes occur with different frequencies; strikes producing small charges are more frequent than large
charges. Large diffusion areas collect more charges than small diffusions. Based on the work of Hazucha et al. [9] (and further
adopted in [24, 17]), the number of strikes per second exceeding charge q is given by equation 4.

R(q) = F ×A×K × exp
(
− q

Qs

)
(4)

• F is the neutron flux (= 56.5/m2 ∗ s in New York City [26]

• A is the sensitive drain diffusion area of the node collecting the charge. We assume that the diffusion of a nominal inverter
is 90nm by 90nm;

• K is a technology-independent fitting parameter (= 2.2 ∗ 10−5 [9]);

• Qs is a technology-dependent fitting parameter representing charge collection efficiency, and differs for NMOS (17fC) and
PMOS (6.5fC) devices [9].

1http://www.nangate.com/
2In other words, we use timing and electrical models obtained from the Nangate cells
3note that N(q, t) is essentially just selecting the bounds over which to integrate R(q, t)
4in BFIT, The polarity of the injected current accounts for this
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Figure 1: Strikes per second of various charges for min, 2x minimum and 3x minimum sized diffusions of each N and P type.
Strikes to N-type diffusion are more frequent because of the collection efficiency parameter Qs.

Assuming that a strike is equally likely to occur at any time in the clock cycle, the number of strikes depositing charge q
occurring at exactly time t of the clock cycle is given by R(q, t) in Eq. 5.

R(q, t) = tstep ∗
dR(q)
dq

(5)

2.2. N(q, t) - the errors induced by different charges at different times

Any event can be described by a N(q, t) function; BFIT estimates the N(q, t) functions for different events using logical
operations over the N(q, t) functions of sensitized paths. Note that the function N(q, t) subsumes all masking factors: timing
masked and electrically masked strikes are those (q, t) described by N(q, t) = 0; logically masked strikes have N(q, t) = 0 for all
q, t.

We proceed top down, from logical events to circuit paths.
To find the number of failures in which a gate g causes exactly set E of latches to fail, subscripts are applied to Eq. 2, generating

Eq. 6.

failures

cycle g→E
=
∫ ∞
q=0

∫ tcycle

t=0

R(q, t) ∗Ng→E(q, t)dtdq (6)

For an error to be caused in exactly set E, it must be true that there is an error in each latch from set E and that all other latches
are error-free (Eq. 7). Although the number of possible latch sets is exponential in the number of latches, errors are only observed
in a small subset of the possible latch sets.

Ng→E(q, t) =
∧
∀li∈E

Ng→li(q, t) ∧
∧

∀li∈L−E

Ng→li(q, t) (7)

For an error to be caused in any latch l, we assume that there is one or more paths π that are solely capable of causing the error.
This assumption could introduce could introduce error; Zhang et al. propose that the impact of this assumption is minimal [22] in
their work.

Ng→li(q, t) =
∨

∀π:g→li

Nπ(q, t) (8)

2.3. Determining Factors of FIT

The local state of a struck gate important because it determines the area and type of sensitized diffusion, and because it deter-
mines the electrical drive strength of the gate. The type and area of sensitized diffusion factor into R(q, t) and the electrical drive
strength factors into N(q, t).

Four important factors for determining FIT are presented here. A NAND2 gate is used for illustration.
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Sensitized Diffusion Area.
The probability of observing a certain magnitude of collect charge depends on the sensitized diffusion area of that node (See Eq. 6).
For a diffusion to be sensitized, it must be reverse-biased and connected to the gate output. We make the assumption that stacked
devices are all upsized according to the following rule: in a double stack devices are double wide, in a triple stack they are triple
wide, etc. In a NAND2 gate, a difference in sensitized diffusion area causes the 10 state to have double the FIT of the 01 state
(Fig. 2). Fig. 3 shows that 01 and 10 input states have similar N(q, t) functions on account of similar pull-up strength (each via a
single PMOS device), meaning that the same size charge is needed to flip them.

Diffusion Type.
When a gate output is high, only NMOS diffusion will be sensitized, and when low only PMOS diffusion will be sensitized. This
is significant because PMOS devices are struck less frequently (See Eq. 4 and Fig. 1). In a NAND2, the 11 state contributes the
least FIT, because P-type diffusion is sensitized, and strikes to P-type diffusion are less frequent, per Eq. 4.

Electrical Strength.
When a gate is struck, the injected current charges a capacitance to create and propagate a voltage glitch. In CMOS logic, each
gate output is always connected to ground or supply by a pull-up (or pull-down) path; the injected charge must be of sufficient
magnitude to overcome that pull-up (-down) path in creating an erroneous voltage. The strength of this pull-up (-down) path is a
function of the gate input [13, 8]. The electrical fanout of the gate being struck could also be important. In a NAND2 gate, the 00
state requires a larger strike to cause an error (See Fig. 3) , due to the stronger pull-up (via parallel PMOS devices - see Fig. 2).

Figure 2: The input applied to a gate determines its sensitive area and its drive strength.

Path Delay.
Studies have shown that soft error-induced transient glitches can propagate through logic in sub 100nm technologies without being
significantly attenuated [14, 6]. In older technologies, soft error-induced glitches typically could not propagate through more than
a few gates before being attenuated away [6].

Without significant attenuation, a gate close to a latch should contribute the same amount of FIT as a gate far from the latch (all
other things being equal). However, the delay of the path will shift the N(q, t) function in time, since a strike propagating down a
long path must come appropriately earlier relative to the clock edge (Eq. 9). Later in the manual we will show experimentally that
abstraction of path delay as a timeshift to N(q, t) does not induce significant error.

Nπ(q, t) = N̂(q, t− dπ) (9)

The only significant path dependence is in the timing of the N(q, t) function. For longer paths, the N(q, t) = 1 region is earlier
in the clock cycle (Fig. 3). Since the time of a strike is uniformly distributed over the clock cycle, the time shift does not effect the
failures per cycle, so the far gates contribute roughly as much failures as the close gates.

2.4. Precharacterization

If FIT does not depend on electrical properties of a path, then it depends only on local effects (input state, load capacitance).
The space of possible local effects can be precharacterized.

For each gate type, input state, and load capacitance, SPICE simulation is used to precharacterize its delays, and nominalN(q, t)
function. Per Eq. 2, the FIT is then determined by performing a lookup to the precharacterization.

SPICE simulation shows that this lookup approach is viable. Table 2 shows that the input of the struck gate has a large impact
on FIT, so it is important to exhaustively consider local effects. Table 1 shows that the path does not significantly attenuate glitches
in this cell library. Table 1 shows that in all cases, the path dependence is minor; this is indicated by all of the even-numbered gates
having similar FIT and all of the odd-numbered gates having similar FIT. The odds differ from the evens because they represent
two different input states of the gate.
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Figure 3: Gate input is more important than path properties. At left, N(q, t) of NAND2 X1 gate with input 10 at distances 1,3,5
and 15 away from a latch. At right, N(q, t) at distance 1 away from latch when varying input states.

distance to dff
Gate C load 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nand2
0 25 61 26 62 26 63 26 64 26 64 26 64 25 64 25 64 25 67 28

0.40fF 27 72 27 71 27 70 27 71 28 72 28 72 28 70 28 71 29 72 28
0.80fF 26 75 26 78 26 77 27 77 27 78 28 76 29 79 29 76 31 76 28
1.20fF 24 82 24 81 25 82 25 82 27 82 28 83 29 82 30 84 31 80 28

not
0 10 30 10 29 10 28 10 30 10 29 10 28 10 29 10 29 10 29 11

0.40fF 11 33 11 34 11 34 12 34 12 34 12 33 12 33 12 33 12 32 11
0.80fF 12 36 12 36 12 37 12 37 12 37 12 37 12 38 13 37 13 35 11
1.20fF 11 39 11 40 11 40 12 39 12 40 12 41 12 40 13 40 14 37 11

nor2
0 33 67 37 73 35 71 35 69 36 72 39 72 38 70 39 69 42 74 48

0.40fF 32 81 36 80 36 78 37 83 40 82 43 80 45 80 45 82 49 82 48
0.80fF 26 86 28 87 32 89 35 89 38 88 43 87 46 91 49 91 54 89 47
1.20fF 18 93 21 91 26 96 32 96 36 97 41 98 46 98 50 97 57 95 47

Table 1: The FIT contribution of a gate does not depend strongly on distance from the latch. the units are 1e-7 FIT. When
capacitance is added to the gates, the FIT diminishes somewhat further from the latch

input combination
diff gate 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N-type

not 36 –
nand2 50 75 *161* –
nor2 89 – – –

nand3 59 235 157 233 82 125 134 –
nor3 156 – – – – – – –

nand4 58 298 224 302 151 201 205 308 77 106 106 165 112 183 204 –
nor4 226 – – – – – – – – – – – – – – –

P-type

not – 9
nand2 – – – 29
nor2 – 29 12 3

nand3 – – – – – – – 40
nor3 – 69 33 34 29 21 10 4

nand4 – – – – – – – – – – – – – – – 42
nor4 – 98 48 47 45 31 15 25 41 29 14 17 14 8 5 2

Table 2: the FIT rate of the different input states of each gate, when sensitized by single path and a 1000ps clock. The units are
1e-7 FIT. For each gate, the FIT contribution varies widely with input state. In general, input states that sensitize N-type diffusion
cause more FIT. The particular input states that have FIT rates in bold font correspond to the states using in the test circuits in 1
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3. BFIT Algorithm

To initiate analysis, BFIT parses the circuit netlist into a levelized dag. One at a time, vectors are applied to the dag, and the
failure rate of a single cycle is determined. The analysis of each vector is as follows.

The input vectors are propagated through this levelized dag.
Beginning at the latches, a backtrace procedure is used to find sensitized paths (Algorithm 1). The output of the procedure is,

for each pairing of gate and latch, a list of sensitized path delays from the gate to the latch. Note that in forming the list of path
delays, we rely on the gate precharacterizations to specify the delay of each sensitized timing arc.

Finally, the list of sensitized paths delays is used with the gate precharacterization information to determine what set of upsets
can be caused by a strike to this gate, and to determine what q, t pairings of strikes can cause the different upsets. When a particular
strike is found to be capable of causing an error in two or more latches, it will contribute a multi-bit upset.

Eq. 9 shows how the N(q, t) function of a path can be determined based on path delay and precharacterized local factors. Eq.
8 shows how the function can be constructed for a single latch. Eq. 1 shows that, by observing the intersections of the N(q, t)
functions, the strikes that can cause various multiple latch upsets are determined. Finally, Eq. 2 is used to determine the failure rate
of each possible latch set upset.

Figure 4: Dynamic programming finds sensitized paths and their delays, which are then combined with gate characterization data,
to determine which q, t strikes will cause an error.

Input: Levelized dag of combinational circuit, where vertices are circuit nodes.
Nodes includes combinational gates and latches
Each vertex has a state determined by forward propagating an input vector.
Output: a list d[n][l] of delays, for each pairing of n and l
initially, d[n][l] = ∅ forall n 6= l
initially, d[n][l] = 0 forall n == l
foreach level of dag, starting at highest level do

foreach node n in current level do
foreach fanin gate f of n do

if f is capable of flipping n then
foreach path delay dπ of d[n][l] do

d[f][l].push back( dπ − df→n )
end

end
end

end
end

Algorithm 1: The backtrace algorithm used to find sensitized paths
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4. Accuracy

We compare BFIT to exhaustive SPICE simulation on two different circuits. In both BFIT and SPICE FIT share the same
R(q, t) function, so we are essentially comparing BFIT’s estimate of N(q, t) against an in-situ measurement of N(q, t)5

ISCAS85 C17

Figure 5: The average FIT contribution of each gate, BFIT and SPICE.

First we show that BFIT can accurately determine the average FIT across all 32 input vectors of each of the 6 NAND2 gates
in the ISCAS 89 circuit C17 (Fig. 5). For this experiment, an 800ps clock was used, with a 16ps timestep. For each timestep, the
minimum error causing strike is determined using a binary search. Getting the average FIT of a single gate requires 1600 binary
searches, and several hours of simulation.

Multibit errors
In the simple three latch circuit shown in Fig 6, we perform exhaustive spice simulation for one gate, and compare this to BFIT.

The same SPICE methodology is used here as above with one exception: For each timestep of simulation, we now use a binary
search to find the smallest strike capable of causing one error, another binary search to find the smallest strike capable of causing
two errors, and third binary search to find the smallest strike capable of causing three errors.

BFIT HSPICE
single upset 8.6e-7 7.4e-7
double upset 7.4e-7 7.1e-7
triple upset 1.6e-7 5.5e-7
total FIT 1.7e-6 2.0e-6

Figure 6: the N(q, t) functions for all possible latch sets for the simple circuit shown. The green area has a single latch in error,
the blue has two, and the red has three. The shaded areas are approximated, but the data points on the graph are accurate.

5but collapsing N(q, t) into the single dimension of FIT
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5. Using BFIT

The inputs to BFIT are a combinational netlist and (optionally) input vectors. The output is the FIT contribution of every
combinational gate in the circuit, with the fit broken down by exact sets of upset latches. The syntax of a BFIT execution is given
here:

./bfit <netlist> <inputVectors> <clockPeriod> <fitReport>

<netlist> The combinational netlist.

<inputVectors> can be EITHER
(a) the name of a text file containing input vectors, OR
(b) a number indicating how many random input vectors should be run.

<fitReport> the name of the file where the fit report will be written to.

<clockPeriod> The clock period in ps.

An example of a BFIT execution, and the resulting standard output is shown in Fig. 7. In this example, 100 random vectors are
run on the netlist ‘circuits/ s9234 mod.bench’; the clock frequency is 1000ps; the FIT breakdown report will be written to ‘fit.Fit’.

holcomb@reactive:˜/BFIT_rc1$ ./bfit circuits/s9234_mod.bench 100 fit.Fit 1000

------XX-XXX-X-X-X----X-----X-X---X-----XXXXXXX-----------XX-----XX-
-------XXXX-X-X-X----X-----X-X---X----XXXXXXXX-----------XX-------X-
--------XX-X-X-X----XX----X-X---X---XXXXXXXXX----------XXX----------
-------XX-X-X-XX---XXXX--X-X---X---XXXXXXXX----------XXXXX----------

"./bfit circuits/s9234_mod.bench 100 fit.Fit 1000 "

beginning of BFIT...

-------------------------------------------------------
| ckt : circuits/s9234_mod.bench |
| fit written to : fit.Fit |
| clock cycle : 1000ps |
-------------------------------------------------------

parsing circuit from file: circuits/s9234_mod.bench
levelized dag into 81 levels
gate count: 7458

dff: 228
input: 247
inv: 4956
nand2: 1377
nand3: 61
nand4: 45
nor2: 431
nor3: 30
nor4: 83

starting to run analysis on 100 random input vectors....

...finished running all vectors

-----------------------------------
| total FIT is : 0.0717346 |
| vectors run : 100 |
-----------------------------------

holcomb@reactive:˜/BFIT_rc1$

Figure 7: standard output from a bfit run

5.1. input netlist

The input netlist to BFIT should be a combinational circuit in the ISCAS ‘.bench’ format. The following types of gates are
recognized: DFF, INPUT, OUTPUT, NOT, NAND (2,3,4 input), NOR (2,3,4 input) . By restricting BFIT to simple inverting gates,
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Circuit INPUTS LATCHES GATES RUNTIME / 1k vectors FIT
s5378 mod.bench 214 179 3232 35 3.27e-3
s9234 mod.bench 247 228 7230 68 1.06e-2
s13207 mod.bench 700 669 10277 136 1.77e-2
s15850 mod.bench 611 597 12712 207 2.24e-2
s38417 mod.bench 1664 1636 28223 451 5.62e-2
s38584 mod.bench 1464 1452 28854 1311 4.85e-2
s35932 mod.bench 1763 1728 23012 204 3.99e-2

Table 3: The BFIT runtime, per thousand vectors, of large ISCAS circuits. The clock period used for each circuit is 1000ps.

each gate corresponds to a single strikable node, so there is no need to descend below the gate level of hierarchy6.
In the circuits subdirectory of the BFIT source, we provide the benchmark circuits that were used to generate the results of this

paper. These circuits are based on the ISCAS’89 sequential benchmark, except that we have cut the sequential circuit to make it
combinational, and performed some simple replacement to map the circuit onto our limited set of gates.

5.2. input vectors

The input vectors used for BFIT can either be randomly7generated or else supplied as a text file.
If supplied as a text file, each line should contain a single vector in ASCII, with the circuit input bits separated by spaces. The

inputs are interpreted in alphabetical order; the first (leftmost) bit on any line of the text file will be assigned to the input signal that
is closest to the the beginning of the alphabet. When BFIT is run, it prints out a file called inputOrdering.txt, that shows the order
in which inputs have been interpreted.

5.3. output report

Aside from the general information in standard output of BFIT, the detailed report of a circuits FIT is contained in whatever file
was specified by the command line argument. Figure 8 is the report generated from running the combinational version of ISCAS
circuit s27.

holcomb@reactive:˜/BFIT_rc1$ more fit.Fit

ckt: circuits/s27_mod.bench
clock: 1000ps

G14 : 2.68641e-07 -> G6_NEXT
G14 : 2.13757e-07 -> G5_NEXT & G6_NEXT
G14 : 8.80027e-07 -> G5_NEXT

G12 : 1.58168e-06 -> G7_NEXT
G12 : 1.30921e-07 -> G6_NEXT & G7_NEXT
G12 : 4.24908e-07 -> G6_NEXT
G12 : 3.44801e-09 -> G5_NEXT & G6_NEXT & G7_NEXT
G12 : 1.03958e-07 -> G5_NEXT & G6_NEXT
G12 : 5.71491e-08 -> G5_NEXT

------------------------------
[cut]

------------------------------
G10 : 5.25918e-06 -> G5_NEXT

total ckt FIT: 2.7228e-05

holcomb@reactive:˜/BFIT_rc1$

Figure 8: a FIT report.

5.4. Runtime

BFIT can run thousands of vectors in an hour on 20k gate circuits. The forward propagation of state is performed on a levelized
DAG, and is thus linear in the size of the circuit. The backtrace for finding sensitized paths uses dynamic programming, and only
visits each gate once per vector. However, the number of paths that must be back-propagated through each gate is potentially
exponential. The runtimes for combinational versions of the sequential ISCAS circuits, is shown in Table 3.

6for example, and AND gate has an internal node that computes NAND, followed by an inverter, so there would then be two different sensitized (reverse biased)
diffusions, and they would be of opposite type.

7the random number generator is given a consistent seed and will reproduce the same vectors each time is run - done this way to make results reproducible
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6. Results from ISCAS’89 benchmarks

Here we present some results obtained using BFIT on the ISCAS89 circuits. These results show the significance of multiple-bit
errors, and show how clock period can effect FIT rates. In our DATE 2009 paper [20], we show how BFIT can guide efficient
circuit hardening.

Multiple Latch Upsets.
We find that in some circuits, multiple latch upsets can account for a significant share of errors, as high as 16 percent in the

combinational version of ISCAS89 circuit s5378 (see Table 4).

circuit bits in error
1 2 3 4 5 6

s5378 mod.bench 0.8388 0.0814 0.0364 0.0128 0.0080 0.0048
s9234 mod.bench 0.8625 0.0846 0.0122 0.0119 0.0031 0.0176

s13207 mod.bench 0.9379 0.0265 0.0052 0.0049 0.0035 0.0048
s15850 mod.bench 0.9148 0.0329 0.0188 0.0083 0.0066 0.0040
s38417 mod.bench 0.8812 0.0624 0.0222 0.0097 0.0083 0.0039
s38584 mod.bench 0.9538 0.0262 0.0053 0.0029 0.0019 0.0015
s35932 mod.bench 0.9960 0.0001 0.0001 0.0001 0.0002 0.0003

Table 4: The share of errors that effect multiple latches.
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7 Appendix

7.1 Included Benchmark files

Because BFIT runs on combinational circuits, we convert the ISCAS89 sequential circuits [3] into BFIT-suitable combinational
circuits 8. These circuits are included in the zip file of the source code.

The modifications we make to the sequential circuit are as follows:

1. Cut the output signal of each latch. All gates driven by the cut signal are instead driven by a new combinational input of the
same name; these inputs allow controllability the current state of the system. The latch output that was cut is now connected
to a combinational output for observability (see Fig. 9).

2. All non-inverting gates are decomposed into constituent inverting gates. Gates with more than four inputs are broken down
into multiple smaller gates.

Figure 9: Preprocessing breaks the sequential circuit and decomposes non-inverting gates.

7.2 BFIT source code

BFIT is implemented in C++.
All of the source files needed to run BFIT are contained in file BFIT 1.0.zip. Example circuits are also contained in the

subdirectory circuits of the zip file. It is assumed that the user has a C++ compiler, and C++ STL libraries. The list of required
source files for running BFIT alpha are:

• bfit.cpp - the main code of BFIT

• bfit.h - the technology characterization. In this case, it is for the 45nm Nangate open cell library.

• gate.cpp - the gate class

• bfitUtils.cpp - the functions for manipulating the dag, estimating FIT, etc.

To compile BFIT, just do:

g++ -c bfit.cpp -o bfit.o
g++ bfit.o -o bfit

8ISCAS’89 circuits can be found at: http://www.cs.ubc.ca/spider/ajh/courses/cpsc513/assign-reach/ISCAS89/DATA/
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