Searches for Beyond the Standard Model Physics at ATLAS

Carlo Dallapiccola
University of Massachusetts
Exotic Searches for Beyond the Standard Model Physics at ATLAS

Carlo Dallapiccola
University of Massachusetts
Motivation for expectation of physics Beyond the Standard Model (BSM) rather familiar
Introduction: Theoretical Motivation

Motivation for expectation of physics Beyond the Standard Model (BSM) rather familiar

No striking, unambiguous evidence for BSM physics
Motivation for expectation of physics Beyond the Standard Model (BSM) rather familiar

No striking, unambiguous evidence for BSM physics

Compelling reasons, however, for expecting it to be within reach....
Motivation for expectation of physics Beyond the Standard Model (BSM) rather familiar

No striking, unambiguous evidence for BSM physics

Compelling reasons, however, for expecting it to be within reach....
Motivation for expectation of physics Beyond the Standard Model (BSM) rather familiar

No striking, unambiguous evidence for BSM physics

Compelling reasons, however, for expecting it to be within reach....

- Stability of the electroweak scale (hierarchy)
- Dark matter
- Neutrino masses
- Flavor puzzle
Supersymmetry

- Hierarchy problem
- Dark matter
- Unify couplings

- Heavy superpartners
- Light neutral Higgs

- 126 more parameters
Supersymmetry

- Hierarchy problem
- Dark matter
- Unify couplings
- Heavy superpartners
- Light neutral Higgs
- 126 more parameters

Supersymmetry

- Hierarchy problem
- Dark matter
- Unify couplings

- Heavy superpartners
- Light neutral Higgs

- 126 more parameters

Extra Dimensions

- Hierarchy problem
- Dark matter
- Unify couplings

- TeV-scale gravity
- KK graviton decays
- Black holes, string balls

- Few parameters
Supersymmetry

- Hierarchy problem
- Dark matter
- Unify couplings
- Heavy superpartners
- Light neutral Higgs
- 126 more parameters

Extra Dimensions

- Hierarchy problem
- Dark matter
- Unify couplings
- TeV-scale gravity
- KK graviton decays
- Black holes, string balls
- Few parameters

Strong Dynamics

- Hierarchy problem
- Dark matter
- New heavy gauge bosons (W', Z')
- Composite Higgs
- 4th generation quarks
- Few parameters
Solutions: New BSM Physics

Supersymmetry
- Hierarchy problem
- Dark matter
- Unify couplings
- Heavy superpartners
- Light neutral Higgs
- 126 more parameters

Extra Dimensions
- Hierarchy problem
- Dark matter
- Unify couplings
- TeV-scale gravity
- KK graviton decays
- Black holes, string balls
- Few parameters

Strong Dynamics
- Hierarchy problem
- Dark matter
- New heavy gauge bosons (W', Z')
- Composite Higgs
- 4th. generation quarks
- Few parameters

Hidden Valley
- Framework for various models
- Heavy messenger (Z', H)
- Displaced vertices

C. Dallapiccola
JETP Seminar, FNAL, 11 May 2012
Univ. of Massachusetts
Experimental Tools: the LHC
Experimental Tools: the LHC

<table>
<thead>
<tr>
<th></th>
<th>2011 performance</th>
<th>Design performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliding bunches</td>
<td>1331</td>
<td>2808</td>
</tr>
<tr>
<td>Energy</td>
<td>3.5 TeV x 3.5 TeV</td>
<td>7 TeV x 7 TeV</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>50 ns</td>
<td>25 ns</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.6×10^{33} cm$^{-2}$ s$^{-1}$</td>
<td>10^{34} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Pile-up interactions</td>
<td>~20</td>
<td>~25</td>
</tr>
</tbody>
</table>
Experimental Tools: the LHC

<table>
<thead>
<tr>
<th></th>
<th>2011 performance</th>
<th>Design performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliding bunches</td>
<td>1331</td>
<td>2808</td>
</tr>
<tr>
<td>Energy</td>
<td>3.5 TeV x 3.5 TeV</td>
<td>7 TeV x 7 TeV</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>50 ns</td>
<td>25 ns</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.6×10^{33} cm$^{-2}$ s$^{-1}$</td>
<td>10^{34} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Pile-up interactions</td>
<td>~20</td>
<td>~25</td>
</tr>
</tbody>
</table>

Results using 1-5 fb$^{-1}$ integrated luminosity
Searches Covered Here

Lots of ground to cover

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

*Only a selection of the available mass limits on new states or phenomena shown
Searches Covered Here

Lots of ground to cover

- Searches bit off beaten path (not always covered)
- Analyses close to things my group works on
- Analyses that emphasize strong points of ATLAS
- Benchmark analyses

Signature based searches

Model-indep. fiducial cross section limits + limits on model params

C. Dallapiccola

JETP Seminar, FNAL, 11 May 2012

Univ. of Massachusetts
Extra Spatial Dimensions

Varieties
- Universal extra dim (UED)
- Single large warped dim (RS)
- Compact large dim (ADD)

Phenomena
- KK towers of SM particles
- KK gravitons
- Quantum gravity (string ball)
- Classical mini black holes

Signatures
- Monojet (ADD graviton)
- Dijet (QBH)
- Multijet (ADD BH)
- Multijet+lepton (ADD BH)
- Diphoton (ADD/RS graviton, UED)
- Dimuon (ADD BH)
- Dilepton (RS graviton)
- Ditop (RS KK gluon)
- Diboson (RS graviton)
Extra Dimensions (ED) II: TeV-Scale Gravity

Gravity \Rightarrow Higher Dimensional (4+n) Bulk

SM Fields \Rightarrow 4-d Brane
ADD: Extra dim. \((n = 2-6)\) periodic

- Massive KK gravitons \(\rightarrow\) small \(\Delta m\), \(~\text{continuum of states}\)
- Production: \(jet + G^*\) (missing \(E_T\))
- Decay: \(G^* \rightarrow qq'/\gamma\gamma/\ell^+\ell^-\)
- Black Holes for \(\sqrt{s} \geq M_D\)

Phenomenology characterized by \(n\) and \(M_D\)
Extra Dimensions (ED) II: TeV-Scale Gravity

Gravity \Rightarrow Higher Dimensional (4+n) Bulk

SM Fields \Rightarrow 4-d Brane

ADD: Extra dim. ($n = 2-6$) periodic

- Massive KK gravitons \rightarrow small Δm, \simcontinuum of states
- Production: jet + G^* (missing E_T)
- Decay: $G^* \rightarrow qq'/\gamma/\ell^+\ell^-$
- Black Holes for $\sqrt{s} \gtrsim M_D$
 - Phenomenology characterized by n and M_D

$$\mathcal{M}^2_{Pl} = M_D^{n+2} R^n$$

$\sim 10^{16}$ TeV

RS: Extra warped dim. ($n = 1$) bound by SM/Planck branes

- Massive KK gravitons \rightarrow large Δm, \simnarrow resonances
- Decay: $G^* \rightarrow \gamma/\ell^+\ell^-$
- Characterized by k/M_{Pl} ($k \approx 0.1 * M_{Pl}$ is “warp factor”) and M_G
Graviton Searches
Trigger: $E_T^{miss} > 60 \text{ GeV}$

Selection:
- Reject events with e or μ
- Leading jet $p_T > 250 \text{ GeV}$
- No other jet with $p_T > 60 \text{ GeV}$
- $E_T^{miss} > 220 \text{ GeV}$

Backgrounds:
- $Z (\rightarrow \nu\bar{\nu}) + \text{jets}$
- $W (\rightarrow \ell\bar{\nu}) + \text{jets}$
Extra Dimensions: Monojets (1 fb⁻¹)

Trigger: \(E_T^{miss} > 60\) GeV

Selection:
- Reject events with \(e\) or \(\mu\)
- Leading jet \(p_T > 250\) GeV
- No other jet with \(p_T > 60\) GeV
- \(E_T^{miss} > 220\) GeV

Backgrounds:
- \(Z (\rightarrow \nu\bar{\nu}) + \) jets
- \(W (\rightarrow \ell\nu) + \) jets

<table>
<thead>
<tr>
<th>Number ADD ED ((n))</th>
<th>(M_D) Lower Limit 95% CL ((\text{TeV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>2.3</td>
</tr>
<tr>
<td>5</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Trigger: \(\geq 2e, E_T > 20 \text{ GeV} \)
\(\geq 1\mu , p_T > 22 \text{ GeV} \)

Selection:
- Oppositely charged, isolated \(e/\mu \)
- \(E_T(p_T) > 25 \ (25) \text{ GeV} \)
- \(E_T(p_T) \) res. \(1-2\% \ (10-25\%) \) at 1 TeV
- Signal efficiency 72\% (47\%)

Background:
- Drell-Yan dileptons

\[\sigma \times \text{BF} \text{ v/s Mass} \]

\[\sigma \times \text{BF} \text{ v/s Mass} \]
Trigger: ≥ 2e, \(E_T > 20 \text{ GeV} \)
≥ 1μ, \(p_T > 22 \text{ GeV} \)

Selection:
- Oppositely charged, isolated e/μ
- \(E_T (p_T) > 25 (25) \text{ GeV} \)
- \(E_T (p_T) \) res. 1-2% (10-25%) at 1 TeV
- Signal efficiency 72% (47%)

Background:
- Drell-Yan dileptons

\[\begin{array}{|c|c|}
\hline
k/M_{Pl} & M_G > (\text{TeV}) 95\% \text{ CL} \\
\hline
0.01 & 0.9 \\
0.03 & 1.4 \\
0.05 & 1.7 \\
0.1 & 2.2 \\
\hline
\end{array} \]
Extra Dimensions: Diphotons (2.1 fb⁻¹)

Trigger: ≥ 2 photons
\(E_T > 20 \text{ GeV} \)

Selection:
- At least two isolated photons
- Two leading photons taken: \(E_T > 25 \text{ GeV} \)

Background:
- SM diphoton, photon-jet
Extra Dimensions: Diphotons (2.1 fb⁻¹)

Trigger: ≥2 photons
\(E_T > 20 \text{ GeV} \)

Selection:
• At least two isolated photons
• Two leading photons taken:
 \(E_T > 25 \text{ GeV} \)

Background:
• SM diphoton, photon-jet

<table>
<thead>
<tr>
<th>No. ED (n)</th>
<th>(M_S > (\text{TeV})) 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>2.4</td>
</tr>
</tbody>
</table>

\(M_S = \text{Ultraviolet cutoff (} \sim M_D \text{) } \)

\[k/M_{Pl} \text{ v/s } M_G \]

\[\sigma \times \text{BF v/s Mass} \]
Extra Dimensions: Diphotons (2.1 fb\(^{-1}\))

Trigger: \(\geq 2\) photons
\(E_T > 20\) GeV

Selection:
- At least two *isolated* photons
- Two leading photons taken:
\(E_T > 25\) GeV

Background:
- SM diphoton, photon-jet

<table>
<thead>
<tr>
<th>No. ED (n)</th>
<th>(M_S > (\text{TeV})) 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>2.4</td>
</tr>
</tbody>
</table>

\(M_S =\) Ultraviolet cutoff (~\(M_D\))

\(k/M_{Pl}\) v/s \(M_G\)

\(\sigma\) BF v/s Mass

<table>
<thead>
<tr>
<th>(k/M_{Pl})</th>
<th>(M_G > (\text{TeV})) 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.8</td>
</tr>
<tr>
<td>0.03</td>
<td>1.4</td>
</tr>
<tr>
<td>0.05</td>
<td>1.6</td>
</tr>
<tr>
<td>0.1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Results combined with dileptons (~1 fb\(^{-1}\))
Extra Dimensions: Ditop (2 fb⁻¹)

Trigger: \(\geq 1 \text{e}, E_T > 22 \text{ GeV} \)
\(\geq 1 \mu, p_T > 18 \text{ GeV} \)

Selection:
- Only one isolated e/\(\mu\), \(\geq 1\) b-jet
- Lepton \(E_T(p_T) > 25\) (25) GeV
- At least 3 jets (\(p_T > 25\) GeV)
- Jet \(p_T(\text{lead}) > 60\) GeV
- \(E_T\text{miss} > 35\) (20) GeV

Backgrounds:
- SM \(tt\bar{t}\)
- \(W+\text{jets}\)

Graphs and Plots:
- ATLAS Preliminary: Event distributions for different masses.
- ATLAS Preliminary: Mass distribution for different \(m_{\text{jj}\ell}\) values.
- ATLAS Preliminary: Observation of 95% CL upper limit on \(\sigma \times \text{BR}(g_{KK} \rightarrow t\bar{t})\) for different \(g_{KK}\) masses.

C. Dallapiccola

JETP Seminar, FNAL, 11 May 2012

Univ. of Massachusetts
Trigger: $\geq 1e, E_T > 22\,\text{GeV}$
$\geq 1\mu, p_T > 18\,\text{GeV}$

Selection:
- Only one isolated $e/\mu, \geq 1\text{b-jet}$
- Lepton $E_T (p_T) > 25\,(25)\,\text{GeV}$
- At least 3 jets ($p_T > 25\,\text{GeV}$)
- Jet $p_T(\text{lead}) > 60\,\text{GeV}$
- $E_T^{\text{miss}} > 35\,(20)\,\text{GeV}$

Backgrounds:
- SM $ttbar$
- $W+$jets

Exclude RS KK gluons (95% CL):
$500 < M(g_{KK}) < 1025\,\text{GeV}$
Black Hole Search
parton-parton collisions at TeV scale \Rightarrow strong gravity at TeV scale \Rightarrow black hole?

Two scales: M_D (Planck) < M_{th} (threshold for classical BH production)

- Excited string state (“string ball”) \rightarrow thermal
- “Quantum black hole” \rightarrow few emissions

- Classical black hole \rightarrow thermal
- Hawking radiation \rightarrow many emissions
- High p_T for each emission
- Gravity couples democratically
- Leptons in relatively large fraction ($\approx 20\%$)

High multiplicity

High energy particles

Jet p_T

Lepton p_T
Trigger: single **electron** \((E_T > 20 \text{ GeV})\) or single **muon** \((p_T > 18 \text{ GeV})\)

Preselection: \(\geq 1\) isolated lepton \((p_T > 40 \text{ GeV})\) and \(\geq 2\) additional obj. (lepton or jet) \((p_T > 40 \text{ GeV})\)

\[\sum p_T > 300 \text{ GeV} \] (sum over objects w/ \(p_T > 40 \text{ GeV}\))

\[\int L \, dt = 1.04 \text{ fb}^{-1}\]

e channel

μ channel
Black Hole Search: (Control and Signal Regions)

Signal: High p_T leptons and jets (> 100 GeV) High $\sum p_T$ (> 700 GeV)

Backgrounds: $W(\rightarrow \ell \nu)$+jets top QCD multijet (e) $Z(\rightarrow \ell \ell)$+jets

Control regions (CR)
- No overlap with signal (SR)
- Kinematically similar to SR
- Sufficiently large statistics
- Enhance individual bkgd.
- Compare data to MC in CR

$$\sum p_T < 700 \text{ GeV}$$
$$\text{Object } p_T < 40 \text{ GeV}$$
$$\sum p_T > 300 \text{ GeV}$$

single/dilepton (W/Z)

Scale Factor (electron) : $0.93 \pm 0.02 \pm 0.13$
Scale Factor (muon) : $1.05 \pm 0.02 \pm 0.13$

Scale Factor (electron) : $0.93 \pm 0.03 \pm 0.08$
Scale Factor (muon) : $0.85 \pm 0.04 \pm 0.14$
Reference Signal Models:

Black Hole
- $M_D = 0.8 \text{ TeV}$
- $M_{TH} = 4 \text{ TeV}$
- $n = 6$

String Ball
- $M_S = 1 \text{ TeV}$
- $M_D = 1.26 \text{ TeV}$
- $M_{TH} = 3 \text{ TeV}$
- $n = 6$

Signal Regions:

- $\sum p_T > 700 \text{ GeV}$
 - > 800
 - > 900
 - > 1000
 - > 1200
 - > 1500
Black Hole Search: Results (1 fb⁻¹)

Electron Channel

<table>
<thead>
<tr>
<th>$\sum p_T$ (GeV)</th>
<th>QCD</th>
<th>$W+\text{jets}/tt$</th>
<th>$Z+\text{jets}$</th>
<th>Total SM</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 700</td>
<td>137 ± 10 ± 45</td>
<td>371 ± 10 ± 77</td>
<td>119 ± 4 ± 22</td>
<td>627 ± 15 ± 92</td>
<td>586</td>
</tr>
<tr>
<td>> 800</td>
<td>75 ± 7 ± 25</td>
<td>210 ± 6 ± 42</td>
<td>74 ± 4 ± 13</td>
<td>358 ± 10 ± 51</td>
<td>348</td>
</tr>
<tr>
<td>> 900</td>
<td>42 ± 5 ± 14</td>
<td>122 ± 5 ± 28</td>
<td>46.9 ± 2.8 ± 8.6</td>
<td>210 ± 8 ± 33</td>
<td>196</td>
</tr>
<tr>
<td>> 1000</td>
<td>24.6 ± 4.2 ± 8.0</td>
<td>73 ± 3 ± 17</td>
<td>22.2 ± 1.8 ± 4.5</td>
<td>119 ± 5 ± 20</td>
<td>113</td>
</tr>
<tr>
<td>> 1200</td>
<td>8.1 ± 2.5 ± 2.7</td>
<td>28.5 ± 1.8 ± 7.6</td>
<td>9.1 ± 1.0 ± 1.9</td>
<td>45.7 ± 3.2 ± 8.3</td>
<td>41</td>
</tr>
<tr>
<td>> 1500</td>
<td>1.3 ± 1.1 ± 0.4</td>
<td>6.3 ± 0.8 ± 2.5</td>
<td>2.6 ± 0.5 ± 0.5</td>
<td>10.2 ± 1.4 ± 2.6</td>
<td>8</td>
</tr>
</tbody>
</table>

Muon Channel

<table>
<thead>
<tr>
<th>$\sum p_T$ (GeV)</th>
<th>$W+\text{jets}/tt$</th>
<th>$Z+\text{jets}$</th>
<th>Total SM</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 700</td>
<td>236 ± 7 ± 43</td>
<td>49 ± 3 ± 11</td>
<td>285 ± 8 ± 44</td>
<td>241</td>
</tr>
<tr>
<td>> 800</td>
<td>129 ± 4 ± 25</td>
<td>32.0 ± 2.4 ± 7.5</td>
<td>161 ± 5 ± 26</td>
<td>145</td>
</tr>
<tr>
<td>> 900</td>
<td>71 ± 3 ± 16</td>
<td>19.5 ± 1.7 ± 5.0</td>
<td>91 ± 3 ± 16</td>
<td>78</td>
</tr>
<tr>
<td>> 1000</td>
<td>38.9 ± 2.3 ± 8.3</td>
<td>13.1 ± 1.3 ± 3.1</td>
<td>52.0 ± 2.6 ± 8.9</td>
<td>46</td>
</tr>
<tr>
<td>> 1200</td>
<td>9.9 ± 1.2 ± 3.6</td>
<td>4.0 ± 0.6 ± 1.2</td>
<td>14.0 ± 1.3 ± 3.8</td>
<td>15</td>
</tr>
<tr>
<td>> 1500</td>
<td>2.2 ± 0.5 ± 1.1</td>
<td>0.6 ± 0.2 ± 0.4</td>
<td>2.8 ± 0.5 ± 1.1</td>
<td>2</td>
</tr>
</tbody>
</table>

Largest systematics (top/$W+\text{jets}$): Generator, PDF choice, jet energy scale → associated with extrapolation from CR to SR
95% CL upper limit (model independent) cross section * acceptance

\[\text{Exclude } \sigma > 16.7 \text{ fb} \text{ (for } \sum p_T > 1.5 \text{ TeV)} \]

\[n = 6 \]
Quantum Black Holes: Dijets (4.8 fb$^{-1}$)

Trigger: ≥ 1 high p_T jet (some prescaled)

Selection:
- At least two jets
- No jets with $p_T > 0.3^* p_T_{(subleading)}$
- Jet rapidities in regions of uniform acceptance

Background:
- QCD multijets
Quantum Black Holes: Dijets (4.8 fb$^{-1}$)

Trigger: ≥ 1 high p_T jet (some prescaled)

Selection:
- At least two jets
- No jets with $p_T > 0.3 \times p_T$(subleading)
- Jet rapidities in regions of uniform acceptance

Background:
- QCD multijets

<table>
<thead>
<tr>
<th>No. ED (n)</th>
<th>$M_D >$ (TeV) 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>4.1</td>
</tr>
<tr>
<td>6</td>
<td>4.1</td>
</tr>
<tr>
<td>7</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Hidden Valley
Large class of theories have a **hidden sector** (no SM charges) at **low mass scale** → “hidden valley” (HV)

Very weak coupling between HV and SM (not copious)
- Mediator → new gauge symmetry (Z')
 → Higgs
- Large mediator mass (>100 GeV) → SM-HV interactions weak at low energies, but within LHC reach

Content of HV? Example: Strongly-interacting HV quarks
- HV quarks hadronize
- HV hadrons → cascade decay to lightest HV hadron
- Lightest HV hadrons (π_v) → decay to SM particles

Experimental Signature
- **Very displaced vertices** (long-lived π_v)
- High multiplicity of soft particles in the resulting jet
Searching for high-multiplicity vertices within the muon spectrometer

Standalone tracking with 3 layers of muon stations in toroidal magnetic field
Search for $h \rightarrow \pi_{\nu} \pi_{\nu}$ with both π_{ν} decaying within the muon spectrometer ($4 < R < 7m$)

Model Parameters

- $M(h) = 120, 140$ GeV
- $M(\pi_{\nu}) = 20, 40$ GeV
- Lifetime $\pi_{\nu} = 1-20$ m

Production/Decay Characteristics

- Cross section $\sim 12-17$ pb
- ~ 10 low p_T charged hadrons, $\sim 5 \pi^0$
- Two vertices back-to-back

Acceptance v/s decay length

Expected events for 1.94 fb$^{-1}$
Muon RoI Cluster Trig

- > 2 RoI in cone $\Delta R<0.4$
- Isolated wrt leptons and ID tracks
- Barrel only: $|\eta| < 1$

π_ν decay just outside HCAL (MC)
Muon RoI Cluster Trig

- > 2 RoI in cone $\Delta R < 0.4$
- Isolated wrt leptons and ID tracks
- Barrel only: $|\eta| < 1$

Vtx. Eff. v/s r

$r_{\text{true}} = r_{\text{reco}}$
Background: Calculate directly from data, from measurement of probability random event will have an MS vertex (~10^{-8} from zero bias data) and probability to reconstruct event, given there was an RoI trigger (~10^{-2}).

Predicted background: \(N_{\text{fake}} = 0.03 \pm 0.02 \)

Observed events in data (1.94 fb^{-1}) : 0

Set limits on production cross section, as fraction of SM Higgs production cross section, as function of proper lifetime of the \(\pi_v \)

<table>
<thead>
<tr>
<th>(m_{h_0}) (GeV)</th>
<th>(m_{\pi_v}) (GeV)</th>
<th>Excluded Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>20</td>
<td>0.50 < c(\tau) < 20.65 m</td>
</tr>
<tr>
<td>120</td>
<td>40</td>
<td>1.60 < c(\tau) < 24.65 m</td>
</tr>
<tr>
<td>140</td>
<td>20</td>
<td>0.45 < c(\tau) < 15.8 m</td>
</tr>
<tr>
<td>140</td>
<td>40</td>
<td>1.10 < c(\tau) < 26.75 m</td>
</tr>
</tbody>
</table>
The LHC: 2012 and Beyond

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)

<table>
<thead>
<tr>
<th>Process</th>
<th>Mass (GeV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-lep + jets + E_{T,miss}</td>
<td>1.40</td>
<td>ATLAS-CONF-2012-935</td>
</tr>
<tr>
<td>1-lep + jets + E_{T,miss}</td>
<td>1.26</td>
<td>ATLAS-CONF-2012-941</td>
</tr>
<tr>
<td>1-lep + E_{T,miss}</td>
<td>850</td>
<td>ATLAS-CONF-2012-937</td>
</tr>
<tr>
<td>1-lep + jets + E_{T,miss}</td>
<td>1.28</td>
<td>ATLAS-CONF-2012-933</td>
</tr>
<tr>
<td>2-lep + E_{T,miss}</td>
<td>940</td>
<td>ATLAS-CONF-2012-923</td>
</tr>
<tr>
<td>2-lep + E_{T,miss}</td>
<td>910</td>
<td>ATLAS-CONF-2012-924</td>
</tr>
<tr>
<td>3-lep + E_{T,miss}</td>
<td>810</td>
<td>ATLAS-CONF-2012-921</td>
</tr>
<tr>
<td>3-jets + E_{T,miss}</td>
<td>520</td>
<td>ATLAS-CONF-2012-930</td>
</tr>
<tr>
<td>3-jets + E_{T,miss}</td>
<td>590</td>
<td>ATLAS-CONF-2012-932</td>
</tr>
<tr>
<td>4-jets + E_{T,miss}</td>
<td>825</td>
<td>ATLAS-CONF-2012-915</td>
</tr>
<tr>
<td>4-jets + E_{T,miss}</td>
<td>930</td>
<td>ATLAS-CONF-2012-920</td>
</tr>
<tr>
<td>4-jets + E_{T,miss}</td>
<td>710</td>
<td>ATLAS-CONF-2012-925</td>
</tr>
<tr>
<td>4-jets + E_{T,miss}</td>
<td>650</td>
<td>ATLAS-CONF-2012-926</td>
</tr>
<tr>
<td>5-jets + E_{T,miss}</td>
<td>830</td>
<td>ATLAS-CONF-2012-927</td>
</tr>
<tr>
<td>5-jets + E_{T,miss}</td>
<td>390</td>
<td>ATLAS-CONF-2012-913</td>
</tr>
<tr>
<td>6-jets + E_{T,miss}</td>
<td>310</td>
<td>ATLAS-CONF-2012-923</td>
</tr>
<tr>
<td>7-jets + E_{T,miss}</td>
<td>170</td>
<td>ATLAS-CONF-2012-916</td>
</tr>
<tr>
<td>8-jets + E_{T,miss}</td>
<td>310</td>
<td>ATLAS-CONF-2012-927</td>
</tr>
<tr>
<td>9-jets + E_{T,miss}</td>
<td>150</td>
<td>ATLAS-CONF-2012-921</td>
</tr>
<tr>
<td>10-jets + E_{T,miss}</td>
<td>210</td>
<td>ATLAS-CONF-2012-922</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>350</td>
<td>ATLAS-CONF-2012-922</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>350</td>
<td>ATLAS-CONF-2012-932</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>294</td>
<td>ATLAS-CONF-2012-923</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>389</td>
<td>ATLAS-CONF-2012-929</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>816</td>
<td>ATLAS-CONF-2012-930</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-924</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-921</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>294</td>
<td>ATLAS-CONF-2012-922</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>389</td>
<td>ATLAS-CONF-2012-930</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>816</td>
<td>ATLAS-CONF-2012-934</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-935</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>294</td>
<td>ATLAS-CONF-2012-921</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>389</td>
<td>ATLAS-CONF-2012-922</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>816</td>
<td>ATLAS-CONF-2012-920</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-930</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>294</td>
<td>ATLAS-CONF-2012-931</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>389</td>
<td>ATLAS-CONF-2012-923</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>816</td>
<td>ATLAS-CONF-2012-924</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-935</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>294</td>
<td>ATLAS-CONF-2012-921</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>389</td>
<td>ATLAS-CONF-2012-922</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>816</td>
<td>ATLAS-CONF-2012-920</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-930</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>294</td>
<td>ATLAS-CONF-2012-931</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>389</td>
<td>ATLAS-CONF-2012-923</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>816</td>
<td>ATLAS-CONF-2012-924</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-935</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>294</td>
<td>ATLAS-CONF-2012-921</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>389</td>
<td>ATLAS-CONF-2012-922</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>816</td>
<td>ATLAS-CONF-2012-920</td>
</tr>
<tr>
<td>Stable scalar particles (SMP)</td>
<td>502</td>
<td>ATLAS-CONF-2012-930</td>
</tr>
</tbody>
</table>

*Only a selection of the available mass limits on new states or phenomena shown.
The LHC: 2012 and Beyond
The LHC: 2012 and Beyond

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

<table>
<thead>
<tr>
<th>Mass [TeV]</th>
<th>ATLAS Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>M_D ($\delta=2$)</td>
</tr>
<tr>
<td>3.6</td>
<td>M_D (GRW cut-off)</td>
</tr>
<tr>
<td>1.22</td>
<td>Compact scale 1/R (SPS8)</td>
</tr>
<tr>
<td>1.95</td>
<td>Graviton mass</td>
</tr>
<tr>
<td>2.16</td>
<td>Graviton mass</td>
</tr>
<tr>
<td>845 GeV</td>
<td>M_S (KK gluon mass)</td>
</tr>
<tr>
<td>1.03</td>
<td>M_D ($\delta=6$)</td>
</tr>
<tr>
<td>1.27</td>
<td>M_D ($\delta=6$)</td>
</tr>
<tr>
<td>1.15</td>
<td>M_D ($\delta=6$)</td>
</tr>
<tr>
<td>1.5</td>
<td>M_D ($\delta=6$)</td>
</tr>
<tr>
<td>4.11</td>
<td>M_D ($\delta=6$)</td>
</tr>
<tr>
<td>7.6</td>
<td>M_D ($\delta=6$)</td>
</tr>
<tr>
<td>10.2</td>
<td>M_D ($\delta=6$)</td>
</tr>
</tbody>
</table>

*Only a selection of the available mass limits on new states or phenomena shown.
The LHC: 2012 and Beyond

<table>
<thead>
<tr>
<th></th>
<th>2012 performance</th>
<th>Design performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliding bunches</td>
<td>1331</td>
<td>2808</td>
</tr>
<tr>
<td>Energy</td>
<td>4 TeV x 4 TeV</td>
<td>7 TeV x 7 TeV</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>50 ns</td>
<td>25 ns</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$6.8 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$</td>
<td>$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Pile-up interactions</td>
<td>~35</td>
<td>~25</td>
</tr>
</tbody>
</table>

![Colliding bunches diagram](image-url)
The LHC: 2012 and Beyond

<table>
<thead>
<tr>
<th></th>
<th>2012 performance</th>
<th>Design performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliding bunches</td>
<td>1331</td>
<td>2808</td>
</tr>
<tr>
<td>Energy</td>
<td>4 TeV x 4 TeV</td>
<td>7 TeV x 7 TeV</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>50 ns</td>
<td>25 ns</td>
</tr>
<tr>
<td>Luminosity</td>
<td>6.8×10^{33} cm$^{-2}$ s$^{-1}$</td>
<td>10^{34} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Pile-up interactions</td>
<td>~35</td>
<td>~25</td>
</tr>
</tbody>
</table>

ATLAS

CMS

Colliding bunches: 1331 vs. 2808

- Energy: 4 TeV x 4 TeV vs. 7 TeV x 7 TeV
- Bunch spacing: 50 ns vs. 25 ns
- Luminosity: 6.8×10^{33} cm$^{-2}$ s$^{-1}$ vs. 10^{34} cm$^{-2}$ s$^{-1}$
- Pile-up interactions: ~35 vs. ~25

ATLAS Online Luminosity

- $\sqrt{s} = 8$ TeV
- Total Delivered: 1.06 fb$^{-1}$
- Total Recorded: 0.98 fb$^{-1}$

Total Integrated Luminosity [fb$^{-1}$]

- Day in 2012:
 - 26/03
 - 02/04
 - 09/04
 - 16/04
 - 23/04
 - 30/04
 - 07/05

Univ. of Massachusetts
The LHC: 2012 and Beyond

2012 performance vs. Design performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2012 performance</th>
<th>Design performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliding bunches</td>
<td>1331</td>
<td>2808</td>
</tr>
<tr>
<td>Energy</td>
<td>4 TeV x 4 TeV</td>
<td>7 TeV x 7 TeV</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>50 ns</td>
<td>25 ns</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$6.8 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$</td>
<td>$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Pile-up interactions</td>
<td>~35</td>
<td>~25</td>
</tr>
</tbody>
</table>

ATLAS Online Luminosity

- **LHC Delivered**: 1.06 fb\(^{-1}\)
- **ATLAS Recorded**: 0.98 fb\(^{-1}\)

W.J. Stirling, private communication

- ratios of LHC parton luminosities: 8 TeV / 7 TeV, 10 TeV / 7 TeV and 14 TeV / 7 TeV

Graph

- **g\(g\)**
- **\(\Sigma qq\)**

MSTW2008NLO