
Maximal Efficiency of Heat Engine. Carnot Cycle

The Second Law of Thermodynamics. The Gibbs distribution realizes the maximum of entropy
at fixed energy, total number of particles, and volume. This means that the entropy of a closed
system is either constant (if the system is in equilibrium), or increasing (if the system is not in the
equilibrium). The same is true for a non-closed—say, kept at constant pressure,— but an isolated
from heat sources system. Indeed, if there is no heat transfer and we change the system volume (or any
other external parameter) adiabatically, then the entropy remains constant. If we change external
parameters non-adiabatically, then we render the system non-equilibrium, and get the increase of
entropy due to the relaxation processes towards an equilibrium. Hence, no matter what we are doing
with a heat-insulated system, its entropy cannot decrease. This statement is known as The Second
Law of Thermodynamics. If the system is not thermally isolated, but is in equilibrium, then we have
the following thermodynamic relation between a small entropy change, dS, and corresponding heat,
dQ, transferred to the system:

dS = dQ/T . (1)

If the heat dQ has been transferred to the system in a non-equilibrium fashion, then, in accordance
with The Second Law, we have

dS ≥ dQ/T . (2)

For our purposes, it is also useful to specially consider Eq. (2) under the conditions when we remove
some small amount of heat from the system and want to know how large is the corresponding decrease
in entropy. In this case, Eq. (2) yields

|dQ| ≥ T |dS| (dQ, dS < 0) . (3)

That is to remove some amount of entropy from the system we need to also remove some sufficiently
large amount of heat. And it is precisely this circumstance that leads to an upper bound on the
efficiency of the heat engines.

Heat Engine. By heat engine we mean some device that takes heat from some infinitely large heat
reservoir and transforms it into mechanical work. The efficiency of the engine, η, is defined as the
ratio of the amount of work, ∆W , to the corresponding amount of heat, ∆Q:

η =
∆W

∆Q
. (4)

Eq. (3) states that together with the heat ∆Q our engine inevitably gets the entropy

∆S ≥ ∆Q/T , (5)

where T is the temperature of the heat reservoir. Now we need to clarify the statement of our problem.
We assume that the engine uses only the energy of the heat bath and does it for an arbitrarily long
time. This is equivalent to a requirement that the engine works in a cyclic fashion always returning
to some “initial” state. Then, at some stage of the cycle the engine should get rid of the entropy
price paid for getting the heat ∆Q. But, in accordance with (3), getting rid of entropy will cost a
heat price:

∆Q1 ≥ T1∆S , (6)

where T1 is the temperature of another reservoir, absorbing the heat. By energy conservation,

∆W ≤ ∆Q−∆Q1 . (7)
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[The inequality corresponds to possible energy losses.] Hence,

η ≤ ∆Q−∆Q1

∆Q
= 1− ∆Q1

∆Q
, (8)

and taking into account Eqs. (5) and (6) we finally get

η ≤ 1− T1

T
. (9)

So, for the efficiency to be at least non zero we need T1 < T , that is we always need a heat bath with
lower energy than our energy reservoir. We also see that if T − T1 ¿ T , then the efficiency is very
low, while at T1 ¿ T the efficiency is close to 100%.

Carnot Cycle. Given the constraint (9), we wonder what particular scheme, if any, can realize the
maximal efficiency

ηmax = 1− T1

T
. (10)

The simplest scheme is the Carnot cycle. The “engine” is nothing else than any macroscopic equilib-
rium system with a possibility of adiabatically varying its volume. The cycle consists of the following
four steps.

(i) Isothermal expansion. At this stage the system is in a contact with the heat reservoir at the
temperature T . The system expands in a quasi-equilibrium fashion. It simultaneously performs some
work and absorbs some heat. The quasi-equilibrium means that during the process the state of the
system is arbitrarily close to the equilibrium at the temperature T and the given instant volume. The
change of the entropy of the system, ∆S, is thus exactly equal to ∆Q/T .
(ii) Adiabatic expansion. At some point, the system is detached from the heat reservoir, and the
isothermal expansion is replaced by the adiabatic expansion. This stage is necessary to lower the
temperature of the system down to T1, to prepare the system for passing heat to the colder reservoir,
which is important to get rid of the entropy. At the stage of adiabatic expansion the system continues
to perform a work.
(iii) Isothermal compression. At this stage the system is in a contact with the heat reservoir at the
temperature T1, and is being compressed in a quasi-equilibrium fashion. The stage of the isothermal
compression ends when the heat ∆Q1 = T1∆S is transferred to the reservoir. The work performed
at this stage is negative.
(iv) Adiabatic compression. The system is detached from the reservoir T1 and is adiabatically com-
pressed till its temperature becomes equal to T . This is necessary to end up the cycle by returning
the system to its starting position in terms of the original volume and temperature equal to T . The
work performed at this stage is also negative.

All the stages of the Carnot cycle are quasi-equilibrium. This means that the entropy changes are
related by the amounts of heat by exact equalities rather than inequalities. We thus have

∆Q1 = T1 ∆S = (T1/T )∆Q . (11)

We also assume absence of any energy losses:

∆W = ∆Q−∆Q1 . (12)

From (11)-(12) we see that η = ηmax.
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