Green's Function of the Wave Equation

The Fourier transform technique allows one to obtain Green's functions for a spatially homogeneous infinite-space linear PDE's on a quite general basiseven if the Green's function is actually a generalized function. Here we apply this approach to the wave equation.

The wave equation reads (the sound velocity is absorbed in the re-scaled t)

$$
\begin{equation*}
u_{t t}=\Delta u \tag{1}
\end{equation*}
$$

Equation (1) is the second-order differential equation with respect to the time derivative. Correspondingly, now we have two initial conditions:

$$
\begin{gather*}
u(\mathbf{r}, t=0)=u_{0}(\mathbf{r}), \tag{2}\\
u_{t}(\mathbf{r}, t=0)=v_{0}(\mathbf{r}) \tag{3}
\end{gather*}
$$

and have to deal with two Green's functions:

$$
\begin{equation*}
u(\mathbf{r}, t)=\int G^{(0)}\left(\mathbf{r}-\mathbf{r}^{\prime}, t\right) u_{0}\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}+\int G^{(1)}\left(\mathbf{r}-\mathbf{r}^{\prime}, t\right) v_{0}\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime} \tag{4}
\end{equation*}
$$

Both functions satisfy the equation

$$
\begin{equation*}
G_{t t}=\Delta G \tag{5}
\end{equation*}
$$

but with different initial conditions:

$$
\begin{align*}
G^{(0)}(\mathbf{r}, 0) & =\delta(\mathbf{r}), & G_{t}^{(0)}(\mathbf{r}, 0) & =0 \tag{6}\\
G^{(1)}(\mathbf{r}, 0) & =0, & G_{t}^{(1)}(\mathbf{r}, 0) & =\delta(\mathbf{r}) \tag{7}
\end{align*}
$$

Looking for the solution of (5) in the form

$$
\begin{equation*}
G(\mathbf{r}, t)=\int g(\mathbf{k}, t) \mathrm{e}^{i \mathbf{k r}} d \mathbf{k} /(2 \pi)^{d} \tag{8}
\end{equation*}
$$

we get

$$
\begin{equation*}
\ddot{g}=-k^{2} g . \tag{9}
\end{equation*}
$$

That is

$$
\begin{equation*}
g(\mathbf{k}, t)=A(\mathbf{k}) \cos (k t)+B(\mathbf{k}) \sin (k t) \tag{10}
\end{equation*}
$$

where the functions $A(\mathbf{k})$ and $B(\mathbf{k})$ are defined by the initial conditions (6)-(7). Plugging (11) into (6)-(7) and taking into account that the Fourier transform of the δ-function is unity:

$$
\begin{equation*}
\delta(\mathbf{r})=\int \mathrm{e}^{i \mathbf{k r}} d \mathbf{k} /(2 \pi)^{d} \tag{11}
\end{equation*}
$$

we get

$$
\begin{array}{ll}
g^{(0)}(\mathbf{k}, 0)=1, & g_{t}^{(0)}(\mathbf{k}, 0)=0 \\
g^{(1)}(\mathbf{k}, 0)=0, & g_{t}^{(1)}(\mathbf{k}, 0)=1 \tag{13}
\end{array}
$$

and readily find

$$
\begin{gather*}
g^{(0)}(\mathbf{k}, t)=\cos (k t) \tag{14}\\
g^{(1)}(\mathbf{k}, t)=(1 / k) \sin (k t) \tag{15}
\end{gather*}
$$

Comparing Eqs. (14)-(15) one notices that $g^{(0)}(\mathbf{k}, t)=g_{t}^{(1)}(\mathbf{k}, t)$, and thus

$$
\begin{equation*}
G^{(0)}(\mathbf{r}, t)=G_{t}^{(1)}(\mathbf{r}, t) \tag{16}
\end{equation*}
$$

Hence, it is sufficient to evaluate only $G^{(1)}$, and then find $G^{(0)}$ by differentiating $G^{(1)}$ with respect to t.

From (15) we obtain

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\int \frac{\cos (\mathbf{k r}) \sin (k t)}{k} \frac{d \mathbf{k}}{(2 \pi)^{d}}, \tag{17}
\end{equation*}
$$

where we took into account the $\mathbf{k} \rightarrow-\mathbf{k}$ symmetry.
Performing the integral (17) essentially depends on the dimension, and we need to consider separately three different cases: $d=1,2,3$.

1D case.

$$
\begin{equation*}
G^{(1)}(x, t)=\int_{-\infty}^{\infty} \frac{\cos (k x) \sin (k t)}{k} \frac{d k}{2 \pi} . \tag{18}
\end{equation*}
$$

[Note that despite the fact that in (17) the symbol k stands for the absolute value of vector \mathbf{k}, there is no contradiction between (17) and (18) because the integrand of (18) remains the same when $k \rightarrow-k$.]

Using

$$
\begin{equation*}
\sin \alpha \cdot \cos \beta=[\sin (\alpha+\beta)+\sin (\alpha-\beta)] / 2, \tag{19}
\end{equation*}
$$

we rewrite our integral as

$$
\begin{equation*}
G^{(1)}(x, t)=\int_{-\infty}^{\infty} \frac{\sin k(t+x)+\sin k(t-x)}{k} \frac{d k}{4 \pi} \tag{20}
\end{equation*}
$$

and recall that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\sin k y}{k} d k=\pi \operatorname{sgn}(y), \tag{21}
\end{equation*}
$$

where

$$
\operatorname{sgn}(y)=\left\{\begin{align*}
1, & y>0, \tag{22}\\
-1, & y<0, \\
0, & y=0 .
\end{align*}\right.
$$

This yields the final answer:

$$
G^{(1)}(x, t)=[\operatorname{sgn}(t+x)+\operatorname{sgn}(t-x)] / 4=\left\{\begin{align*}
1 / 2, & x \in[-t, t], \tag{23}\\
0, & x \notin[-t, t] .
\end{align*}\right.
$$

2D case. In polar coordinates:

$$
\begin{equation*}
\mathbf{k}=(k \cos \varphi, k \sin \varphi), \quad d \mathbf{k}=k d k d \varphi, \tag{24}
\end{equation*}
$$

with φ being the angle between \mathbf{k} and \mathbf{r}, we have

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} d \varphi \int_{0}^{\infty} \cos [k r \cos \varphi] \cdot \sin (k t) d k \tag{25}
\end{equation*}
$$

First, we integrate over k. Once again we use (19) and see that we need to perform

$$
\begin{equation*}
I(y)=\int_{0}^{\infty} \sin (k y) d k \tag{26}
\end{equation*}
$$

in terms of which we then would have

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{8 \pi^{2}} \int_{0}^{2 \pi}[I(t-r \cos \varphi)+I(t+r \cos \varphi)] d \varphi \tag{27}
\end{equation*}
$$

or simply

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} I(t+r \cos \varphi) d \varphi, \tag{28}
\end{equation*}
$$

because of the symmetry of the cosine function: $\cos (\varphi+\pi)=-\cos \varphi$.
However, the integral (26) is divergent and we should introduce a regularization. With an infinitesimally small positive ε we can write

$$
\begin{equation*}
I(y)=\operatorname{Im} \int_{0}^{\infty} \mathrm{e}^{(i y-\varepsilon) k} d k=\operatorname{Re} \frac{1}{y+i \varepsilon} . \tag{29}
\end{equation*}
$$

It is too early here to take the limit of $\varepsilon \rightarrow 0$: The integral over φ also needs a regularization which is easily done by just keeping the term $i \varepsilon$ in $I(y)$ while doing the integral (28). We thus have

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{4 \pi^{2}} \operatorname{Re} \int_{0}^{2 \pi} \frac{d \varphi}{t+r \cos \varphi+i \varepsilon} . \tag{30}
\end{equation*}
$$

By a standard trick,

$$
\begin{equation*}
z=\mathrm{e}^{i \varphi} \quad \Rightarrow \quad d \varphi=-i d z / z, \quad \cos \varphi=(z+1 / z) / 2 \tag{31}
\end{equation*}
$$

this integral is reduced to a contour integral along a unity-radius origincentered circle in a complex plane:

$$
\begin{equation*}
I_{2}=\int_{0}^{2 \pi} \frac{d \varphi}{t+r \cos \varphi+i \varepsilon}=-2 i \oint \frac{d z}{r z^{2}+2(t+i \varepsilon) z+r} . \tag{32}
\end{equation*}
$$

Doing the complex integral by residues, we get

$$
\begin{equation*}
I_{2}=\frac{2 \pi}{\sqrt{(t+i \varepsilon)^{2}-r^{2}}} \tag{33}
\end{equation*}
$$

Finally, taking the real part of this integral in the limit of $\epsilon \rightarrow 0$, we obtain

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{2 \pi} \frac{\theta(t-r)}{\sqrt{t^{2}-r^{2}}} \tag{34}
\end{equation*}
$$

where

$$
\theta(x)= \begin{cases}1, & x \geq 0, \tag{35}\\ 0, & x<0 .\end{cases}
$$

3D case. In spherical coordinates,

$$
\begin{equation*}
\mathbf{k}=(k \sin \theta \cos \varphi, k \sin \theta \sin \varphi, k \cos \theta), \quad d \mathbf{k}=-k^{2} d k d \varphi d(\cos \theta), \tag{36}
\end{equation*}
$$

with the z-axis along the \mathbf{r} vector, the integrals over φ and θ are readily done, since the integrand is φ-independent, and the only place where the θ-dependence comes from is $\mathbf{k r}=k r \cos \theta$. The result is

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{2 \pi^{2} r} \int_{0}^{\infty} \sin (k r) \sin (k t) d k . \tag{37}
\end{equation*}
$$

Recalling that

$$
\begin{equation*}
\sin \alpha \cdot \sin \beta=[\cos (\alpha-\beta)-\cos (\alpha+\beta)] / 2, \tag{38}
\end{equation*}
$$

we write it as

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{4 \pi^{2} r} \int_{0}^{\infty}[\cos k(r-t)-\cos k(r+t)] d k \tag{39}
\end{equation*}
$$

and see that we need to do the integral

$$
\begin{equation*}
I_{3}(y)=\int_{0}^{\infty} \cos (k y) d k \tag{40}
\end{equation*}
$$

This integral is similar to $I(y)$. It is also divergent and is regularized and calculated the same way:

$$
\begin{equation*}
I_{3}(y)=\operatorname{Re} \int_{0}^{\infty} \mathrm{e}^{(i y-\varepsilon) k} d k=\operatorname{Re} \frac{i}{y+i \varepsilon}=\frac{\varepsilon}{y^{2}+\varepsilon^{2}}=\pi \delta(y) . \tag{41}
\end{equation*}
$$

We thus have

$$
\begin{equation*}
G^{(1)}(\mathbf{r}, t)=\frac{1}{4 \pi r} \delta(t-r) . \tag{42}
\end{equation*}
$$

Constructing the solution

The function $G^{(0)}=G_{t}^{(1)}$ turns out to be a generalized function in any dimensions (note that in 2D the integral with $G^{(0)}$ is divergent). And in 3D even the function $G^{(1)}$ is a generalized function. So we have to establish the final form of the solution free of the generalized functions. In principle, it is sufficient to take care of the function $G^{(1)}$ only, since in view of the relation $G^{(0)}=G_{t}^{(1)}$ we can always write

$$
\begin{equation*}
|u(t)\rangle=\hat{G}^{(1)}(t)\left|v_{0}\right\rangle+\frac{\partial}{\partial t} \hat{G}^{(1)}(t)\left|u_{0}\right\rangle . \tag{43}
\end{equation*}
$$

That is we act on the function u_{0} with the same operator $\hat{G}^{(1)}(t)$ producing thus some smooth-by the nature of the operator $\hat{G}^{(1)}(t)$-time-dependent function, and then differentiate this function with respect to t. As we will see, it is also possible to express the operator $\hat{G}^{(0)}(t)$ without resorting to the time-differentiation. However, in 2D and 3D this will lead to a spatial derivative of the function u_{0}.

1D case. Writing Eq. (43) with $G^{(1)}$ of Eq. (23), we have

$$
\begin{equation*}
u(x, t)=(1 / 2) \int_{x-t}^{x+t} v_{0}\left(x_{0}\right) d x_{0}+(1 / 2) \frac{\partial}{\partial t} \int_{x-t}^{x+t} u_{0}\left(x_{0}\right) d x_{0} \tag{44}
\end{equation*}
$$

The differentiating in the second term can be done explicitly, so that finally we get

$$
\begin{equation*}
u(x, t)=(1 / 2)\left[u_{0}(x+t)+u_{0}(x-t)\right]+(1 / 2) \int_{x-t}^{x+t} v_{0}\left(x_{0}\right) d x_{0} \tag{45}
\end{equation*}
$$

3D case. Here it is convenient to introduce a shifted variable for integration, $\mathbf{r}_{1}=\mathbf{r}_{0}-\mathbf{r}$, and to take into account that $G^{(1)}\left(-\mathbf{r}_{1}\right) \equiv G^{(1)}\left(r_{1}\right)$:

$$
\begin{equation*}
\int G^{(1)}\left(\mathbf{r}-\mathbf{r}_{0}\right) v_{0}\left(\mathbf{r}_{0}\right) d \mathbf{r}_{0}=\int G^{(1)}\left(r_{1}\right) v_{0}\left(\mathbf{r}_{1}+\mathbf{r}\right) d \mathbf{r}_{1} \tag{46}
\end{equation*}
$$

We see that without loss of generality we may set $\mathbf{r}=0$, since the solution at any finite \mathbf{r} is obtained by just translating the initial conditions by the vector \mathbf{r}. Writing the integrals with the Green's function (42) in the spherical coordinates (and omitting the subscript 1), we get

$$
\begin{align*}
u(\mathbf{r}=0, t) & =\frac{t}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta v_{0}(r=t, \varphi, \theta)+ \\
& +\frac{\partial}{\partial t} \frac{t}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta u_{0}(r=t, \varphi, \theta) \tag{47}
\end{align*}
$$

Differentiating with respect to time in the second term, we get

$$
\begin{array}{r}
u(\mathbf{r}=0, t)=\frac{t}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta v_{0}(r=t, \varphi, \theta)+ \\
+\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta\left[u_{0}(r=t, \varphi, \theta)+t \frac{\partial u_{0}}{\partial r}(r=t, \varphi, \theta)\right] \tag{48}
\end{array}
$$

The meaning of the angular integrals is the averaging over the solid angle:

$$
\begin{equation*}
\langle\ldots\rangle=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta(\ldots) \tag{49}
\end{equation*}
$$

Correspondingly, our final result can be written as

$$
\begin{equation*}
u(\mathbf{r}=0, t)=\left.t\left\langle v_{0}\right\rangle\right|_{r=t}+\left.\left\langle u_{0}\right\rangle\right|_{r=t}+\left.t\left\langle\frac{\partial u_{0}}{\partial r}\right\rangle\right|_{r=t} \tag{50}
\end{equation*}
$$

2D case. In two dimensions the function $G^{(1)}(34)$ is a regular function so that we can simply write

$$
\begin{align*}
& u(\mathbf{r}, t)= \frac{1}{2 \pi} \int_{\left|\mathbf{r}-\mathbf{r}_{0}\right| \leq t} \frac{v_{0}\left(\mathbf{r}_{0}\right) d \mathbf{r}_{0}}{\sqrt{t^{2}-\left|\mathbf{r}-\mathbf{r}_{0}\right|^{2}}}+ \\
& \quad+\frac{1}{2 \pi} \frac{\partial}{\partial t} \int_{\left|\mathbf{r}-\mathbf{r}_{0}\right| \leq t} \frac{u_{0}\left(\mathbf{r}_{0}\right) d \mathbf{r}_{0}}{\sqrt{t^{2}-\left|\mathbf{r}-\mathbf{r}_{0}\right|^{2}}} \tag{51}
\end{align*}
$$

However, if we want to eliminate the time-derivative in the second term by differentiating under the sign of the integral, we face a problem: The integral becomes divergent. This means that if we differentiate under the sign of the integral, we get a generalized function and need to properly process it. The trick is to replace the time-derivative with a spatial derivative. To this end it is convenient to write the Green's function in such a way that its selfsimilarity is explicitly seen, and then take advantage of the self-similarity in relating the temporal and spatial derivatives. As is seen, for example, from the dimensional analysis of the wave equation, a proper dimensionless variable is $\xi=t / r$. Correspondingly, we rewrite Eq. (34) in the self-similar form as

$$
\begin{equation*}
G^{(1)}(r, t)=\frac{1}{2 \pi r} Q(\xi) \tag{52}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(\xi)=\frac{\tilde{\theta}(\xi)}{\sqrt{\xi^{2}-1}} \tag{53}
\end{equation*}
$$

and

$$
\tilde{\theta}(\xi)= \begin{cases}1, & \xi \geq 1 \tag{54}\\ 0, & \xi<1\end{cases}
$$

Now we have

$$
\begin{equation*}
\frac{\partial G^{(1)}}{\partial t}=\frac{1}{2 \pi r} Q^{\prime}(\xi) \frac{\partial \xi}{\partial t}=\frac{1}{2 \pi r^{2}} Q^{\prime}(\xi) \tag{55}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\frac{\partial Q}{\partial r}=Q^{\prime}(\xi) \frac{\partial \xi}{\partial r}=-\frac{t}{r^{2}} Q^{\prime}(\xi) \tag{56}
\end{equation*}
$$

That is

$$
\begin{equation*}
Q^{\prime}(\xi)=-\frac{r^{2}}{t} \frac{\partial Q}{\partial r} \tag{57}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\frac{\partial G^{(1)}}{\partial t}=-\frac{1}{2 \pi t} \frac{\partial Q}{\partial r}=-\frac{1}{2 \pi t} \frac{\partial}{\partial r} \frac{\tilde{\theta}(t / r)}{\sqrt{(t / r)^{2}-1}} \tag{58}
\end{equation*}
$$

This is a generalized function. To arrive at an ordinary function, we just need to do the integral by parts. Using the representation (46) and setting without loss of generality $\mathbf{r}=0$, in polar coordinates we have

$$
\begin{align*}
& u(\mathbf{r}, t)=\int_{0}^{\infty} d r \frac{\theta(t-r) r}{\sqrt{t^{2}-r^{2}}} \int_{0}^{2 \pi} \frac{d \varphi}{2 \pi} v_{0}- \\
& -\int_{0}^{2 \pi} \frac{d \varphi}{2 \pi t} \int_{0}^{\infty} d r r u_{0} \frac{\partial}{\partial r} \frac{\tilde{\theta}(t / r)}{\sqrt{(t / r)^{2}-1}} \tag{59}
\end{align*}
$$

Doing the integral in the second term by parts,

$$
\begin{equation*}
\int_{0}^{\infty} d r r u_{0} \frac{\partial}{\partial r} \frac{\tilde{\theta}(t / r)}{\sqrt{(t / r)^{2}-1}}=-\int_{0}^{\infty} d r \frac{\tilde{\theta}(t / r)}{\sqrt{(t / r)^{2}-1}}\left(r \frac{\partial u_{0}}{\partial r}+u_{0}\right) \tag{60}
\end{equation*}
$$

we arrive at a regular integral. Taking into account that the θ-functions just fix the upper limit of integration over r, we finally get

$$
\begin{equation*}
u(\mathbf{r}, t)=\int_{0}^{t} \frac{d r}{\sqrt{(t / r)^{2}-1}} \int_{0}^{2 \pi} \frac{d \varphi}{2 \pi}\left(v_{0}+\frac{r}{t} \frac{\partial u_{0}}{\partial r}+\frac{u_{0}}{t}\right) . \tag{61}
\end{equation*}
$$

