
Linear Response

Suppose we have an equilibrium macroscopic system (no matter, quan-
tum or classical) and a weak time-dependent perturbation of the form

V (t) = −xf(t) , (1)

where V is the perturbation potential energy, x is one of generalized coordi-
nates of the system, and f is a time-dependent generalized force. If V ≡ 0,
then the system is in equilibrium and x̄(t) ≡ 0, where x̄ is the coordinate x
averaged over corresponding equilibrium ensemble of states. The question
now is what is the generic form of x̄(t), provided f(t) 6= 0, but arbitrarily
small. The smallness of |f | implies the linearity of the response as a func-
tional of f . The causality requires that the response at time t comes from
times t1 ≤ t. The most general form of a functional satisfying the linearity
and causality constraints is

x̄(t) =
∫ t

−∞
α(t, t1)f(t1) dt1 , (2)

where α is some f -independent function. Finally, the time-translation in-
variance (independence of the unperturbed Hamiltonian on time) requires

α(t, t1) ≡ α(t− t1) , (3)

and thus

x̄(t) =
∫ t

−∞
α(t− t1)f(t1) dt1 ≡

∫ ∞

0
α(τ)f(t− τ) dτ . (4)

Hence, the response of the system to a weak force f is totally described by
a function α(τ) defined in the region τ ≥ 0. In what follows, we confine
ourselves with the case when the static response—time-independent f—is
well defined. This implies convergence of the integral

∫ ∞

0
α(τ) dτ . (5)

Now comes a very practical question: What is the easiest way to mea-
sure α(τ) experimentally? It is amazing that to answer this most practical
question a deep theoretical complex-number analysis is crucial. To this end,
consider a response of the system to a harmonic perturbation

f(t) = f0 cos(ωt) ≡ (f0/2)
[
eiωt + e−iωt

]
. (6)
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The representation of cosine in terms of two complex exponentials is very
helpful since after plugging it into (4) the variables t and τ factorize, and
we get

x̄(t) = (f0/2)
[
α∗ωeiωt + αωe−iωt

]
≡ f0|αω| cos(ωt− ϕω) , (7)

where
αω =

∫ ∞

0
α(τ) eiωτ dτ , (8)

which implies—because α(τ) is real—

α−ω = α∗ω . (9)

The phase shift ϕω comes from the phase of αω:

αω ≡ |αω| eiϕω . (10)

From (7) we see that (i) the response is harmonic and (ii) by measuring the
amplitude and phase shift of the response we get αω by Eq. (10). The theory
of Fourier transforms—we will cover it later on in this course—says that if
αω is defined by (8) then it contains a complete information about α(τ) at
τ ≥ 0, and, moreover, the latter can be restored by doing the integral

α(τ) =
∫ ∞

−∞
αω e−iωτ dω/2π . (11)

Hence, by measuring the amplitude and phase shift of a harmonic response
for all frequencies we can find α(τ).

It turns out, however, that we can do an easier job by measuring just the
energy absorption rate as a function of frequency of harmonic perturbation.
This surprising fact relies on the Kramers-Kronig dispersion relations.

Consider the (averaged over a period of oscillation 2π/ω) amount of
energy absorbed by the system per unit time, which is known to be given
by the following formula

Ω = −(ω/2π)
∫ 2π/ω

0
x̄(t) ḟ(t) dt . (12)

In Quantum Mechanics, this relation is derived as follows.

dE

dt
=

d

dt
〈ψ(t)|H(t)|ψ(t)〉 =

〈
ψ̇|H|ψ

〉
+

〈
ψ|Ḣ|ψ

〉
+

〈
ψ|H|ψ̇

〉

= i
〈
ψ̇|ψ̇

〉
+

〈
ψ|Ḣ|ψ

〉
− i

〈
ψ̇|ψ̇

〉
=

〈
ψ|Ḣ|ψ

〉
= −ḟ 〈ψ|x|ψ〉 ≡ −ḟ x̄ . (13)
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Here H is the total Hamiltonian of the system, including the perturbation; its time
dependence is totally due to f(t). Then we just need to average this expression
over a period of oscillation.

We have

Ω = −(f2
0 ω/8π)

∫ 2π/ω

0

[
α∗ωeiωt + αωe−iωt

] [
iωeiωt − iωe−iωt

]
dt . (14)

Doing the integral kills the oscillating terms and we end up with the very
important result

Ω = (f2
0 ω/2) Im αω . (15)

The energy absorption rate is quadratic in the amplitude of perturbation
and is proportional to the imaginary part of αω. That is to find Imαω we
just need to measure Ω:

Im αω =
2Ω
f2
0 ω

. (16)

The real part of α can be found then by Kramers-Kronig relation. Indeed,
the convergence of the integral (5) guaranties the convergence of the integral
(8) for any complex ω, provided Imω ≥ 0. Hence, αω has no singularities
in the upper half-plane of complex ω, including the real axis. This justifies
the applicability of the dispersion relations.

Introducing short-hand notation

α′ω = Reαω , α′′ω = Im αω , (17)

we have

α′ω0
=

1
π

P
∫ ∞

−∞
α′′ω

ω − ω0
dω . (18)

We can also exclude negative frequencies by noting that from (9) it follows
that

α′−ω = α′ω , α′′−ω = −α′′ω , (19)

and thus

α′ω0
=

2
π

P
∫ ∞

0

ωα′′ω
ω2 − ω2

0

dω . (20)

Summarizing, the procedure of experimentally obtaining the linear response
function α(τ) is as follows.
(i) Find α′′ω by measuring the energy absorption rate, Eq. (16).
(ii) Find α′ω from Kramers-Kronig relation (20).
(iii) Find α(τ) by doing the integral (11), which in view of (19) reduces to

α(τ) = (1/π)
∫ ∞

0
[α′ω cosωτ + α′′ω sinωτ ] dω . (21)
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