
Green’s Functions

Green’s Function of the Sturm-Liouville Equation

Consider the problem of finding a function u = u(x), x ∈ [a, b], satisfying
canonical boundary conditions at the points a and b, and the equation

Lu(x) = f(x) , (1)

where
L =

1
w(x)

[
d

dx
p(x)

d

dx
− q(x)

]
(2)

is the Sturm-Liouville operator. As we have found previously, the solution
of this problem, if exists, can be found in the form of the Fourier series in
terms of the eigenfunctions of the operator L:

u(x) =
∑
m

umem(x) , (3)

Lem(x) = λmem(x) , (4)

where each Fourier coefficient um satisfies the equation

λmum = 〈em|f〉 ≡
∫ b

a
e∗m(x)f(x)w(x) dx . (5)

The solution for (5) exists in the following two cases. (i) When λm 6= 0 ∀m.
(ii) When there exist zero λ’s, but 〈em|f〉 = 0 ∀λm = 0.

From now on we will be dealing only with the case (i), when there is no
restriction on the form of f(x). Eq. (5) implies

um = λ−1
m

∫ b

a
e∗m(x)f(x)w(x) dx . (6)

If we plug (5) into (3) and interchange the orders of summation and inte-
gration, we arrive at an interesting observation. The solution comes in a
simple form of the integral

u(x) =
∫ b

a
G(x, x0)w(x0)f(x0) dx0 , (7)

where G(x, x0) is a certain f -independent function:

G(x, x0) =
∑
m

λ−1
m em(x) e∗m(x0) . (8)
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This function is called Green’s function.
Once we realize that such a function exists, we would like to find it

explicitly—without summing up the series (8). The idea is to directly for-
mulate the problem for G(x, x0), by excluding the arbitrary function f(x).
First, from (8) we note that as a function of variable x, the Green’s function
satisfies the same canonical boundary conditions as the functions u(x) and
all em(x)’s. [Because the canonical boundary conditions feature the vector
property—they are satisfied by any linear combination of functions satisfy-
ing them individually.] Given the boundary conditions, we want to find a
differential equation for G(x, x0). To this end we act with the operator L
on both sides of (7) and interchange the orders of L and integration. With
(1) taken into account, we get

∫ b

a
L̃G(x, x0)f̃(x0) dx0 = f̃(x) , (9)

where
L̃ =

d

dx
p(x)

d

dx
− q(x) (10)

and
f̃(x) = f(x) w(x) . (11)

Now we see that actually it was illegal to interchange the orders: According
to (9), the function L̃G(x, x0) is nothing else than the δ-function δ(x− x0),
which is a generalized rather than a regular function. Here we do not see
a special reason for working with generalized functions, and make one step
back. The δ-function arises when one differentiates (inside an integral) a
stepwise function. Hence, we understand—or at least suspect—that the
function G(x, x0) has a discontinuous partial derivative at x = x0. This
means that we need to be more careful with the differentiation.—Prior to
interchange the orders with respect to the second differentiation, we have to
split the integral into two parts:

∫ b

a
p(x)Gx(x, x0)f̃(x0)dx0 =

=
∫ x−0

a
p(x)Gx(x, x0)f̃(x0)dx0 +

∫ b

x+0
p(x)Gx(x, x0)f̃(x0)dx0 . (12)

Now each function is differentiable, since the point x = x0 is excluded. We
thus have

d

dx

∫ b

a
p(x)Gx(x, x0)f̃(x0)dx0 =

2



=
d

dx

∫ x−0

a
p(x)Gx(x, x0)f̃(x0)dx0 +

d

dx

∫ b

x+0
p(x)Gx(x, x0)f̃(x0)dx0 =

= p(x)Gx(x, x− 0)f̃(x) +
∫ x−0

a

d

dx
p(x)Gx(x, x0)f̃(x0)dx0 −

−p(x)Gx(x, x + 0)f̃(x) +
∫ b

x+0

d

dx
p(x)Gx(x, x0)f̃(x0)dx0 .

Then, the correct version of (9) reads

p(x) [Gx(x, x− 0)−Gx(x, x + 0)] f̃(x) +

+
∫ x−0

a
L̃G(x, x0)f̃(x0)dx0 +

∫ b

x+0
L̃G(x, x0)f̃(x0)dx0 = f̃(x) . (13)

Clearly, Eq. (13) is satisfied if

L̃G(x, x0) = 0 (x 6= x0) (14)

and
p(x) [Gx(x, x− 0)−Gx(x, x + 0)] = 1 . (15)

Hence, to find G(x, x0) we need to solve Eq. (14) with the given canonical
boundary conditions at the points a and b, and with the additional condition
(15) at the point x = x0, where the partial derivative experiences a jump.
The function itself does not have any jump at x = x0. This leads to one
more condition:

G(x, x− 0) = G(x, x + 0) . (16)

The problem (14)-(16) with the canonical boundary conditions is solved
as follows. We look for the solution of the form

G(x, x0) =

{
A(x0)U(x) , x < x0 ,
B(x0)V (x) , x > x0 ,

(17)

where
L̃U(x) = 0 , L̃V (x) = 0 (18)

and U(x) satisfies the boundary condition at the point a, while V (x) satisfies
the boundary condition at the point b. With this form, Eq. (14) and the
boundary conditions at the points a and b are satisfied, and we have to find
the functions A(x0) and B(x0) from the conditions (15)-(16):

p(x) [B(x) V ′(x)−A(x) U ′(x)] = 1 , (19)

A(x) U(x) = B(x) V (x) . (20)
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Solving the system (19)-(20), we find

A(x) = C(x) V (x) , B(x) = C(x) U(x) , (21)

where
C(x) =

1
p(x) [U(x) V ′(x)− V (x) U ′(x)]

. (22)

Actually, C is just a constant. To make sure this is the case, we calculate
[1/C(x)]′ with Eq. (18) taken into account:

d

dx
p

d

dx
U = qU ,

d

dx
p

d

dx
V = qV . (23)

We have

[1/C(x)]′ =
d

dx
p [U V ′ − V U ′] =

= pU ′ V ′ + U
d

dx
p

d

dx
V − p V ′ U ′ − V

d

dx
p

d

dx
U = qUV − qV U = 0 .

The final answer reads

G(x, x0) =

{
C V (x0) U(x) , x < x0 ,
C U(x0) V (x) , x > x0 .

(24)

The meaning of the constant C is quite transparent. The canonical boundary
conditions fix the form of the functions U and V only up to some normal-
ization factors. The constant C eliminates this arbitrariness.

Problem 33. Consider the problem

u′′(x)− γ2u(x) = f(x) , x ∈ [0, 1] , (25)

u(0) = 0 , u′(1) = 0 , (26)

f(x) is a given function, γ is a real—positive, without loss of generality—number.

(a) Construct the Green’s function for this problem.
(b) With the Green’s function constructed, find the solution for f(x) = x. Make
sure that your solution is correct by explicitly checking that it satisfies (25)-(26).
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Green’s Function of a Time-Dependent Linear PDE

Consider a one-dimensional heat (or Schrödinger, if γ = −i) equation

γut = uxx , (27)

where u = u(x, t), x ∈ (−∞,∞). We want to find u(x, t) for a given initial
condition

u(x, t = 0) = q(x) . (28)

Suppose for a while, that x ∈ [−a/2, a/2] and at x = ±a/2 we have some
canonical boundary conditions. Later on we will take the limit of a → ∞
and the particular form of boundary conditions will not be important. The
problem has a form of the differential equation in a Hilbert space:

(d/dt)|u(t)〉 = L|u(t)〉 , (29)

where L = ∇2 is a self-adjoint operator. We have already considered this
problem and have demonstrated that the solution of (29) can be written as a
Fourier series over the orthonormal basis of the eigenvectors of the operator
L:

|u(t)〉 =
∑
m

umeλmt/γ |em〉 , (30)

L|em〉 = λm|em〉 , (31)

um = 〈em|q〉 . (32)

Translating into the language of functions, where the inner product is un-
derstood as an integral, we see that

u(x, t) =
∫

G(x, x0, t) q(x0) dx0 , (33)

where
G(x, x0, t) =

∑
m

eλmt/γ em(x)e∗m(x0) . (34)

The function G is called Green’s function. Green’s function allows one to
obtain u(x, t) from u(x, 0) by a simple procedure of doing an integral.

A note is in order here. When obtaining (33) we interchanged the orders
of integration and summation which might be not legitimate within the
set of ordinary functions. This means that in certain cases G should be
understood as a generalized function, which is even better from the practical
viewpoint.—The integrals with the generalized functions are easily done!
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How can we find G explicitly? And why do we expect G to exist in
the limit of a → ∞? We start from the second question. Physically we
understand that if a is large enough and our u(x, t) is well-behaved in the
sense that it is practically zero already at |x| ¿ a, then the evolution of u
should be independent of a, which implies that if a →∞, then G approaches
some a-independent limit, corresponding to the case x ∈ (−∞,∞).

To find G, we act with the operator Ô = γ∂/∂t− ∂2/∂x2 on both sides
of Eq. (33) to obtain

∫
ÔG(x, x0, t) q(x0) dx0 = 0 . (35)

Since (35) is supposed to be valid for any function q(x0), we conclude that

ÔG(x, x0, t) = 0 . (36)

Considering Eq. (33) in the limit of t → 0 we see that for any function q(x)

lim
t→0

∫
G(x, x0, t) q(x0) dx0 = q(x) . (37)

From Eq. (37) it is seen that the function G(x, x0, t) becomes singular—
infinitely sharp, but infinitely narrow peak—in the limit of t → 0. Actually,
Eq. (37) is nothing else than the definition of the δ-function, so that one can
write

G(x, x0, 0) = δ(x− x0) . (38)

In this section, however, we are not going to work with the generalized
functions and for the present purposes the limiting relation (37) is quite
sufficient.

Now we take into account that in the limit a → ∞ the problem be-
comes translation invariant: If u(x, t) is a solution of our problem, then the
shifted function, u(x− x∗, t), where x∗ is a constant, is also a solution that
corresponds to a shifted by x∗ initial condition, q(x) → g(x − x∗). To be
consistent with translational invariance, the form of the Green’s function
should be the following:

G(x, x0, t) ≡ G(x− x0, t). (39)

That is instead of three independent variables we have just two. In view of
Eq. (39), the relation (37) can be re-written as

lim
t→0

∫
G(x̃, t) q(x− x̃) dx̃ = q(x) , ∀ q(x) , (40)
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and then, introducing q̃(x̃) = q(x− x̃) and ultimately replacing x̃ with x:

lim
t→0

∫
G(x, t) q̃(x) dx = q̃(0) , ∀ q̃(x) . (41)

Hence, to obtain the function G(x, t) we need to find the solution of the
equation

γGt = Gxx (42)

that satisfies the initial condition (41). Below we will do it by revealing and
utilizing the self-similarity of G(x, t).

A physicist’s approach to self-similarity of G(x, t)

Looking at the equations (42) and (41), a physicist immediately notices that
while the function G(x, t) depends on two dimensional variables, x and t,
there is only one dimensional constant in the problem—the parameter γ
which dimensionality is time over distance squared. This means that the
only possible dimensionless combination of x and t is

ξ = γx2/t . (43)

Then, as it is clearly seen from (41), the dimensionality of G is the inverse
distance. From this analysis of dimensions we conclude that the Green’s
function should have the form

G(x, t) =
√

γ

t
g(γx2/t) , (44)

where g is a certain dimensionless function. It is easy to see that this form
is consistent with (41). Moreover, plugging (44) into (41), changing the
variable of integration from x to the dimensionless variable y =

√
ξ, and

choosing q̃ ≡ 1, we find the normalization condition
∫

g(y2) dy = 1 . (45)

Eq. (44) means that the function G(x, t) is self-similar in the sense that
at different time moments the spatial profile of G remains the same up to
re-scaling the coordinate units and the units of G.

Eq. (44) radically simplifies the problem of obtaining G by reducing PDE
(42) to an ordinary differential equation. Prior to resorting to this equation,
we introduce an alternative, purely formal, way of arriving at Eq. (44).
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Scale invariance and self-similarity of G

Let u(x, t) be a solution of the equation (27). Consider the scaling transfor-
mation

u(x, t) → ũ(x, t) = λu(λαx, λβt) , (46)

where λ, α, and β are real numbers. By a direct check we make sure that

γũt = λβ−2α ũxx , (47)

which means that with β = 2α, the function ũ(x, t) satisfies Eq. (27). We
thus arrive at the similarity transformation

u(x, t) → ũ(x, t) = λu(λαx, λ2αt) , (48)

which, given a solution u(x, t), produces a continuum of other, similar, so-
lutions. The property of an equation of having similar solutions is called
scale invariance, because it is associated with the absence of a priory scales
for the variables.

In Eq. (48), λ and λα are actually two independent parameters. It is
just a matter of convenience—see below—to write them in such a form.

In accordance with the above-established scale invariance of the equation
(42), the function

G̃(x, t) = λG(λαx, λ2αt) (49)

also satisfies Eq. (42). But what about the relation (41)? Introducing in
Eq. (41) new variables, x′ and y′, by

x = λαx′ , t = λ2αt′ , (50)

we rewrite (41) as

lim
t′→0

∫
G(λαx′, λ2αt′) q̃(λαx′) dx′ = λ−α q̃(0) , ∀ q̃(λαx′) . (51)

In terms of the function G̃(x, t) this reads (below we introduce a new func-
tion, ˜̃q(x′) = q̃(λαx′), and omit primes)

lim
t→0

∫
G̃(x, t) ˜̃q(x) dx = λ1−α ˜̃q(0) , ∀ ˜̃q(x) . (52)

Comparing (52) with (41), we make a remarkable observation that at α = 1,
the function G̃ satisfies both the equation (42) and the condition (41), which

8



means that it is nothing else than the function G. Hence, we have established
the self-similarity of the function G:

λG(λx, λ2t) ≡ G(x, t) . (53)

Now we need to make sure that this formal definition of self-similarity is
equivalent to what have been established previously by the physicist’s ar-
gument. Without loss of generality, we may introduce the new variable
ξ = γx2/t instead of x and write G(x, t) ≡ f(ξ, t). With the new variable,
Eq. (53) reads

λf(ξ, λ2t) ≡ f(ξ, t) . (54)

Lemma. If a function f(t) satisfies the relation (∀λ and a certain α)

λf(λαt) ≡ f(t) , (55)

then
f(t) ∝ t−1/α . (56)

Proof. Differentiate (55) with respect to λ and set λ = 1. Solve the resulting
first-order differential equation.

With this lemma and (54) we have

f(ξ, t) ∝ g(ξ)√
t

, (57)

where g(ξ) is some function of ξ. That is we have established Eq. (44) by
purely mathematical tools.

Solving for g(ξ)

Substituting g(γx2/t)/
√

t for G in (42), we get
(

1
2

+ ξ
d
dξ

) [
4g′(ξ) + g(ξ)

]
= 0 . (58)

This is a second-order ordinary differential equation. Its general solution
contains two free constants to be fixed by the two conditions: (i) g(ξ) should
remain at least finite at ξ → +∞ and (ii) it should satisfy (45).

Eq. (58) can be solved as follows. First, one finds a solution of the
supplementary first-order equation

(
1
2

+ ξ
d
dξ

)
χ(ξ) = 0 , (59)
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and then finds g(ξ) from another first-order equation,

4g′(ξ) + g(ξ) = χ(ξ) . (60)

It turns out that in our case the relevant solution of Eq. (59) is just χ(ξ) ≡ 0.
Indeed, with χ ≡ 0 we find

g(ξ) = Ae−ξ/4 , (61)

where A is a constant. This solution does satisfy the requirement (i), and
we just need to fix A by (45). This yields A = 1/(2

√
π).

The final answer for the Green’s function thus is

G(x, x0, t) =
1
2

√
γ

πt
e−

γ(x−x0)2

4t . (62)

Problem 34. The initial temperature profile is given by the function u(x) =
u0e

−(x/l0)
2
, x ∈ (−∞,∞). Use the Green’s function (62) to find u(x, t).

Schrödinger equation

The Schrödinger equation (γ = 2m/h̄ > 0),

−iγut = uxx , x ∈ (−∞,∞) (63)

is very close to (27), and the theory of its Green’s function is quite similar
to what has been done above. The result for G reads

G(x, x0, t) =
e−iπ/4

2

√
γ

πt
ei

γ(x−x0)2

4t . (64)

Problem 35. Derive Eq. (64). When finding the normalization constant, the
following integral will be useful

∫ ∞

−∞
eiy2

dy =
√

π eiπ/4 . (65)

Problem 36. The initial state of the one-dimensional quantum particle is given
by the wavefunction ψ(x) = Ae−(x/l0)

2+ikx, x ∈ (−∞,∞), A is the normalization
constant. Find ψ(x, t) with the Green’s function (64). With the solution found,
determine the velocity of the packet and the evolution of the characteristic width of
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the packet. The following integral will be useful (a and b may be complex, provided
either Re a > 0, or Re a = Re b = 0).

∫ ∞

−∞
e−ax2+bx dx =

√
π

a
eb2/4a . (66)

This integral is an analytic function of a at Re a > 0. Hence, the square root
is unambiguously understood as

√
a =

√
|a|eiϕ/2, where a = |a| eiϕ, with ϕ ∈

[−π/2, π/2].
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