
Fundamental Solution

Consider the following generic equation:

Lu(X) = f(X) . (1)

Here X = (r, t) is the space-time coordinate (if either space or time coordi-
nate is absent, then X ≡ t, or X ≡ r, respectively); L is a linear differential
operator acting on the unknown function u(X) and producing some given
function f(X). The function u(X) is supposed to be defined everywhere in
the time-space. Finally, we assume that the operator L is invariant with
respect to the translations in space and time. Under these conditions, one
can look for a generic solution in terms of the Green’s function:

u(X) =
∫

G(X −X0) f(X0) dX0 , (2)

where G satisfies the equation

LG(X) = δ(X) . (3)

The function G(X) is called fundamental solution of the operator L. The
Green’s function is then obtained by simply replacing X → X −X0.

Time-dependent problems are often the Cauchy problems when the func-
tion u is defined not only by the operator L, but also by a particular initial
conditions at t = 0. It is remarkable, however, that the initial conditions
can be absorbed into the function f(X), so that the fundamental solution
solves the Cauchy problem as well. The procedure is generic and straightfor-
ward. Let us illustrate it with the harmonic oscillator. We have the Cauchy
problem

ü + ω2u = f(t) , (4)

u(0) = u0 , u̇(0) = v0 . (5)

Without loss of generality, we assume that f(t) ≡ 0 at t < 0, because
the region t < 0 is undefined for the Cauchy problem. Given the solution
u(t), we construct a new function, ũ(t), defined for any t, according to the
following prescription

ũ(t) =

{
u(t) , t ≥ 0 ,

0 , t < 0 .
(6)
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Now we note that our ũ(t) satisfies Eq. (4) in two regions: t < 0 and t > 0.
But not at t = 0, because of the jump-like behavior at this point. Applying
differential operators to our function in a generalized sense, we see that

˙̃u(t) =

{
u̇(t) + u0 δ+(t) , t ≥ 0 ,
0 , t < 0 ,

(7)

and, correspondingly,

¨̃u(t) =

{
ü(t) + u0 δ′+(t) + v0 δ+(t) , t ≥ 0 ,
0 , t < 0 .

(8)

Here δ′+(t) is the δ-function slightly modified in such a way that the following
integrals are defined

∫ ∞

0
δ+(t) dt = 1 ,

∫ 0

−∞
δ+(t) dt = 0 . (9)

[Below we will need this to remove an ambiguity of integration from t = 0.]
We see that the function ũ satisfies (and thus can be found from!) the
equation

¨̃u + ω2ũ = f(t) + u0 δ′+(t) + v0 δ+(t) . (10)

This equation has the generic structure of Eq. (1) and we thus have:

ũ(t) =
∫

G(t− t0) [f(t0) + u0 δ′+(t0) + v0 δ+(t0)] dt0 . (11)

That is
ũ(t) =

∫ ∞

0
G(t− t0)f(t0) dt0 + v0G(t) + u0Gt(t) . (12)

The function G is found from

G̈ + ω2G = δ+(t) (13)

with the boundary condition

G(t) ≡ 0 , at t < 0 . (14)

This boundary condition is clear from the fact that for any function f(t),
the expression (12) should be identically equal to zero at t < 0.

The solution to (13)-(14) is easily found by Laplace transform. The
answer reads

G(t) =
θ(t)
ω

sinωt , (15)
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θ(t) =

{
1 , t ≥ 0 ,
0 , t < 0 .

(16)

Finally, we obtain

ũ(t) = (1/ω)
∫ t

0
sin[ω(t− t′)] f(t′) dt′ + (v0/ω) sin ωt + u0 cosωt . (17)

This technique is easily generalized to other Cauchy problems. One
just constructs the function ũ(r, t) in accordance with (6) and substitutes it
into the original equation. Because of the discontinuity, the derivatives with
respect to time will produce extra terms that should be added to the original
function f . We illustrate this by considering the wave equation [u ≡ u(r, t)]:

2u = f(r, t) , (18)

2 =
∂2

∂t2
− ∇2 . (19)

u(r, 0) = u0(r) , ut(r, 0) = v0(r) . (20)

In accordance with the above-described procedure, we start with expand-
ing the domain of definition of t to the whole number axis, simultaneously
assuming that f(r, t) ≡ 0 at t < 0. Then we introduce the function, ũ(r, t):

ũ(r, t) =

{
u(r, t) , t ≥ 0 ,
0 , t < 0 ,

(21)

and calculate its time derivatives to see what is the effect of acting on it
with the operator ∂2/∂t2.

ũt(r, t) =

{
ut(r, t) + u0(r) δ+(t) , t ≥ 0 ,
0 , t < 0 .

(22)

ũtt(r, t) =

{
utt(r, t) + u0(r) δ′+(t) + v0(r) δ+(t) , t ≥ 0 ,
0 , t < 0 .

(23)

Acting with the operator 2 on ũ, with (23) taken into account, we get

2 ũ = f̃(r, t) , (24)

where
f̃(r, t) = f(r, t) + u0(r) δ′+(t) + v0(r) δ+(t) . (25)
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The problem (24) is solved by the Green’s function method:

ũ(r, t) =
∫

G(r− r0, t− t0) f̃(r, t) dr0 dt0 . (26)

The Green’s function is the fundamental solution of the operator 2:

2G(r, t) = δ+(t) δ(r) , (27)

with the condition

G(r, t) ≡ 0 at t < 0 . (28)

As it follows from (25), the final answer for the function u(r, t)—in terms of
G and its time derivative—reads

u(r, t) =
∫ t

0
dt0

∫
dr0 G(r− r0, t− t0) f(r0, t0) +

+
∫

dr0 G(r− r0, t) v0(r0) +
∫

dr0 Gt(r− r0, t) u0(r0) . (29)

The problem of obtaining G from (27)-(28) can be solved by a combination
of Fourier and Laplace transforms—Fourier transform with respect to the
coordinates and Laplace transform with respect to time:

G(r, t) =
∫

C

dp

2πi
ept

∫
dk

(2π)d
eikr g(k, p) . (30)

[Here C is a proper contour in the complex p-plane.] Note that (30) au-
tomatically implies (28). Plugging (30) into (27) and taking into account
that

δ+(t) δ(r) =
∫

C

dp

2πi
ept

∫
dk

(2π)d
eikr 1 , (31)

we find
∫

C

dp

2πi
ept

∫
dk

(2π)d
eikr (p2 + k2)g(k, p) =

∫

C

dp

2πi
ept

∫
dk

(2π)d
eikr 1 . (32)

Fourier/Laplace transform is unique. Hence

g(k, p) =
1

p2 + k2
, (33)
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and we just need to restore G(r, t) from g(k, p). First, we perform inverse
Laplace transform:

g(k, t) = θ(t)
∑

all poles

Res
ept

p2 + k2
= θ(t)

sin kt

k
. (34)

Apart from the θ-function which is k-independent and thus causes no prob-
lem when doing inverse Fourier transform, the r.h.s. of (34) is quite familiar
for us from the section about the Green’s functions of the wave equation. It
is what we were calling G(1)(r, t) there. Hence, we write down the answers.

G(x, t) = θ(t) [sgn(t + x) + sgn(t− x)]/4 (d = 1) , (35)

G(r, t) =
1
2π

θ(t− r)√
t2 − r2

(d = 2) , (36)

G(r, t) =
1

4πr
δ(t− r) (d = 3) . (37)

Note that for d = 2, 3 we do not need to write the factor θ(t) since the
functions are automatically equal to zero at t < 0.

The 3D case is a very special one: The integration over t0 in (29) is
completely removed by the δ-functional form of the Green’s function, so
that the final answer acquires the famous retarded-potential form, where the
integration is over the spatial variable only, but with corresponding time-
retardation.

Problem 47. For each of the Cauchy problems listed below do the following.

(a) By introducing the supplementary function ũ in analogy with (6), reformulate
the problem in the generic form of Eq. (1) by absorbing the initial condition(s) into
the function f , in analogy with (10).

(b) Write down the solution in terms of the fundamental solution G. [At this point
you are not supposed to find the explicit form of G.] Pay special attention to
the limits of integration with respect to time, following from the condition that
G(t) ≡ 0 at t < 0.

(c) Find the form of G for the problems (i) and (ii) by both Fourier and Laplace
transforms.

(d) Find the form of G for the problem (iii) by combined Fourier-Laplace transform—
Fourier with respect to the coordinates and Laplace with respect to time.
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List of Cauchy problems:

(i) A simple differential equation (u ≡ u(t), γ > 0 is a parameter):

u̇ + γ u = f(t) , (38)

u(0) = u0 . (39)

(ii) Damped harmonic oscillator (u ≡ u(t), γ > 0 is the damping coefficient):

ü + γ u̇ + ω2u = f(t) , (40)

u(0) = u0 , ut(0) = v0 . (41)

(iii) Heat/Schrödinger equation: [u ≡ u(r, t), γ = 1 for the heat equation; for the
Schrödinger equation u is complex and γ = −i ]:

γ ut −∆u = f(r, t) , (42)

u(r, 0) = u0(r) . (43)
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