Homework #2 (Unit 1 – Summarizing Data)

Solutions

#1a.

$$(X_1 + X_2 + X_3 + X_4)^2 = \left[\sum_{i=1}^4 X_i\right]^2$$

= $(3 + 1 + 4 + 6)^2$
= 14^2
= $196.$

#1b.

$$X_{1}^{2} + X_{2}^{2} + X_{3}^{2} + X_{4}^{2} = \sum_{i=1}^{4} X_{i}^{2}$$

= $3^{2} + 1^{2} + 4^{2} + 6^{2}$
= $9 + 1 + 16 + 36$
= $62.$

#1c.

$$\sum_{i=1}^{4} (X_i - 1)^2 = (3-1)^2 + (1-1)^2 + (4-1)^2 + (6-1)^2$$

= 2² + 0² + 3² + 5²
= 4 + 0 + 9 + 25
= 38.

Note:

$$\sum_{i=1}^{4} (X_i - 1)^2 = \sum_{i=1}^{4} [X_i^2 - 2X_i + 1]$$

=
$$\sum_{i=1}^{4} X_i^2 - 2\sum_{i=1}^{4} X_i + 1\sum_{i=1}^{4}$$

=
$$62 - (2)(14) + (1)(4)$$

=
$$38.$$

#1d.

$$\sum_{i=1}^{4} 3X_{i} = 3\sum_{i=1}^{4} X_{i}$$

= 3(14)
= 42

2a. A stem and leaf diagram might come in handy. Stems are shaded, leaves are not.

$$MEAN \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{26} X_i$$

= $\frac{1}{n} (1156)$ = 44.46 so $\bar{x} = 44.5$

MEDIAN First solve $\left(\frac{n+1}{2}\right) = \left(\frac{26+1}{2}\right) = 13.5$

Median is midpoint of 13th and 14th observation.

$$\tilde{x} = -\frac{1}{2}(41+43)$$
 so $\tilde{x} = 42$

MODE	This sample is tri - modal	38,41,45
RANGE	Maximum - Minimum	
	= 69 - 31	so range $= 38$

VARIANCE Let's save ourselves the trouble of a very long brute force formula by using the formula for grouped data.

j	X _j	\mathbf{f}_{j}	$\left(x_{j}-\overline{x} ight)^{2}$	$f_j(x_j-\overline{x})^2$
1	31	1	182.25	182.25
2	35	2	90.25	180.50
3	36	2	72.25	144.50
4	38	3	42.25	126.75
5	40	2	20.25	40.50
6	41	3	12.25	36.75
7	43	1	2.25	2.25
8	45	3	0.25	0.75
9	46	2	2.25	4.50
10	51	2	42.25	84.50
11	53	2	72.25	144.50
12	59	1	210.25	210.25
13	60	1	240.25	240.25
14	69	1	600.25	600.25
TOTALS		26		1998.50

Let j index the unique values. There are 14 unique values.

$$S^{2} = \frac{\sum_{j=1}^{14} f_{j} \left(x_{j} - \bar{x} \right)^{2}}{\left(\sum_{j=1}^{14} f_{j} \right) - 1} = \frac{1998.50}{25} \qquad So \ S^{2} = 79.94$$

Standard deviation $S = \sqrt{S^2}$ So S = 8.94

 $P_{25} = 38$

Range = 9

25th Percentile

First solve (.25) (n) = (.25) (26) = 6.5 So 25th percentile is the 7^{th} observation

75th Percentile

First solve (.75) (n) = (.75) (26) = 19.5 So 75th percentile is the 20th observation $P_{75} = 51$

#2b.

MEAN
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{21} X_i = -\frac{1}{21} (568) = 27.04$$
 So $\bar{x} = 27.0$

MEDIAN Solving
$$\left(\frac{n+1}{2}\right) = \left(\frac{21+1}{2}\right) = 11$$

Median is the 11th observation. So $\tilde{x} = 26$

MODE mode = 25

RANGE Maximum - Minimum = 34 - 25, So

Sol_summarizing_2.doc

j	Xj	\mathbf{f}_{j}	$\left(x_{j}-\overline{x}\right)^{2}$	$f_j \left(x_j - \overline{x} \right)^2$
1	25	9	4	36
2	26	5	1	5
3	28	3	1	3
4	30	1	9	9
5	31	1	16	16
6	34	2	49	98
TOTALS		21	80	167

Variance There are 6 unique values.

$$S^{2} = \frac{\sum_{j=1}^{6} f_{j} \left(x_{j} - \overline{x} \right)^{2}}{\left(\sum_{j=1}^{6} f_{j} \right) - 1} = \frac{167}{20} \qquad \text{So} \qquad S^{2} = 8.35$$

Standard deviation

 $S = \sqrt{S^2} = \sqrt{8.35}$

So

S = 2.89

25th Percentile

Solving (.25) (n) = (.25) (21) = 5.25 So 25th percentile is 6th observation $P_{25} = 25$ Note - I get this by noticing from the table above that the smallest value (=25) occurs with a frequency of 9 times in the sample.

75th Percentile

Solving (.75) (n) = (.75) (21) = 15.75 So 75th percentile is 16th observation $P_{75} = 28$ Note – I get this by noticing in the table that the value = 28 occurs with a frequency of 3 times in the sample and comes after the first 9 observations all equal to 25 and after the next 5 observations all equal to 26, so that the value of 28 is the 15th, 16th and 17th observations in the ordered sample. #2c. Let's produce a side-by-side box plot using lock5stat.com, which was introduced in "Show me #1"

step	94. Click on Edit Data
	Student Survey (TV by Gender) Show Data Table Edit Data
	Dotplot Histogram Box plot

__step 7 Enter the data for the panic disorder group, row by row. Then enter the data for the controls, row by row. Check your work before clicking the OK. Then click OK

#3a.

Class	Class		Relative	Cumulative	Cumulative
Endpoints	Midpoint	Frequency	Frequency	Frequency	Relative Freq.
5-14.99	10	5	.067	5	.067
15-24.99	20	10	.133	15	.200
25-34.99	30	20	.267	35	.467
35-44.99	40	22	.293	57	.760
45-54.99	50	13	.173	70	.933
55-64.99	60	5	.067	75	1.000
TOTALS			1.000		

Midpoint	Frequency		$(x_i - \overline{x})$	$f_i(x_i - \overline{x})^2$
Xj	\mathbf{f}_{j}	$X_j f_j$		$J_j (\mathbf{x}_j - \mathbf{x}_j)$
10	5	50	-25.7	3302.45
20	10	200	-15.7	2464.90
30	20	600	-5.7	649.80
40	22	880	4.3	406.78
50	13	650	14.3	2658.37
60	5	300	24.3	2952.45
Total	75	2680		12434.75

#3b.

$$MEAN \qquad \bar{x} = \frac{\sum_{j=1}^{6} f_j x_j}{\sum_{j=1}^{6} f_j} = -\frac{2680}{75} \qquad \text{So} \quad \bar{x} = 35.7$$

MEDIAN *Note to reader* – I've consulted a number of texts on this. There is no single correct answer. With interval data, whatever median you calculate is an approximation. Here is what is suggested in <u>Think and Explain with Statistics (Lincoln E. Moses, page 64)</u>

First solve $\frac{n+1}{2} = \frac{75+1}{2} = 38th$ observation

Examination of the table reveals that the 38th observation is in the interval 35 to 44.99

Set the following quantities:

The letter l = lower limit of interval = 35 The letter u = upper limit of interval = 44.99 R = cumulative frequency up to the lower limit of interval = 35 M = # observations contained in interval = 22 N = total # observations = 75

An approximate solution for the median is calculated as

$$\tilde{\mathbf{x}} = l + \left[\frac{N/2 - R}{M}\right](u - l) = 35 + \left[\frac{75/2 - 35}{22}\right](44.99 - 35) = 36.135 \text{ or } \mathbf{37}$$

VARIANCE

$$S^{2} = \frac{\sum_{j=1}^{6} f_{j} \left(x_{j} - \overline{x} \right)^{2}}{\left(\sum_{j=1}^{6} f_{j} \right) - 1} = \frac{12434.75}{74} \text{ so } S^{2} = 168.04$$

Standard deviation $S = \sqrt{S^2}$ so S = 13.0