Homework \#2 (Unit 1 - Summarizing Data)

Solutions

\#1a.

$$
\begin{aligned}
\left(X_{1}+X_{2}+X_{3}+X_{4}\right)^{2} & =\left[\sum_{i=1}^{4} X_{i}\right]^{2} \\
& =(3+1+4+6)^{2} \\
& =14^{2} \\
& =196 .
\end{aligned}
$$

\#1b.

$$
\begin{aligned}
X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2} & =\sum_{i=1}^{4} X_{i}^{2} \\
& =3^{2}+1^{2}+4^{2}+6^{2} \\
& =9+1+16+36 \\
& =62 .
\end{aligned}
$$

\#1c.

$$
\begin{aligned}
\sum_{i=1}^{4}\left(X_{i}-1\right)^{2} & =(3-1)^{2}+(1-1)^{2}+(4-1)^{2}+(6-1)^{2} \\
& =2^{2}+0^{2}+3^{2}+5^{2} \\
& =4+0+9+25 \\
& =38
\end{aligned}
$$

Note:

$$
\begin{aligned}
\sum_{i=1}^{4}\left(X_{i}-1\right)^{2} & =\sum_{i=1}^{4}\left[X_{\mathrm{i}}^{2}-2 X_{i}+1\right] \\
& =\sum_{i=1}^{4} X_{\mathrm{i}}^{2}-2 \sum_{i=1}^{4} X_{i}+1 \sum_{i=1}^{4} \\
& =62-(2)(14)+(1)(4) \\
& =38 .
\end{aligned}
$$

\#1d.

$$
\begin{aligned}
\sum_{i=1}^{4} 3 X_{i} & =3 \sum_{i=1}^{4} X_{i} \\
& =3(14) \\
& =42
\end{aligned}
$$

\# 2a. A stem and leaf diagram might come in handy. Stems are shaded, leaves are not.
$\left.\begin{array}{l|ll|lllll}3 & 68851865 & & 3 & 1556688 \\ 4 & 50165165310 & 4 & 0 & 0 & 1 & 1 & 13\end{array}\right) 55566$

MEAN $\quad \bar{x}=\frac{1}{n} \sum_{i=1}^{26} X_{i}$

$$
=\frac{1}{n}(1156) \quad=44.46 \quad \text { so } \bar{x}=44.5
$$

MEDIAN First solve $\left(\frac{n+1}{2}\right)=\left(\frac{26+1}{2}\right)=13.5$
Median is midpoint of $13^{\text {th }}$ and $14^{\text {th }}$ observation.
$\tilde{x}=\frac{1}{2}(41+43) \quad$ so $\tilde{x}=42$

MODE This sample is tri - modal $38,41,45$

RANGE Maximum - Minimum

$$
=69-31 \quad \text { so range }=38
$$

VARIANCE Let's save ourselves the trouble of a very long brute force formula by using the formula for grouped data.

Let j index the unique values. There are 14 unique values.

			$\left(x_{j}-\bar{x}\right)^{2}$	$f_{j}\left(x_{j}-\bar{x}\right)^{2}$
j	X_{j}	f_{j}		
1	31	1	182.25	182.25
2	35	2	90.25	180.50
3	36	2	72.25	144.50
4	38	3	42.25	126.75
5	40	2	20.25	40.50
6	41	3	12.25	36.75
7	43	1	2.25	2.25
8	45	3	0.25	0.75
9	46	2	2.25	4.50
10	51	2	42.25	84.50
11	53	2	72.25	144.50
12	59	1	210.25	210.25
13	60	1	240.25	240.25
14	69	1	600.25	600.25
TOTALS		26		1998.50

$S^{2}=\frac{\sum_{j=1}^{14} f_{j}\left(x_{j}-\bar{x}\right)^{2}}{\left(\sum_{j=1}^{14} f_{j}\right)-1}=\frac{1998.50}{25} \quad$ So $S^{2}=79.94$

Standard deviation $\quad S=\sqrt{S^{2}} \quad$ So $\quad S=8.94$

25th Percentile

First solve (.25) $(\mathrm{n})=(.25)(26)=6.5$
So 25th percentile is the $7^{\text {th }}$ observation $\quad \mathrm{P}_{25}=38$
75th Percentile
First solve $(.75)(\mathrm{n})=(.75)(26)=19.5$
So 75th percentile is the $20^{\text {th }}$ observation $\quad \mathrm{P}_{75}=51$
\#2b.

2	555555555
2	66666
2	888
3	01
3	44

$M E A N \quad \bar{x}-\frac{1}{n} \sum_{i=1}^{31} X_{i}-\frac{1}{21}(568)-27.04 \quad 80 \quad \bar{x}-27.0$

MED/AN Solving $\left(\frac{n+1}{2}\right)=\left(\frac{21+1}{2}\right)=11$

$$
\text { Median is the llth obsorvation. } \quad \mathrm{So} \mathrm{X}=26
$$

MODE

$$
\text { mode }=25
$$

RANGE Maximum - Minimum

$$
=34-25, \quad \mathrm{So} \quad \mathrm{Range}=9
$$

Variance There are 6 unique values.

			$\left(x_{j}-\bar{x}\right)^{2}$	$f_{j}\left(x_{j}-\bar{x}\right)^{2}$
j	X_{j}			
1	25	9	4	36
2	26	5	1	5
3	28	3	1	3
4	30	1	9	9
5	31	1	16	16
6	34	2	49	98
TOTALS		21	80	167

$S^{2}=\frac{\sum_{j=1}^{6} f_{j}\left(x_{j}-\bar{x}\right)^{2}}{\left(\sum_{j=1}^{6} f_{j}\right)-1}=\frac{167}{20} \quad$ So $\quad S^{2}=8.35$
Standard deviation

$$
S=\sqrt{S^{2}}=\sqrt{8.35} \quad \text { So } \quad S=2.89
$$

25th Percentile
Solving (.25) (n) $=(.25)(21)=5.25$
So 25 th percentile is 6th observation

$$
\mathrm{P}_{25}=25
$$

Note - I get this by noticing from the table above that the smallest value (=25) occurs with a frequency of 9 times in the sample.

75th Percentile

Solving (.75) (n) $=(.75)(21)=15.75$
So 75th percentile is 16th observation

$$
\mathrm{P}_{75}=28
$$

Note - I get this by noticing in the table that the value $=28$ occurs with a frequency of 3 times in the sample and comes after the first 9 observations all equal to 25 and after the next 5 observations all equal to 26, so that the value of 28 is the $15^{\text {th }}, 16^{\text {th }}$ and $17^{\text {th }}$ observations in the ordered sample.
\#2c. Let's produce a side-by-side box plot using lock5stat.com, which was introduced in "Show me \#1"
__step 1. Launch www.lock5stat.com. The home page should appear

step 2. From the left navigation bar, click on StatKey

_step 3. Click on One Quantitative Variable and One Categorical Variable

Descriptive Statistics and Graphs	E
One Quantitative Variable	C
One Categorical Variable	C
One Quantitative and One Categorical Variable	C
Two Categorical Variables	C
Two Quantitative Variables	C

__step 4. Click on Edit Data
Student Survey (TV by Gender)

Dotplot	Histogram	Box plot	

\qquad
__step 6. Delete the data that is shown, taking care to keep the header "label, value"
Edit data

| label, value |
| :--- | :--- |
| $M, 0$ |
| $M, 1$ |
| $M, 2$ |
| $M, 2$ |
| $M, 2$ |
| $M, 2$ |

Ø Data has header row
Manually edit the values above or paste a tab or comma
seperated file into the box and click Ok. The file must
have only two columns where the first column is the
categorical variable and the second is the quantitative.

Ok
step 7 Enter the data for the panic disorder group, row by row. Then enter the data for the controls, row by row. Check your work before clicking the OK. Then click OK

Edit data	2
label, value panic, 53 panic, 59 panic, 45 panic, 36 panic, 69 panic, 51 panic, 51 panic, 38 panic, 40 panic, 41 panic, 46 panic, 45 panic, 53 panic, 41 panic, 46 panic, 45 panic, 60 panic, 43 panic, 41	
Data has header row Manually edit the values above or paste a tab or comma seperated file into the box and click Ok. The file must have only two columns where the first column is the categorical variable and the second is the quantitative.	
	Ok

step 8. StatKey will return a dot plot. Click on BOX PLOT

StatKey Descriptive Statistics for one Quantitative and one Categorical Variable

\#3a.

Class Endpoints	Class Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Freq.
$5-14.99$	10	5	.067	5	.067
$15-24.99$	20	10	.133	15	.200
$25-34.99$	30	20	.267	35	.467
$35-44.99$	40	22	.293	57	.760
$45-54.99$	50	13	.173	70	.933
$55-64.99$	60	5	.067	75	1.000
TOTALS			1.000		

\#3b.

Midpoint X_{j}	Frequency f_{j}	$\mathrm{X}_{\mathrm{j}} \mathrm{f}_{\mathrm{j}}$	$\left(x_{j}-\bar{x}\right)$	$f_{j}\left(x_{j}-\bar{x}\right)^{2}$
10	5	50		
20	10	200	-25.7	3302.45
30	20	600	-15.7	2464.90
40	22	880	-5.7	649.80
50	13	650	4.3	406.78
60	5	300	14.3	2658.37
			24.3	2952.45
Total	75	2680		12434.75

MEAN $\bar{x}=\frac{\sum_{j=1}^{6} f_{j} x_{j}}{\sum_{j=1}^{6} f_{j}}=\frac{2680}{75} \quad$ So $\quad \bar{x}=35.7$

MEDIAN Note to reader - I've consulted a number of texts on this. There is no single correct answer. With interval data, whatever median you calculate is an approximation. Here is what is suggested in Think and Explain with Statistics (Lincoln E. Moses, page 64)

First solve $\frac{n+1}{2}=\frac{75+1}{2}=38$ th observation
Examination of the table reveals that the $38^{\text {th }}$ observation is in the interval 35 to 44.99
Set the following quantities:

> The letter $l=$ lower limit of interval $=35$
> The letter $u=$ upper limit of interval $=44.99$
> $R=$ cumulative frequency up to the lower limit of interval $=35$
> $M=\#$ observations contained in interval $=22$
> $N=$ total $\#$ observations $=75$

An approximate solution for the median is calculated as

$$
\tilde{\mathrm{x}}=l+\left[\frac{\mathrm{N} / 2-\mathrm{R}}{\mathrm{M}}\right](u-l)=35+\left[\frac{75 / 2-35}{22}\right](44.99-35)=36.135 \text { or } 37
$$

VARIANCE
$S^{2}=\frac{\sum_{j=1}^{6} f_{j}\left(x_{j}-\bar{x}\right)^{2}}{\left(\sum_{j=1}^{6} f_{j}\right)-1}=\frac{12434.75}{74}$ so $S^{2}=168.04$
Standard deviation $\quad S=\sqrt{S^{2}} \quad$ so $\quad S=13.0$

