Unit 1 - Summarizing Data Homework \#1 (Unit 1 - Summarizing Data)

Solutions

1.

a) Are the exams "in-class"/proctored or are they take-home?

The exams are take home. In particular, they are 2 week, open book exams.
b) How are the exam grades weighted in the final course grade determination?

Best exam -40%, Second best -20%, Third best -15%
c) How are the homeworks graded?

The homeworks are graded pass/fail. Pass is a score of 100 .
d) Is attendance in Zoom classes required?

No.
e) Your course score is not determined by the columns in Blackboard. How is the course score determined?
Course score $=(.25)[$ Homework score $]+(.40)[$ Best test $]+(.20)\left[2^{\text {nd }}\right.$ best test $]+(.15)\left[3^{\text {rd }}\right.$ best test $]$
f) How are the final course letter grades determined?

Course Score
95 and over
90-94
87-89
83-86
80-82 B MINUS
77-79 C PLUS
70-76 C
Below 70
g) Is it possible to obtain the exam questions early?

No
h) Are late homework and exam submissions allowed (yes or no)?

Yes, per the late policy for this course
i) What is the policy on late homework and late exam submissions?

Late submission within 48 hours of due date: - 10 points
Late submission, post 48 hours but within 1 week: -20 points
Submissions after 1 week are not accepted.
2. For each of the following variables indicate whether it is quantitative or qualitative and specify the measurement scale that is employed when taking measurements on each:
a. Class standing of members of this class relative to each other

Categorical/Qualitative ordinal
b. Admitting diagnosis of patients admitted to a mental health clinic

Categorical/Qualitative nominal
c. Weights of babies born in a hospital during a year

Numerical/Quantitative continuous ratio
d. Gender of babies born in a hospital during a year Categorical/Qualitative nominal
e. Range of motion of elbow joint of students enrolled in a university health sciences curriculum Numerical/Quantitative continuous ratio
a. f) Under-arm temperature of day-old infants born in a hospital

Numerical/Quantitative continuous interval
3. Let $x_{1}=3, x_{2}=1, x_{3}=4$, and $x_{4}=6$

3a. Express the following sum in sigma notation and evaluate numerically.

$$
\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}
$$

Answer $=196$

$$
\begin{aligned}
\left(X_{1}+X_{2}+X_{3}+X_{4}\right)^{2} & =\left[\sum_{i=1}^{4} X_{i}\right]^{2} \\
& =(3+1+4+6)^{2} \\
& =14^{2} \\
& =196
\end{aligned}
$$

3b. Express the following sum in sigma notation and evaluate numerically.

$$
\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}+\mathrm{x}_{4}^{2}
$$

$$
\begin{array}{ll}
\text { Answer }=62 & \\
X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2} & =\sum_{i=1}^{4} X_{i}^{2} \\
& =3^{2}+1^{2}+4^{2}+6^{2} \\
& =9+1+16+36 \\
& =62 .
\end{array}
$$

3c. Evaluate the following numerically.

$$
\Sigma\left(\mathrm{X}_{\mathrm{i}}-1\right)^{2} \text { for } \mathrm{i}=1 \ldots 4
$$

$$
\begin{aligned}
& \text { Answer = } 38 \\
& \begin{aligned}
\sum_{i=1}^{4}\left(X_{i}-1\right)^{2} & =(3-1)^{2}+(1-1)^{2}+(4-1)^{2}+(6-1)^{2} \\
& =2^{2}+0^{2}+3^{2}+5^{2} \\
& =4+0+9+25 \\
& =38 .
\end{aligned}
\end{aligned}
$$

Note:

$$
\begin{aligned}
\sum_{i=1}^{4}\left(X_{i}-1\right)^{2} & =\sum_{i=1}^{4}\left[X_{\mathrm{i}}^{2}-2 X_{i}+1\right] \\
& =\sum_{i=1}^{4} X_{\mathrm{i}}^{2}-2 \sum_{i=1}^{4} X_{i}+1 \sum_{i=1}^{4} \\
& =62-(2)(14)+(1)(4) \\
& =38
\end{aligned}
$$

3d. Evaluate the following numerically.
$\Sigma 3 \mathrm{X}_{\mathrm{i}}$ for $\mathrm{i}=1 \ldots 4$.

Answer $=42$

$$
\begin{aligned}
\sum_{i=1}^{4} 3 X_{i} & =3 \sum_{i=1}^{4} X_{i} \\
& =3(14) \\
& =42
\end{aligned}
$$

4. The following are behavioral ratings as measured by the Zang Anxiety Scale (ZAS) for 26 persons with a diagnosis of panic disorder:

53	51	46	45	40	35
59	51	45	60	35	
45	38	53	43	31	
36	40	41	41	38	
69	41	46	38	36	

4a. Compute the mean, median, mode, range, variance, and standard deviation, and the 25 th and 75 th percentiles.

Mean $=44.5$
Median $=42$
Mode (there are 3 actually) $=38,41,45$
Range $=38$
$25^{\text {th }}$ Percentile $=38$
$75^{\text {th }}$ Percentile $=51$
MEAN $\quad \bar{x}=\frac{1}{n} \sum_{i=1}^{26} X_{i}$
$=\frac{1}{n}(1156) \quad=44.46$ so $\bar{x}=44.5$
MEDIAN First solve $\left(\frac{n+1}{2}\right)=\left(\frac{26+1}{2}\right)=13.5$
Median is midpoint of $13^{\text {th }}$ and $14^{\text {th }}$ observation.
$\tilde{x}=\frac{1}{2}(41+43)$
so $\tilde{x}=42$

MODE This sample is tri - modal

38,41,45

RANGE Maximum - Minimum
$$
=69-31 \quad \text { so range }=38
$$

VARIANCE Let's save ourselves the trouble of a very long brute force formula by using the formula for grouped data.

Let j index the unique values. There are 14 unique values.

			$\left(x_{j}-\bar{x}\right)^{2}$	$f_{j}\left(x_{j}-\bar{x}\right)^{2}$
j	X_{j}			
1	31	1	182.25	182.25
2	35	2	90.25	180.50
3	36	2	72.25	144.50
4	38	3	42.25	126.75
5	40	2	20.25	40.50
6	41	3	12.25	36.75
7	43	1	2.25	2.25
8	45	3	0.25	0.75
9	46	2	2.25	4.50
10	51	2	42.25	84.50
11	53	2	72.25	144.50
12	59	1	210.25	210.25
13	60	1	240.25	240.25
14	69	1	600.25	600.25
TOTALS		26		1998.50

$S^{2}=\frac{\sum_{j=1}^{14} f_{j}\left(x_{j}-\bar{x}\right)^{2}}{\left(\sum_{j=1}^{14} f_{j}\right)-1}=\frac{1998.50}{25} \quad$ So $S^{2}=79.94$
Standard deviation $\quad S=\sqrt{S^{2}} \quad$ So $\quad S=8.94$

25th Percentile
First solve (.25) (n) $=(.25)(26)=6.5$
So 25 th percentile is the $7^{\text {th }}$ observation

$$
\mathrm{P}_{25}=38
$$

75th Percentile

First solve $(.75)(\mathrm{n})=(.75)(26)=19.5$
So 75 th percentile is the $20^{\text {th }}$ observation

$$
\mathrm{P}_{75}=51
$$

4b. The following are behavioral ratings as measured by the Zang Anxiety Scale (ZAS) for 21 healthy controls:

26	26	25	25	25
28	26	26	25	
34	30	31	28	
26	34	25	25	
25	28	25	25	

Compute the mean, median, mode, range, variance, and standard deviation, and the 25 th and 75 th percentiles.

Mean $=27.0$
Median $=26$
Mode $=25$
Variance $=8.35$
Standard Deviation $=2.89$
$25{ }^{\text {th }}$ Percentile $=25$
$75^{\text {th }}$ Percentile $=28$

MEAN: $\quad \overline{\mathrm{x}}=\frac{1}{n} \sum_{i=1}^{21} x_{i}=\frac{1}{21}(568)=27.04$
MEDIAN: Solving $\left(\frac{n+1}{2}\right)=\left(\frac{21+1}{2}\right)=11 \rightarrow$ Median is the $11^{\text {th }}$ ordered observation $=26$
MODE: \quad Most frequently occurring observation $=25$
RANGE: \quad Maximum - minimum $=34-25=9$

Variance There are 6 unique values.

			$\left(x_{j}-\bar{x}\right)^{2}$	$f_{j}\left(x_{j}-\bar{x}\right)^{2}$
j		X_{j}		
1	25	9	4	36
2	26	5	1	5
3	28	3	1	3
4	30	1	9	9
5	31	1	16	16
6	34	2	49	98
TOTALS		21	80	167

$S^{2}=\frac{\sum_{j=1}^{6} f_{j}\left(x_{j}-\bar{x}\right)^{2}}{\left(\sum_{j=1}^{6} f_{j}\right)-1}=\frac{167}{20} \quad$ So $\quad S^{2}=8.35$
Standard deviation $\quad S=\sqrt{S^{2}}=\sqrt{8.35} \quad$ So $\quad S=2.89$
25th Percentile
Solving (.25) (n) $=(.25)(21)=5.25$
So 25 th percentile is 6th observation

$$
\mathrm{P}_{25}=25
$$

Note - I get this by noticing from the table above that the smallest value ($=25$) occurs with a frequency of 9 times in the sample.

75th Percentile
Solving (.75) (n) $=(.75)(21)=15.75$
So 75 th percentile is 16 th observation

$$
\mathrm{P}_{75}=28
$$

Note - I get this by noticing in the table that the value $=28$ occurs with a frequency of 3 times in the sample and comes after the first 9 observations all equal to 25 and after the next 5 observations all equal to 26, so that the value of 28 is the $15^{\text {th }}, 16^{\text {th }}$ and $17^{\text {th }}$ observations in the ordered sample.
5. The following table shows the age distribution of cases of a certain disease reported during a year in a particular state.

Age	Number of Cases
$5-14$	5
$15-24$	10
$25-34$	20
$35-44$	22
$45-54$	13
$55-64$	5
TOTAL	75

5a. Construct a frequency table with columns for class endpoints, class midpoint, frequency, relative frequency, cumulative frequency, and cumulative relative frequency.

Class Endpoints	Class Midpoint	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Freq.
$5-14.99$	10	5			
$15-24.99$	20	10	.067	5	.067
$25-34.99$	30	20	.133	15	.200
$35-44.99$	40	22	.267	35	.467
$45-54.99$	50	13	.173	57	.760
$55-64.99$	60	5	.067	70	.933
			75	1.000	
TOTALS			1.000		

5b. Estimate the values of the mean, median, variance, and standard deviation. Tip Use the midpoints of each age interval as your values and use number of cases as their frequencies. For example, the value 10 has an estimated frequency of 5, the value 20 has an estimated frequency of 10 , and so on.

Midpoint X_{j}	Frequency f_{j}	$\mathrm{X}_{\mathrm{j}} \mathrm{f}_{\mathrm{j}}$	$\left(x_{j}-\bar{x}\right)$	$f_{j}\left(x_{j}-\bar{x}\right)^{2}$
10	5	50		
20	10	200	-25.7	3302.45
30	20	600	-15.7	2464.90
40	22	880	-5.7	649.80
50	13	650	4.3	406.78
60	5	300	14.3	2658.37
			24.3	2952.45
Total	75	2680		12434.75

$M E A N \quad \bar{x}=\frac{\sum_{j=1}^{6} f_{j} x_{j}}{\sum_{j=1}^{6} f_{j}}=\frac{2680}{75} \quad$ So $\quad \bar{x}=35.7$

MEDIAN Note to reader - I've consulted a number of texts on this. There is no single correct answer. With interval data, whatever median you calculate is an approximation. Here is what is suggested in Think and Explain with Statistics (Lincoln E. Moses, page 64)

First solve $\frac{n+1}{2}=\frac{75+1}{2}=38$ th observation
Examination of the table reveals that the $38^{\text {th }}$ observation is in the interval 35 to 44.99
Set the following quantities:
The letter $\mathrm{l}=$ lower limit of interval $=35$
The letter $u=$ upper limit of interval $=44.99$
$\mathrm{R}=$ cumulative frequency up to the lower limit of interval $=35$
$\mathrm{M}=\#$ observations contained in interval $=22$
$\mathrm{N}=$ total \# observations $=75$
An approximate solution for the median is calculated as

$$
\tilde{\mathrm{x}}=l+\left[\frac{\mathrm{N} / 2-\mathrm{R}}{\mathrm{M}}\right](u-l)=35+\left[\frac{75 / 2-35}{22}\right](44.99-35)=36.135 \text { or } 37
$$

VARIANCE
$S^{2}=\frac{\sum_{j=1}^{6} f_{j}\left(x_{j}-\bar{x}\right)^{2}}{\left(\sum_{j=1}^{6} f_{j}\right)-1}=\frac{12434.75}{74}$ so $S^{2}=168.04$
Standard deviation $\quad S=\sqrt{S^{2}} \quad$ so $\quad S=13.0$

