Unit 5 - The Normal Distribution
 Homework \#8 (Unit 5 - Normal part 2 of 2)
 SOLUTIONS

1. This exercise gives you additional practice in calculating probabilities under normal curves with non-zero mean and non-unit variance.

Suppose that, in a certain population, the distribution of GRE scores is normal with mean $\mu=600$ and standard deviation $\sigma=80$.
a. What is the probability of a score less than 450 or greater than 750 ?

Answer: . 0608

Solution:

Define the random variable $\mathrm{X}=\mathrm{GRE}$ score.
Thus, X is distributed normal with mean $\mu=600$ and standard deviation $\sigma=80$.
We write this more compactly as $X \sim \operatorname{Normal}(\mu=600, \sigma=80)$.
Probability $\{$ score <450 OR score $>750\}$

$$
\begin{aligned}
& =\operatorname{pr}[\mathrm{X}<450]+\operatorname{pr}[\mathrm{X}>750] \\
& =.0608
\end{aligned}
$$

Use the calculator at http://davidlane.com/hyperstat/z_table.html with the following selections: (1) Click on button for "area from value" (2) OUTSIDE (3) values 450 and 750 (4) mean $=600$ and (5) $\mathrm{SD}=80$.

Shaded area: 0.060793
b. What proportion of students has scores between 450 and 750 ?

Answer: . 9392
Solution: "Proportion" of students with scores between 450 and $750 \rightarrow$ we want:

$$
\begin{aligned}
& =\operatorname{pr}[450<\mathrm{X}<750] \\
& =.9392
\end{aligned}
$$

Use the calculator at http://davidlane.com/hyperstat/z table.html with the following selections: (1) Click on button for "area from value" (2) BETWEEN (3) values 450 and 750 (4) mean $=600$ and (5) SD=80.

c. What score is equal to the 95 th percentile?

Answer: 731.2

There are at least two solutions to this question:
Solution I - Simple "plug in" variety
Solution II - 2 step solution that re-enforces the concepts..
Step 1: Obtain the $95^{\text {th }}$ percentile for $\mathrm{Z} \sim \operatorname{Normal}(0,1)$. Call this $\mathrm{Z}_{.95}$
Step 2: Use $\mathrm{Z}_{.95}$ and the formula on page 19 of the course notes to obtain $\mathrm{X}_{.95}$

Solution I:

Use the calculator at http://davidlane.com/hyperstat/z table.html with the following selections: (1) Click on button for 'value from an area" (2) area $=.95(3)$ mean $=600$ and (4) SD=80. Don't forget to click RECALCULATE.

Area from a value (Use to compute p from Z)
\odot Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:
Area .95
Mean 600
SD 80

Results:
Recalculate
Above

- Below 731.617

BetweenOutside

Solution II Step 1:

Use the calculator at http://davidlane.com/hyperstat/z table.html with the following selections: (1) Click on button for "value from an area" (2) BELOW, (3) area $=.95$ (4) mean $=0$ and (5) $\mathrm{SD}=1$.

Area from a value (Use to compute p from Z)

- Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:	
Area .95	
Mean 0	
SD 1	

Results:
Recalculate
Above

- Below 1.645

Between
Outside

Solution II Step 2:

Use the formula on page 19 of the unit 5 notes with the following inputs: (1) $\mathrm{Z}_{.95}=1.645$ (2) $\mu=600$ and $\sigma=80$
$X_{.95}=\sigma Z_{.95}+\mu$
$=(80)[1.645]+600$
$=731.6$
2. The Chapin Social Insight Test evaluates how accurately the subject appraises other people. In the reference population used to develop the test, Chapin Social Insight Test scores are distributed normal with mean $\mu=25$ and standard deviation $\sigma=5$.
a. What proportion of the population has scores below 20 on the Chapin test?

Answer: . 1587

Solution:

The solution for the "proportion of the population" is a probability calculation.
Define the random variable $\mathrm{X}=$ Chapin Social Insight Test Score.
X is distributed Normal $(\mu=25, \sigma=5)$.
Want: $\operatorname{pr}(\mathrm{X}<20)=.1587$

Use the calculator at http://davidlane.com/hyperstat/z table. html with the following selections:
Click on button for "area from a value" (2) BELOW (3) value $=20(4)$ mean $=25$ and (4) $\mathrm{SD}=5$.

Shaded area: 0.158655
b. What proportion has scores below 10 ?

url used: http://davidmlane.com/hyperstat/z_table.html
c. How high a score must you have in order to be in the top quarter of the population in social insight?

Answer: 28.35

Solution:

Use the calculator at http://davidlane.com/hyperstat/z_table.html with the following selections: (1) Click on button for 'value from an area" (2) ABOVE (3) area $=.25$ (4) mean $=25$ and (5) SD=5.

(Above: 28.3724
Below
Between
Outside
3. A normal distribution has mean $\mu=100$ and standard deviation $\sigma=15$ (for example, IQ). Give limits, symmetric about the mean, within which 95% of the population would lie:

Solution:

This exercise is asking you to work with the following characteristic of the Normal distribution:

If $X_{1}, X_{2}, \ldots X_{n}$ are a simple random sample, each distributed $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$
Then the sample mean of n observations is distributed $\operatorname{Normal}\left(\left(\mu, \sigma^{2} / n\right)\right.$
Tip!
The "David Lane" calculator does not have a special box labeled SE
So, to use the "David Lane" calculator for the normal distribution of a sample mean, it is necessary to input the value of $\sqrt{\sigma^{2} / n}$ in the box "SD"
a) Individual observations

Answer: 70.6, 129.4
"Individual observations" \rightarrow want to set the "David Lane" boxes as follows:
"MEAN" $=\mu=100$
$" S D "=\sigma=15$.

Area from a value (Use to compute p from Z)

\odot Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:
Area .95
Mean 100
SD 15

Results:

Recalculate

AboveBelowBetween 70.594 and 129.406Outside
b) Means of 4 observations

Answer: 85.3, 114.7
"Means of 4 observations" \rightarrow want to set the "David Lane" boxes as follows:
"MEAN" $=\mu=100$
$" S D "=\operatorname{SE}=\sqrt{ }\left(\sigma^{2} / n\right)=\sigma / \sqrt{ } 4=15 / 2=7.5$

Area from a value (Use to compute p from Z)

- Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:
Area .95
Mean 100
SD 7.5

Results:

Recalculate
Above
Below
\odot Between 85.297 and 114.703
Outside
c) Means of 16 observations

Answer: 92.65, 107.35
"Means of 16 observations" \rightarrow want to set the "David Lane" boxes as follows:
"MEAN" $=\mu=100$

$$
" S D "=S E=\sqrt{ }\left(\sigma^{2} / n\right)=\sigma / \sqrt{ } 16=15 / 4=3.75
$$

Area from a value (Use to compute p from Z)

- Value from an area (Use to compute \mathbf{Z} for confidence intervals)

Specify Parameters:

Area .95
Mean 100
$\begin{array}{ll}\text { SD } & 3.75\end{array}$

Results:
Recalculate
AboveBelow
Between 92.649 and 107.351
Outside
d) Means of 100 observations

Answer: 97.06, 102.94
"Means of 100 observations" \rightarrow want to set the "David Lane" boxes as follows:
"MEAN" $=\mu=100$
$" S D "=\operatorname{SE}=\sqrt{ }\left(\sigma^{2} / \mathbf{n}\right)=\sigma / \sqrt{ } 100=15 / 10=1.5$

Area from a value (Use to compute p from Z)
\odot Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:

Area 95
Mean 100
SD 1.5
Results:
Recalculate
AboveBelow
\odot Between 97.059 and 102.941Outside

