Unit 6 - Estimation
 Homework \#9 (Unit 6 -Estimation, part 1 of 2)

SOLUTIONS

1. The results of IQ tests are known to be normally distributed. Suppose that in 2014, the distribution of IQ test scores for persons aged 18-35 years has a variance $\sigma^{2}=225$. A simple random sample of 9 persons take the IQ test. The sample mean score is 115 . Calculate the 50%, $75 \%, 90 \%$ and 95% confidence interval estimates of the unknown population mean IQ score.
Answer:

$\mathbf{5 0 \%}$ CI	$(111.6,118.4)$
$\mathbf{7 5 \%}$ CI	$(109.2,, 120.8)$
$\mathbf{9 0 \%}$ CI	$(106.8,123.2)$
$\mathbf{9 5 \%}$ CI	$(105.2,124.8)$

Solution:

Let the random variable $\mathrm{X}=\mathrm{IQ}$ test result assumed normal with:
μ unknown
$\sigma^{2}=225$, known
$\sigma=15$, known

A confidence interval estimate of the unknown mean is given by:
estimate \pm \{confidence coefficient $\}$ \{se of estimate $\}$
where,
estimate $=$ observed sample mean $=\overline{\mathrm{X}}=115$
confidence coefficient $=(1-\alpha / 2) 100$ th percentile $\operatorname{Normal}(0,1)$
se of estimate $=$ standard error of sample mean $=\operatorname{SE}(\overline{\mathrm{X}})=\sqrt{\sigma^{2} / \mathrm{n}}$

$$
\begin{aligned}
& =\sqrt{225 / 9} \\
& =15 / 3 \\
& =5
\end{aligned}
$$

For 50% confidence interval estimate:
$1-\alpha=(1-0.50)=0.50$
$\alpha / 2=0.50 / 2=0.25$
Therefore want ($1-.25$)100th or 75th percentile of the $\operatorname{Normal}(0,1)$ distribution.
If you launch the David Lane calculator, this is seen to be $=0.6745$
The required confidence interval estimate is thus,

$$
\begin{aligned}
& \text { estimate } \pm\{\text { confidence coefficient }\}\{\text { se of estimate }\} \\
& =\overline{\mathrm{X}} \pm \mathrm{z}_{.75} \sqrt{\sigma^{2} / \mathrm{n}} \\
& =115+\{0.6745\}\{5\} \\
& =(\mathbf{1 1 1 . 6}, \mathbf{1 1 8 . 4})
\end{aligned}
$$

For 75% confidence interval estimate:
$1-\alpha=(1-0.25)=0.75$

$$
\alpha / 2=0.25 / 2=0.125
$$

Therefore want ($1-.125$)100th or 87.5 th percentile of the $\operatorname{Normal}(0,1)$ distribution.
Now if you launch the David Lane Calculator this is seen to be $=1.1505$
The required confidence interval estimate is thus,

$$
\begin{aligned}
& \text { estimate } \pm\{\text { confidence coefficient }\}\{\text { se of estimate }\} \\
& =\overline{\mathrm{X}} \pm \mathrm{z}_{.875} \sqrt{\sigma^{2} / \mathrm{n}} \\
& =115 \pm\{1.1505\}\{5\} \\
& =(\mathbf{1 0 9 . 2}, \mathbf{1 2 0 . 8})
\end{aligned}
$$

For 90\% confidence interval estimate:

$$
\begin{aligned}
1-\alpha & =(1-0.10)=0.90 \\
\alpha / 2 & =0.10 / 2=0.05
\end{aligned}
$$

Therefore want ($1-.05$)100th or 95 th percentile of the $\operatorname{Normal}(0,1)$ distribution.
Again, using the David Lane calculator, this is seen to be $=1.645$
The required confidence interval estimate is thus,

$$
\begin{aligned}
& \text { estimate } \pm\{\text { confidence coefficient }\}\{\text { se of estimate }\} \\
& =\overline{\mathrm{X}} \pm \mathrm{z}_{.95} \sqrt{\sigma^{2} / \mathrm{n}} \\
& =115 \pm\{1.645\}\{5\} \\
& =(\mathbf{1 0 6 . 8}, \mathbf{1 2 3 . 2})
\end{aligned}
$$

For 95\% confidence interval estimate:
$1-\alpha=(1-0.05)=0.95$
$\alpha / 2=0.05 / 2=0.025$
Therefore want ($1-.025$)100th or 97.5 th percentile of the $\operatorname{Normal}(0,1)$ distribution.
Here the David Lane calculator tells us this value $=1.96$
The required confidence interval estimate is thus,
estimate \pm \{confidence coefficient $\}$ \{se of estimate $\}$
$=\overline{\mathrm{X}} \pm \mathrm{z}_{975} \sqrt{\sigma^{2} / \mathrm{n}}$
$=115 \pm\{1.96\}\{5\}$
$=(105.2,124.8)$
2. What trade-offs are involved in reporting one interval estimate over another?

Answer:

For a given probability distribution with a known variance and a fixed sample size,
(i) Increasing the confidence coefficient is at the price of a wider confidence interval.
(ii) Decreasing the width of a confidence interval estimate is at the price of a lower confidence coefficient.

This is apparent in the following summary of the solution to Exercise \#1.

Desired Confidence	Lower Limit	Upper Limit	Width = [Upper limit-Lower limit]
.50	111.6	118.4	6.8
.75	109.2	120.8	11.6
.90	106.8	123.2	16.4
.95	105.2	124.8	19.6

3. If it is known that the population mean IQ score is $\mu=105$ and $\sigma^{2}=225$, what proportion of samples of size 6 will result in sample mean values in the interval $[135,150]$?

Answer: << . 0001

Solution:

Solve for $\operatorname{Prob}\left[135<\bar{X}_{n=6}<150\right.$] using the standardization formula.
Note that $\bar{X}_{\mathrm{n}=6}$ is normally distributed with:

$$
\mu_{\overline{\mathrm{x}}}=105
$$

$$
\begin{aligned}
& \sigma_{\bar{x}}^{2}=\frac{\sigma^{2}}{\mathrm{n}}=\frac{225}{6}=37.5 \\
& \mathrm{SE}_{\overline{\mathrm{x}}}=\sqrt{\sigma_{\bar{x}}^{2}}=\sqrt{37.5}=6.1238
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Probability }\left[135<\bar{X}_{\mathrm{n}=6}<150\right]=\text { Probability }\left[\frac{135-105}{6.1238}<\frac{\overline{\mathrm{X}}_{\mathrm{n}=6}-\mu_{\overline{\mathrm{x}}}}{\mathrm{SE}_{\overline{\mathrm{x}}}}<\frac{150-105}{6.1238}\right] \\
& =\text { Probability }[4.89<\text { Z-score }<7.34] \ll .0001
\end{aligned}
$$

4. An entomologist samples a field for egg masses of a harmful insect by placing a yard-square frame at random locations and carefully examining the ground within the frame. A simple random sample of 75 locations selected from a county's pasture land found egg masses in 13 locations. Compute a 95 confidence interval estimate of all possible locations that are infested.

Answer: (.0876, .2590)

Solution:

The setting is estimation of a binomial proportion π. In this exercise, the number of trials is $\mathrm{N}=75$. Since this is sufficiently large, we can obtain a confidence interval using $\hat{\pi} \pm\left(\mathrm{z}_{1-\alpha / 2}\right) \mathrm{SE}(\hat{\pi})$ using the standard error formula "(3)" that appears on page 60. Thus, the calculations are

$$
\begin{aligned}
& \overline{\mathrm{X}}=\frac{\mathrm{X}}{\mathrm{~N}}=\frac{13}{75}=.1733 \\
& \hat{\pi}=\overline{\mathrm{X}}=.1733 \\
& \mathrm{SE}=\sqrt{\frac{\overline{\mathrm{X}}(1-\overline{\mathrm{X}})}{\mathrm{N}}}=\sqrt{\frac{(.1733)(.8267)}{75}}=.0437 \\
& \mathrm{Z}_{1-\alpha / 2}=\mathrm{z}_{.975}=1.96 \\
& \hat{\pi} \pm\left(\mathrm{z}_{1-\alpha / 2}\right) \mathrm{SE}(\hat{\pi})=.1733 \pm(1.96)(.0437)=\mathbf{(. 0 8 7 6 , . 2 5 9 0)}
\end{aligned}
$$

