Unit 1

Summarizing Data
Practice Quiz
SOLUTIONS

1. (b) Discrete data with categories that do not follow a natural sequence.
2. new mean $=\frac{\text { [old mean }-1000]}{5}$ new variance $=\frac{\text { [old variance] }}{5^{2}} \quad$ new $s d=\frac{\text { [old sd] }}{5}$

You could obtain this by brute force, that is by doing the calculations for the old data set and the new data set which is: 1, 2, 3, 4 and 5 .

For the interested reader ... An alternate solution works through the formulae as follows.

$$
\begin{aligned}
\text { new mean } & =\frac{1}{\mathrm{n}} \sum\left[\frac{(\mathrm{x}-1000)}{5}\right] \\
& =\frac{1}{5 n}\left[\sum(\mathrm{x}-1000)\right] \\
& =\frac{1}{5 \mathrm{n}}\left[\sum \mathrm{x}-\sum 1000\right] \\
& =\frac{1}{5 \mathrm{n}}\left[\sum \mathrm{x}-(1000)(\mathrm{n})\right] \\
& =\frac{\sum \mathrm{x}}{5 \mathrm{n}}-\frac{(1000)(\mathrm{n})}{(5)(\mathrm{n})} \\
& =\frac{1}{5}\left[\frac{\sum \mathrm{x}}{\mathrm{n}}-1000\right] \\
& =\frac{1}{5}[\text { old mean }-1000]
\end{aligned}
$$

$$
\begin{aligned}
\text { new variance } & =\left[\frac{1}{n-1}\right] \sum(\text { new } x-\text { new mean })^{2} \\
& =\left[\frac{1}{n-1}\right] \sum\left(\left[\frac{x-1000}{5}\right]-\text { new mean }\right)^{2} \\
& =\left[\frac{1}{n-1}\right] \sum\left(\left[\frac{x-1000}{5}\right]-\left[\frac{\text { old mean-1000 }}{5}\right]\right)^{2} \\
& =\left[\frac{1}{n-1}\right]\left[\frac{1}{5}\right]^{2} \sum([x-1000]-[\text { old mean }-1000])^{2} \\
& =\left[\frac{1}{n-1}\right]\left[\frac{1}{5}\right]^{2} \sum(x-1000-\text { old mean }+1000)^{2} \\
& =\left[\frac{1}{n-1}\right]\left[\frac{1}{5}\right]^{2} \sum(x-\text { old mean })^{2} \\
& =\left[\frac{1}{5}\right]^{2}\left[\frac{1}{n-1}\right] \sum(x-\text { old mean })^{2} \\
& =\left[\frac{1}{5}\right]^{2}[\text { old variance }]
\end{aligned}
$$

new standard deviation $=\sqrt{\text { new variance }}$

$$
\begin{aligned}
& =\sqrt{\left[\frac{1}{5}\right]^{2}(\text { old variance })} \\
& =\frac{1}{5} \sqrt{\text { old variance }} \\
& =\frac{1}{5}[\text { old standard deviation }]
\end{aligned}
$$

3. New sample mean $=53.07$

New sample standard deviation $=9.137$
Solution for new sample mean.
Step 1 - Work with the original mean to obtain the sum of ages of the original 50
IF $\overline{\mathrm{X}}=\frac{\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}}{50}$ THEN $\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}=(50)(\overline{\mathrm{X}})=(50)(53.87)=2,693.5$
Step 2 - Use this to solve for the sum of the ages of the original 49 plus the new person

$$
\begin{gathered}
\sum_{\mathrm{i}=1}^{49} \mathrm{x}_{\mathrm{i}}=(2,693.5-82)=2611.5 \text { and } \sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}=(2611.5+42)=2653.5 . \text { Thus, } \\
\overline{\mathrm{X}}=\frac{\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}}{50}=\frac{2653.5}{50}=53.07
\end{gathered}
$$

Solution for new sample standard deviation.

$$
\text { If } S^{2}=\left[\frac{1}{n-1}\right] \sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2} \text { Then } S^{2}=\left[\frac{1}{\mathrm{n}-1}\right]\left(\left[\sum \mathrm{x}_{\mathrm{i}}^{2}\right]-\left[\mathrm{n} \overline{\mathrm{x}}^{2}\right]\right)
$$

Step 1 - Work with the original variance to obtain the sum of squared ages of the original 50
Note - Save rounding until the last step (reporting)
$\mathrm{s}=9.87 \rightarrow$
$\mathrm{s}^{2}=97.417 \rightarrow$
$(\mathrm{n}-1) \mathrm{s}^{2}=\sum_{i=1}^{50}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=(49)(97.417)=4773.428 \rightarrow$
$4773.428=\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}-(\mathrm{n})\left(\overline{\mathrm{x}}^{2}\right) \rightarrow$
$4773.428=\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}-(50)\left(53.87^{2}\right) \rightarrow$
$4773.428=\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}-145,098.845 \rightarrow$
$\sum_{i=1}^{50} x_{i}^{2}=149,872.273$

Step 2 - Obtain the sum of squared ages of the new 50
New $\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}=$ Old $\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}-82^{2}+42^{2}$

$$
=149,872.273-6724+1764
$$

$$
=144,912.273
$$

Step 3 - Use this plus new mean to obtain new S 2
New $S^{2}=\left[\frac{1}{n-1}\right]\left[\sum_{i=1}^{50} x_{i}^{2}-(n)\left(\bar{x}^{2}\right)\right] \rightarrow$

$$
\begin{aligned}
S^{2} & =\left[\frac{1}{49}\right]\left[144,912.273-(50)\left(53.07^{2}\right)\right] \\
& =83.49
\end{aligned}
$$

Last Step - Use new S^{2} to obtain new S
New $S=\sqrt{\text { new } S^{2}}$
$=, \sqrt{83.49}$
$=9.137$

4. False.

Removal of an extreme value yields remaining data that are less variable.

5. Median $=\mathbf{1 2 1 . 5}$ IK

Ordering the data from smallest to largest yields
$42<89<94<108<115<128<136<149<158<196$
Thus,
median $=\frac{1}{2}[115+128]=121.5 \mathrm{IK}$
6. Averaging the 10 values yields mean $=121.5$

The similarity of the mean and median suggests that the data are symmetric.
A histogram confirms this.

. graph cpk, histogram
source: quiz1num5.wmf
7. A box weighs $\mathbf{1 6}$ ounces, give or take $\mathbf{0 . 2}$ ounces.

Not what you thought, is it! This question is a little more involved than you might have thought and, so, I don't expect that you will have gotten the correct answer the first time.

As the 4 sticks of butter are independent,
Mean of box $=$ Sum of means of 4 sticks $=(4)(4$ ounces $)=16$ ounces
Variance of box $=$ Sum of variances of 4 sticks $=(4)\left(0.1^{2}\right.$ ounces $\left.^{2}\right)=0.04$ ounces 2
Therefore, standard deviation of box $=\sqrt{0.04 \text { ounces }^{2}}=0.2$ ounces
8. $\overline{\mathrm{X}}=0.667$
$\mathrm{S}=0.471$
$\overline{\mathrm{X}}=\left[\frac{1}{\mathrm{n}}\right] \sum_{i=1}^{3000} \mathrm{X}_{\mathrm{i}}=\left[\frac{1}{3000}\right][(1000)(0)+(2000)(1)]=0.667$

$$
\begin{aligned}
& S^{2}=\left[\frac{1}{n-1}\right]\left[\sum_{i=1}^{3000} X_{i}^{2}-(n)\left(\bar{X}^{2}\right)\right] \\
& =\left[\frac{1}{2999}\right]\left[(1000)\left(0^{2}\right)+(2000)\left(1^{2}\right)-(3000)\left(.667^{2}\right)\right] \\
& =\left[\frac{1}{2999}\right][(2000)-(1,333.33)] \\
& =0.222 \rightarrow \rightarrow S=\sqrt{S^{2}}=\sqrt{0.222}=0.471
\end{aligned}
$$

9.

(9.1) 50
(9.2) 25
(9.3) 40

10. 5 feet 7.8 inches

Preliminary
5 feet 8 inches $=68$ inches
4 feet 11 inches $=59$ inches
Old $\overline{\mathrm{X}}=5$ feet 8 inches $=68$ inches \rightarrow
$\sum_{\mathrm{i}=1}^{49} \mathrm{X}_{\mathrm{i}}=(\mathrm{n})(\overline{\mathrm{X}})=(49)(68$ inches $)=3332$ inches Thus,
New $\overline{\mathrm{X}}=\left[\frac{1}{\mathrm{n}}\right] \sum_{i=1}^{50} \mathrm{X}_{\mathrm{i}}=\left[\frac{1}{50}\right]\left[\sum_{i=1}^{49} \mathrm{X}_{\mathrm{i}}+59\right.$ inches $]=\left[\frac{1}{50}\right][3332+59]=67.82$

