Unit 2
 Introduction to Probability

Practice Quiz
SOLUTIONS

1. Consider the experiment of dealing a card from a standard deck. The outcome noted is the denomination (ace, 2, 3, ..., Jack, Queen, King) and suit (spade, heart, club, diamond). Let Q denote the event that the card is a queen and H the event that the card is a heart.
$\mathrm{Q}=\left\{\mathrm{Q}_{\text {spade }}, \mathrm{Q}_{\text {heart, }} \mathrm{Q}_{\text {club, }} \mathrm{Q}_{\text {diamond }}\right\}$
$\mathrm{H}=\left\{2_{\text {heart, }}, 3_{\text {heart, }} 4_{\text {heart, }} 5_{\text {heart, }} 6_{\text {heart, }} 7_{\text {heart, }} 8_{\text {heart, }} 9_{\text {heart, }}, 10_{\text {heart, }}\right.$ Jack heart, Queen $_{\text {heart, }}$ King $_{\text {heart, }}$ Ace $\left._{\text {heart }}\right\}$
(a) What is the union of Q and H ?

Recalling "union" is satisfied by a "Q" or a "H" or "both", the solution is:
$\left\{2_{\text {heart, }} 3_{\text {heart, }} 4_{\text {heart, }} 5_{\text {heart, }}, 6_{\text {heart, }} 7_{\text {heart, }}, 8_{\text {heart, }} 9_{\text {heart, }} 10_{\text {heart, }}\right.$, Jack heart, $^{\text {Q }}$ Queen heart, , King ${ }_{\text {heart, }}$, Ace heart , Queen $_{\text {spade }}$, Queen $_{\text {club }}$, Queen $\left._{\text {diamond }}\right\}$
(b) What is the intersection of Q and H ?

Recalling that "intersction" is satisfied when both " \mathbf{Q} " and " \mathbf{H} " are satisfied, the solution is: Queen ${ }_{\text {heart }}$
(c) What is the conditional probability $\operatorname{Pr}(\mathrm{Q} \mid \mathrm{H})$?

You can get this by either of two lines of reasoning:
(1) Restrict attention to the hearts and ask yourself, "among the restricted landscape of just hearts, what is the probability of a queen?" Answer:1/13
(2) Or, use the formula:

$$
\operatorname{Pr}(\mathrm{Q} \mid \mathrm{H})=\frac{\operatorname{Pr}(\mathrm{Q} \text { and } \mathrm{H})}{\operatorname{Pr}(\mathrm{H})}=\frac{1 / 52}{13 / 52}=\frac{1}{13}
$$

(d) What is the conditional probability $\operatorname{Pr}(\mathrm{H} \mid \mathrm{Q})$? $1 / 4$

$$
\operatorname{Pr}(\mathrm{H} \mid \mathrm{Q})=\frac{\operatorname{Pr}(\mathrm{Q} \text { and } \mathrm{H})}{\operatorname{Pr}(\mathrm{Q})}=\frac{1 / 52}{4 / 52}=\frac{1}{4}
$$

(e) Are Q and H independent? YES. The events Q and H are independent if the likelihood of occurrence of one event is not influenced by the occurrence of the other. That is, Q and H are independent if $\operatorname{Prob}[Q]=\operatorname{Prob}[Q \mid H]$. Note that $\operatorname{Prob}[Q]=4 / 52=1 / 13$. This is the same as $\operatorname{Prob}[\mathrm{Q} \mid \mathrm{H}]=1 / 13$
2. A diagnostic test for high intracranial pressure is based on observing retinal vein pulsation. The idea is that if the pressure is too high, the normal pulsation may not be observed. The following table shows the results of classifying 189 subjects according to their test results and their intracranial pressure status.

Test Result	$\begin{array}{r} +=\text { No Pulse } \\ -=\text { Pulse } \end{array}$	True Status		Total61
		High Pressure	Normal	
		43	18	
		0	128	128
		43	146	189

Using these results, calculate
(a) Sensitivity $\operatorname{Pr}(+\mid$ Disease $)=43 / 43=1.00$
(b) Specificity $\operatorname{Pr}(-\mid$ No disease $)=128 / 146=.87$
(c) false positive rate $\operatorname{Pr}(+\mid$ No disease $)=18 / 146=.12$
(d) false negative rate $\operatorname{Pr}(-\mid$ Disease $)=0 / 43=0$
(e) positive predictive value $\operatorname{Pr}($ Disease $\mid+$) $=43 / 61=.70$
(f) negative predictive value $\operatorname{Pr}($ No disease $\mid-)=128 / 128=1.00$
3. Suppose that an experiment consists of flipping three coins - a penny, a nickel, and a dime - all at the same time. Assume that (1) all coins are "fair", and (2) the coin flips are independent. Consider the following circumstances.
$E=$ event that two or more coins land heads and
If the event E occurs, you get to keep all three coins
Otherwise, win $=0$.
X = random variable representing the amount of money you get
(a) Construct the probability distribution of the random variable X .

Preliminary - If it’s helpful, construct a table showing the 8 possible outcomes of tossing the 3 coins. Notice that any winning yields 16 cents because every win is "keep all three coins"

Penny	Nickel	Dime	Pr $[$ Penny	Nickel
Dime $]$	Winning			
H	H	H	$1 / 8$	16 cents
T	H	H	$1 / 8$	16 cents
H	T	H	$1 / 8$	16 cents
H	H	T	$1 / 8$	16 cents
H	T	T	$1 / 8$	0 cents
T	H	T	$1 / 8$	0 cents
T	T	H	$1 / 8$	0 cents
T	T	T	$1 / 8$	0 cents

Probability Distribution for $\mathrm{X}=$ Amount of Winning

Value of $\mathrm{X}, \mathrm{x}=$	$\operatorname{Pr}[\mathrm{X}=\mathrm{x}]$
0 cents	$1 / 2$
16 cents	$1 / 2$
	1.00

(b) How much money would you expect to get from one run of the experiment?

Answer: 8 cents.
Expected winning $=\sum_{\text {all possible winnings }}$ [amount of winning] Probability[this amount is won]
$=[0$ cents $] \operatorname{Pr}[0$ cents won] $+[16$ cents] $\operatorname{Pr}[16$ cents won]
$=[0$ cents] [0.50] + [16 cents] $\operatorname{Pr}[0.50$]
= 8 cents

