Unit 2
 Introduction to Probability
 Practice Quiz

1. Consider the experiment of dealing a card from a standard deck. The outcome noted is the denomination (ace, 2, 3, ..., Jack, Queen, King) and suit (spade, heart, club, diamond). Let Q denote the event that the card is a queen and H the event that the card is a heart.
(a) What is the union of Q and H ?
(b) What is the intersection of Q and H ?
(c) What is the conditional probability $\operatorname{Pr}(\mathrm{Q} \mid \mathrm{H})$?
(d) What is the conditional probability $\operatorname{Pr}(\mathrm{H} \mid \mathrm{Q})$?
(e) Are Q and H independent?
2. A diagnostic test for high intracranial pressure is based on observing retinal vein pulsation. The idea is that if the pressure is too high, the normal pulsation may not be observed. The following table shows the results of classifying 189 subjects according to their test results and their intracranial pressure status.

Test Result	$\begin{array}{r} +=\text { No Pulse } \\ -=\text { Pulse } \end{array}$	True Status		$\begin{aligned} & \text { Total } \\ & 61 \end{aligned}$
		High Pressure	Normal	
		43	18	
		0	128	128
		43	146	189

Using these results, calculate
(a) sensitivity
(b) specificity
(c) false positive rate
(d) false negative rate
(e) positive predictive value
(f) negative predictive value
3. Suppose that an experiment consists of flipping three coins - a penny, a nickel, and a dime - all at the same time. Assume that (1) all coins are "fair", and (2) the coin flips are independent. Consider the following circumstances.
$E=$ event that two or more coins land heads and
If the event E occurs, you get to keep all three coins
Otherwise, win $=0$.
$\mathrm{X}=$ random variable representing the amount of money you get
(a) Construct the probability distribution of the random variable X. Recall - As this variable is discrete, this exercise is asking you to list all possible values of X and their associated probabilities.
(b) How much money would you expect to get from one run of the experiment? Note - This might seem a little hard to solve. Think of it this way. Imagine repeating the experiment 1000 times. How much money would you expect to win over such a long run? Now divide this answer by 1000 to obtain the expected winning from one run. This is the idea of statistical expectation which we are about to learn.

