Measures of Association

Thomas Songer, PhD

Epidemiologic Reasoning

1. Suspicion that a factor (exposure) may influence occurrence of disease

-
 - Do subpopulations have higher or lower rates?
 - Are disease rates increased in the presence of certain factors?

-
 -
Epidemiologic Reasoning

2. Formulation of specific hypotheses
 - Based on suspicions concerning influence of a particular factor on disease occurrence

3. Conduct analytic studies
 - Hypotheses are tested to determine if statistical associations between factors (exposures) and disease exist
 - Study population is assembled from individuals with disease or outcome of interest and an appropriate comparison group

Epidemiologic Reasoning

4. Assess validity of association
 - Is the association valid?
 - Are there alternative explanations for the association?
 - Chance
 - Bias
 - Confounding
Epidemiologic Reasoning

5. Make a judgement of whether a cause-effect relation between factor (exposure) and disease exists

- What is the magnitude of the association?
- Are the findings consistent with previous studies (or conflicting)?
- Are the findings biologically credible?
- Can underlying biological mechanisms that support the association be identified?

Epidemiologic Measures

• Measures of disease frequency - measures disease risk or burden in a population
Epidemiologic Measures

• Measures of association

 – frequency relative to other factors

 – Indications of how more or less likely one is to develop disease as compared to another

Epidemiologic Measures of Association

• Absolute
 – Risk difference
 exposed - unexposed

• Relative
 – Risk ratios
 – Odds ratios
 exposed / unexposed
Epidemiologic Measures of Association

- The relative risk of myocardial infarction in men compared with women is: 5

\[
\text{Risk ratio} = \frac{\text{Risk}_{\text{men}}}{\text{Risk}_{\text{women}}} = \frac{5 \text{ cases/1000 PY}}{1 \text{ case/1000 PY}} = 5
\]

- The absolute risk difference between men and women is: 4 cases/1000 PY

\[
5 \text{ cases/1000 PY} - 1 \text{ case/1000 PY} = 4 \text{ cases/1000 PY}
\]

Epidemiologic Association

- Statistical relationship between two or more events, characteristics, or other variables

- Statistical relationship between exposure and disease

- Association is not causation!
Risk Factor

- A factor (exposure) found to be associated with a health condition
- an attribute or exposure that increases the probability of occurrence of disease
 - behaviour
 - genetic
 - environmental
 - social

Epidemiologic Measures of Association

 - Relative risk
 - Odds ratio
 - Attributable risk/population attributable risk percent
 - Standardized mortality ratios
2 x 2 Tables in Epidemiology

Used to summarize frequencies of disease and exposure and used for calculation of association

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>a</td>
<td>b</td>
<td>a + b</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>c</td>
<td>d</td>
<td>c + d</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
<td>b + c</td>
<td>a + b + c + d</td>
<td></td>
</tr>
</tbody>
</table>

2 x 2 Tables: Contents of Cells

a = number of individuals who are exposed and have the disease
b = number who are exposed and do not have the disease
c = number who are not exposed and have the disease
d = number who are both non-exposed and non-diseased
2 x 2 Tables in Epidemiology

Used to summarize frequencies of disease and exposure and used for calculation of association

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td>total # exposed</td>
</tr>
<tr>
<td>Yes (exposed)</td>
<td>a</td>
<td>b</td>
<td></td>
<td>total # exposed</td>
</tr>
<tr>
<td>No (unexposed)</td>
<td>c</td>
<td>d</td>
<td></td>
<td>total # unexposed</td>
</tr>
<tr>
<td>Total</td>
<td>total # with disease</td>
<td>total # with no disease</td>
<td>Total Population</td>
<td></td>
</tr>
</tbody>
</table>

Relative Risk

• The ratio of the risk of disease in persons exposed compared to the risk in those unexposed
• Often, a measure of association between incidence of disease and exposure of interest

\[
RR = \frac{\text{Incidence rate of disease in exposed}}{\text{Incidence rate of disease in unexposed}}
\]
Relative Risk

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>a</td>
<td>b</td>
<td>$a + b$</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>c</td>
<td>d</td>
<td>$c + d$</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$a + c$</td>
<td>$b + c$</td>
<td>$a + b + c + d$</td>
</tr>
</tbody>
</table>

Relative Risk = \[
\frac{a}{a + b} \times \frac{c + d}{c}
\]

Incidence in smokers = $\frac{84}{3000} = 28.0$
Incidence in non-smokers = $\frac{87}{5000} = 17.4$
Relative risk = $\frac{28.0}{17.4} = 1.61$
Interpretation of Relative Risk

• $1 = No$ association between exposure and disease
 – incidence rates are identical between groups
• $> 1 = Positive$ association
 – exposed group has higher incidence than non-exposed group
• $< 1 = Negative$ association or protective effect
 – non-exposed group has higher incidence
 – example: $0.5 =$ half as likely to experience disease

• A relative risk of 1.0 or greater indicates an increased risk

• A relative risk less than 1.0 indicates a decreased risk
At times, epidemiologists will choose to express disease frequency in terms of odds

What are odds?

Measures of Disease Association

The chance of something happening can be expressed as a risk and/or as an odds:

Risk = the chances of something happening
 the chances of all things happening

Odds = the chances of something happening
 the chances of it not happening
Example: If I choose a student randomly from this class, how likely is it that I will choose you?

Risk (probability) = 1/9 = .111

Odds = 1/8 = .125

Measures of Disease Association

Example: Among 100 people at baseline, 20 develop influenza over a year.

The risk is 1 in 5 (i.e. 20 among 100) = .2
The odds is 1 to 4 (i.e. 20 compared to 80) = .25
Odds

• What are odds?
• Let p = the probability of an event
• 1-p = the probability that the event does not occur
• Odds of the event = p/1-p
 – If the probability of an event is 0.7, the odds of winning are 0.7/0.3 = 2.33

Odds Ratio

• The ratio of the odds of a condition in the exposed compared with the odds of the condition in the unexposed
• Usually applied to prevalence studies rather than incidence studies

\[
\text{OR} = \frac{\text{odds of disease in exposed}}{\text{odds of disease in unexposed}}
\]
<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>a + c</td>
<td>b + c</td>
<td>a + b + c + d</td>
</tr>
</tbody>
</table>

\[
\text{Odds Ratio} = \frac{[\ a / (a + b)\]}{1 - \left(\frac{a}{a+b}\right)} \div \frac{[\ c / (c + d)\]}{1 - \left(\frac{c}{c+d}\right)}
\]

Odds Ratio

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>a + c</td>
<td>b + c</td>
<td>a + b + c + d</td>
</tr>
</tbody>
</table>

\[
\text{Odds Ratio} = \frac{[a / b]}{[c / d]} = \frac{[ad]}{[bc]}
\]
Based on the Odds Ratio formula, what is the Odds Ratio for each disease status in this famous smoking study?

<table>
<thead>
<tr>
<th>Smoking and Carcinoma of the Lung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Status</td>
<td># of smokers</td>
</tr>
<tr>
<td>Males Lung cancer</td>
<td>647</td>
</tr>
<tr>
<td>Males Controls</td>
<td>622</td>
</tr>
<tr>
<td>Females Lung cancer</td>
<td>41</td>
</tr>
<tr>
<td>Females Controls</td>
<td>28</td>
</tr>
</tbody>
</table>

Difference Measures

- **Attributable risk**
 - # of cases among the exposed that could be eliminated if the exposure were removed
 - = Incidence in exposed - Incidence in unexposed

- **Population attributable risk percent**
 - Proportion of disease in the study population that could be eliminated if exposure were removed
 - \(\frac{\text{Incidence in total population} - \text{Incidence in unexposed incidence in total population}}{\text{Incidence in total population}} \)
Attributable Risk

- Rate of disease in the population that can be directly attributed to the exposure
- equals incidence rate in exposed minus incidence rate in the unexposed

\[
\frac{A}{A + B} - \frac{C}{C + D}
\]
AR: Fast driving and Automobile Deaths

<table>
<thead>
<tr>
<th></th>
<th>Dead</th>
<th>Not dead</th>
<th>Risk</th>
<th>RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>100</td>
<td>1900</td>
<td>2000</td>
<td>0.05</td>
</tr>
<tr>
<td>Slow</td>
<td>80</td>
<td>7920</td>
<td>8000</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>9820</td>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

Population Attributable Risk (PAR)

- Excess risk of disease in total population attributable to exposure
- Reduction in risk which would be achieved if population entirely unexposed
- Helps determining which exposures relevant to public health in community

\[PAR = I_{\text{population}} - I_{\text{unexposed}} \]
Population Attributable Risk

\[\text{PAR\%} = \frac{I_{\text{population}} - I_{\text{unexposed}}}{I_{\text{population}}} \times 100 \]

Population Attributable Risk Percent (PAR\%)
PAR: Fast driving

<table>
<thead>
<tr>
<th></th>
<th>Dead</th>
<th>Not dead</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>100</td>
<td>1900</td>
<td>2000</td>
</tr>
<tr>
<td>Slow</td>
<td>80</td>
<td>7920</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>9820</td>
<td>10000</td>
</tr>
</tbody>
</table>

\[
\text{PAR} = 0.018 - 0.010 = 0.008
\]

\[
\text{PAR}\% = \frac{0.018 - 0.010}{0.018} \times 100 = 44\%
\]

Conclude

- 44% of driving-related deaths in population were presumably due to fast driving