Restoration Ecology
Why restoration?

• Classic succession in ecology suggests if we just leave it alone, ecosystems will recover
Restoration targets in tropical forests

1. Restore cleared lands (farms or pasture)
2. Restore secondary forest regrowth
Biodiversity doesn’t recover on its own

<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th><10 cm dbh</th>
<th></th>
<th></th>
<th>>10 cm dbh</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>52 yr</td>
<td>77 yr</td>
<td>>80 yr</td>
<td>52 yr</td>
<td>77 yr</td>
<td>>80 yr</td>
</tr>
<tr>
<td>Ocotea leucoxylon</td>
<td>Lauraceae</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Cordia borinquensis</td>
<td>Boraginaceae</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Myrcia deflexa</td>
<td>Myrtaceae</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Syzygium jambos</td>
<td>Myrtaceae</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Guarea glabra</td>
<td>Meliaceae</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Dacryodes excelsa</td>
<td>Burseraceae</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Miconia tetandra</td>
<td>Melastomataceae</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Drypetes glabra</td>
<td>Euphorbiaceae</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Micropholis guyanensis</td>
<td>Sapotaceae</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sloanea berteriana</td>
<td>Eleocarpaceae</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Prestoea montana</td>
<td>Areceae</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Alchornea latifolia</td>
<td>Euphorbiaceae</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Schefflera morototoni</td>
<td>Araliaceae</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Casearia arborea</td>
<td>Flacourtiaeae</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Secondary forest** (fewer species)
- **Old growth**

Aide et al., 2000
Restoration targets in tropical forests

Limited seed bank

No seed bank

Need restoration to point recovery in the direction we want it to go

Lamb et al., 2005
Mount St. Helens insights on succession

Short-term succession can be rapid

But, species assemblages depend *hugely* on local populations

Short-term patterns are very hard to predict
Another need for restoration: Filling the ‘weed-shaped hole’

- Invasive plant removal often leaves a vacuum – available resources with no plants using them
- Without restoration, invasive plants come right back
Challenge: Long recovery times with short $$

Recovery of salt marsh snails in Connecticut salt marshes relative to reference marsh (reference = 1)

Warren et al., 2002
Long recovery - Kirtland’s Warbler

Habitat requirements: Patchy Jack pine forest with open grassy areas

Forests restored in mid-1970s
Restoration projects have a variety of possible goals

Table 1. Ecosystem functions with examples of processes, goods, and services (adapted from de Groot et al. 2002).

<table>
<thead>
<tr>
<th>Ecosystem Function</th>
<th>Ecosystem Process and Components</th>
<th>Goods and Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation functions</td>
<td>Maintenance of essential ecological processes and life support processes</td>
<td>UVb protection by ozone</td>
</tr>
<tr>
<td>Gas regulation</td>
<td>Biogeochemical cycling</td>
<td>Maintenance of a favorable climate</td>
</tr>
<tr>
<td>Climate regulation</td>
<td>Influence of land-cover vegetation type</td>
<td>Provision of water for consumption</td>
</tr>
<tr>
<td>Water supply</td>
<td>Filtering, retention, and storage of water</td>
<td></td>
</tr>
<tr>
<td>Habitat functions</td>
<td>Providing habitat for plant and animal species</td>
<td></td>
</tr>
<tr>
<td>Refugium function</td>
<td>Niche availability</td>
<td>Maintenance of biological and genetic diversity (and hence most other functions)</td>
</tr>
<tr>
<td>Production functions</td>
<td>Provision of food and fiber</td>
<td></td>
</tr>
<tr>
<td>Raw materials</td>
<td>Conversion of solar energy into edible plants and animals</td>
<td>Fuel, structural materials</td>
</tr>
<tr>
<td>Information functions</td>
<td>Providing opportunities for cognitive development</td>
<td>Use of nature as motive in books, film, and painting</td>
</tr>
<tr>
<td>Cultural and artistic information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ecosystem restoration often focuses on restoring what was there before the disturbance/change

• ‘Baseline’ = what was there before
• How do we choose a baseline?
Preconceptions about what ecosystems should be restored to Baseline is often assumed to be a state of ecological ‘health’ – can’t be sure that’s true.
Preconceptions about what ecosystems should be restored to

What was there before ≠ what will be there in the future!

Baselines don’t make a lot of sense in a changing world
Preconceptions about what ecosystems should be restored to

Explicit restoration goals needed instead of baselines?

But, who gets to pick the goals?
How do we know we achieved our goal? (quantify ecological outcomes)

1. Diversity
 - Plants, bugs, birds, other easy-to-count species

2. Vegetation structure
 - Cover, density, biomass, height

3. Ecological processes
 - Soil nutrients, soil carbon, biotic interactions (pollination, herbivory, seed dispersal)

Lots of monitoring needed to measure outcomes!!
Turns out we’re not so great at measuring outcomes ...

Ruiz-Jaen & Aide, 2005
How well set up are existing policies for dealing with shifting baselines?
History of species-related legislation

- Lacey Act (1900)
History of species-related legislation

• Lacey Act (1900)
 – Illegal to transport wildlife killed in violation of state law
 – Illegal to kill birds for feather trade
 – Illegal to hunt for commercial markets
 – Illegal to introduce harmful non-native species
History of species-related legislation

• Lacey Act (1900) (Major amendments 1981, 1988, 2008)
 – Illegal to transport wildlife or plants that cannot be harvested based on any state, federal or tribal law
 – The Lacey Act applies to invasive species as well as protected species
History of species-related legislation

- **Lacey Act (1900)**
- **Migratory Bird Treaty Act (1918)**
 - All migratory birds are subject to federal regulation
 - Established protective treaties with Canada, Mexico (1936), Japan (1972) & USSR (1976)
 - Establishes hunting seasons for game birds
History of species-related legislation

- Lacey Act (1900)
- Migratory Bird Treaty Act (1918)
- Bald Eagle Protection Act (1940)
 - Concerns that bald eagles were an extinction risk
Endangered Species Act (1973)

Fish, wildlife, and plant species have aesthetic, ecological, educational, historical, recreational, and scientific value to the U.S.; some species have become extinct or are threatened with extinction.

1. *Provide a means to conserve the ecosystems upon which endangered and threatened species depend*

2. *Provide a program for the conservation of such species*

3. *Take steps to achieve purposes of existing treaties and conventions affecting wildlife, fish, and plants.*
Recovery Plan Amendment (1988)

• A description of "site-specific" management actions to make the plan as explicit as possible.

• The "objective, measurable criteria" to serve as a baseline for judging when and how well a species is recovering.

• An estimate of money and resources needed to achieve the goal of recovery and delisting
Success stories (there are a handful)

Kirtland’s Warbler:
• Restoration of early successional pine habitat through fire (1970s)
• 210 breeding pairs in 1971, 1415 breeding pairs in 2005

Bald Eagle:
• Bands of DDT in U.S. & Canada in 1970s
• Delisted in 2007
Recovery Plan Amendment (1988)

• A description of "site-specific" management actions to make the plan as explicit as possible.

• The "objective, measurable criteria" to serve as a baseline for judging when and how well a species is recovering.

• An estimate of money and resources needed to achieve the goal of recovery and delisting

• Not much flexibility for adapting management if a site is changing
Federal laws/policies protect single species, not ecosystems

Protecting ecosystems is on us
Looking forward – considering climate change in species listing

Paving the way for ESA listings based on climate change threats?
Reasons climate change could increase vulnerability

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Climate Change might increase risk if:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species has a restricted range or habitat is highly fragmented</td>
<td>▪ Movement is restricted by soils, topography, or land use</td>
</tr>
<tr>
<td></td>
<td>▪ Range is restricted due to unique climatic conditions</td>
</tr>
</tbody>
</table>

American Pika lives near the peaks of the Rocky Mountains
Reasons climate change could increase vulnerability

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Climate Change might increase risk if:</th>
</tr>
</thead>
</table>
| Species or habitat is directly vulnerable to climate change effects | - Life cycle or physiology is directly sensitive to temperature
| | - Life cycle or physiology is directly sensitive to precipitation or hydrology (less certain than temperature) |

Salmon sensitive to water temperatures
ESA & Private Lands: Habitat Conservation Plans (HCPs)

• ESA section 10 (1982): Provides private land owners with a process for receiving an incidental take permit

• Incidental take permitted with a habitat conservation plan that mitigates impacts on listed species

• But, only 14 HCPs created 1982-1994 because no assurances of longevity of HCP
ESA & Private Lands: Habitat Conservation Plans (HCPs)

- 1994: “No Surprises” policy
- No additional mitigation in terms of land or money required beyond specified in HCP
- 600+ HCPs approved through 2008
- 18 million ha currently under HCP mgmt
- Management timeline 30-50 years
No Surprises

• *Changed circumstances*: Changes affecting the species or HCP that can be reasonably anticipated

• *Unforseen circumstances*: Changes affecting the species or HCP that could not have been reasonably anticipated

• Is climate change a changed circumstance?